
Honors Analysis of Algorithms November 14, 2025

Solutions to Problem Set 4

Name: Daniel Wichs (TA 2016), Srihari Narayanan (Course Assistant 2025) Due: November 2, 2025

Problem 1

1.1

Algorithm to detect whether a given undirected graph contains a cycle, and to output a cycle if
there exists one that runs in O(m+ n)

Solution: Without loss of generality, assume the graph is connected (if not, do the following for
each connected component).

Pick an arbitrary vertex as root and do a DFS, while maintaining a DFS tree. The DFS tree
initially contains the root and at each point, when you encounter an edge to a new vertex, the new
vertex is added to the tree and the edge is added between the new vertex and the parent. If at
any point you encounter an edge from a node to a seen vertex, then there is a cycle in the graph,
and you can return the cycle by tracing the path from each end point of the latest edge backwards
in the DFS tree till they meet (linear time), and displaying it in the correct order. If the DFS
ends without incident, there is no cycle. DFS runs in linear time on the edges/vertices, as each
edge/vertex is visited only once.

1.2

Given a graph with edges between vertices that say ”same” or ”different”, determine in O(m+ n)
if there exists a valid labeling of vertices with 2 labels.

Solution: Without loss of generality, assume the graph is connected (if not, do the following for
each connected component).

Pick an arbitrary vertex to be the root, and assign it label A. Now do a BFS from root. For each
neighbor, if the neighbor is not-visited, and is connected to the current vertex via a ”same” edge,
give it the same label as the parent, and if the not-visited neighbor is connected to the current
node via a ”different” edge, give it the alternate label. If the neighbor is visited and the label
it contains is different from the one you would have given it if it were not visited, then return
”inconsistent” and stop. If you visit all the nodes and are able to assign labels to all nodes without
any inconsistencies, return ”consistent”. Note that since we assign a label to the root, at any point
the current vertex will have a label assigned to it. We visit each edge and vertex only once, so the
algorithm is O(n+m).

1.3

Given an undirected graph on n nodes, and 2 vertices s and t that are a distance strictly greater
than n/2 apart, show that there is some node that is not s or t such that deleting the node removes
all s− t paths. Find the node v.

PS4-1

Solution: To show that such a vertex exists, assume contradiction. This implies that we must
have at least 2 vertex disjoint paths from s to t in the graph. But the distance between s and t
is strictly greater than n/2. Therefore, each of these paths has ≥ n/2 vertices without including
s or t, which would mean there has to be ≥ n + 2 vertices in the graph which is a contradiction.
Therefore, such a vertex exists.

To find this vertex, do a BFS from s till you reach t. There are at least n/2 layers between s
and t, which means there has to be at least one layer which has only 1 vertex, otherwise we end up
having more vertices than n, which is a contradiction. We can therefore maintain the level of each
vertex seen before t, and return any vertex that is alone in its level, which can be done in linear
time.

The time complexity of the algorithm is O(m+ n)

Problem 2

Solve: [Kleinberg Tardos] Chapter 3, problem 12, page 112.

Solution: Create a directed graph which has 2 vertices associated with each person, bi and di,
denoting birth date and death date. For each person, add a directed edge from bi to di, implying
chronological order. For each fact of the form i died before j was born, add an edge from di to bj .
For each fact of the form lives of i and j overlapped, add edges from bi to dj and from bj to di.
(Their lives overlap if and only if each of them was born before the other died.)

Check if there is a cycle, if so, return ”inconsistent”. If not, run a topological sort and we get
an order of births and deaths that is consistent with the facts.

Problem 3

Show that starting with the zero flow, the Ford-Fulkerson max-flow algorithm could take upto 2000
augmentation steps.

Solution: The initial residual graph is the same as the flow network. The Ford-Fulkerson algorithm
could choose the (s, a, b, t) augmenting path and push a flow of 1 through it. Then it could do the
same thing for the path (s, b, a, t). Therefore, after two steps, the residual graph would be similar
to the initial one with 999 instead of 1000 for the 4 edges s − a, s − b, a − t and b − t. This
sequence could continue for another 1998 steps until the residual capacities of the four peripheral
edges become zero, so the running time would be 2000 steps.

Problem 4

As suggested by Dinitz as well as Edmonds and Karp, during the execution of the Ford-Fulkerson
max-flow algorithm, suppose we always select an augmenting path in the residual graph that
contains a minimum number of edges. Prove that the Ford-Fulkerson algorithm terminates in
O(mn) iterations where n and m are the number of vertices and edges in the network respectively.

PS4-2

Solution: Let R be the residual graph. We show that distR(s, t), the length of the shortest path
from s to t in R, a) never decreases, and b) increases by at least 1 after at most O(m) iterations of
the algorithm. Since the length of the path from s to t in an s-t connected graph can be at most
n − 1, proving these two facts immediately shows that the Dinitz-Edmonds-Karp modification of
Ford-Fulkerson gives an algorithm with at most O(mn) iterations.

Lemma 1. distR(s, t) never decreases.

Proof. We consider a BFS in R from s with layers L0, . . . , Ln−1. Let k := distR(s, t), so that
t ∈ Lk. Let P be a shortest augmenting path from s to t, and let R′ be the residual graph obtained
by breaking this path. If we have edges in P corresponding to forward edges with flow 0 or fully
saturated backward edges, then breaking P could add new edges to the residual graph, of the form
of edges f going from Li to Li−1 for 1 ≤ i ≤ k. Now, suppose for a contradiction that we have a
shorter path P ′ from s to t in R′. Such a P ′ must include such a new edge f , since otherwise we
could find P ′ in the original R; however, this would necessitate edges going from Lj to Lj+3 for
some j in the BFS, which is impossible by definition of BFS.

Lemma 2. distR(s, t) increases by at least 1 after at most O(m) iterations.

Proof. Notice that we only ever add backward edges to the BFS and always delete at least one
forward edge in the layers between L0 and Lk per iteration. Thus, since the graph R has at most
2m edges, 2m = O(m) is an upper bound on the number of iterations needed to break all k-length
paths between s and t.

Problem 5

Vertex cover and matching.

Solution: 1)Every edge of the matching M must have at least one of its vertices in S. Therefore,
every edge in M, can be mapped to some unique vertex in S.
2)A fully connected graph of three vertices has matchings of size 1 but its vertex cover must be of
size at least two.
3) Construct a flow network as described in class by adding a source s and a sink t. Compute the
max-flow and the corresponding min-cut. Let the min-cut be {s}∪A∪B and {t}∪(U \A)∪(W \B)
(all cut edges go from A to C). Let C ⊆ (W \B) be the set of neighbors of A in W \B. In order to
verify that (U \A) ∪B ∪ C is a vertex cover, we notice that all possible edges have at least one of
their endpoints in this set. All possible edges must either start from (U \A) and end in W (covered
by U \ A) or start from A and end in C (covered by C) or start from U and end in B(covered by
B).
We now show that the size of this set is equal to the number of edges that cross the minimum cut.
We have exactly (U \A) edges from s to (U \A), exactly B edges from B to t and exactly C edges
from A to C. Therefore, this is the capacity of the cut and it is equal to the value of the maximum
flow. Since we already know that the value of the maximum flow equals the size of the maximum
matching, we conclude that it suffices to just run the Ford-Fulkerson algorithm for the new graph.

PS4-3

Problem 6

Decomposition into strongly connected components.

Solution: See Kosaraju’s algorithm for an O(|V | + |E|) algorithm. Here we give a simpler
poly-time algorithm.
To begin with, we perform a depth first search from each vertex and we aggregate all the child
vertices that can be reached. This way, in polynomial time, for each vertex we have a list of all the
vertices that can be reached from it through directed paths.
We now pick some arbitrary vertex u ∈ V . For every vertex v in the reachability list of u, we check
if u also exists in the reachability list of v. We put u along with all the vertices of its list which
prove to be equivalent with it in a set P1. We delete all the vertices of P1 from V and continue by
picking an arbitrary next vertex and repeating the above process, defining one new set Pi each time.

Now that we have a decomposition of the graph into strongly directed components, we assume
that there exists some directed cycle in the induced graph G′. If we have an edge in G′ between
two sets Pi and Pj , this means that there exists a directed path from every vertex of Pi to every
vertex of Pj . The existence of a directed cycle in G′ therefore implies the existence of a directed
cycle in G which passes through vertices that are not equivalent. This is a contradiction, since all
vertices that belong to a directed cycle must be equivalent with each other. Therefore, G′ must be
acyclic.

PS4-4

https://en.wikipedia.org/wiki/Kosaraju%27s_algorithm

