G22.3250-001 Honors Analysis of Algorithms October 31, 2025

Solutions to Problem Set 2,3
Name: Daniel Wichs, Srihari Narayanan Due: October 17, 2025

Problem 1

Given a tree with (possibly negative) weights assigned to its vertices, give a polynomial time
algorithm to Find a subtree with maximum weight. Note that a subtree is a connected subgraph
of a tree.

Solution: Let T be a tree with root v and let vq,...,v; be the children of v. Let T1,...,T,, denote
the n trees rooted at vq,...,v,.

The key realization is that the maximal-weight subtree of T' — call it maxWeight(T') — either
includes the root v or excludes it. In the latter case, it must just be the maximal-weight subtree of
one of the children:

v v is a leaf, weight(v) > 0
maxWeightSans(T') = 0 v is a leaf, weight(v) < 0
max{maxWeight(T}), ..., maxWeight(7},)} otherwise

In the former case, if the maximal-weight subtree of T' does include v, then the question is
what other “subtrees” to add under v. To do so, we define maxWeightWith(T) to be the
maximal-weight subtree of T' which includes the root v. Then this is simply the union of all
maxWeightWith(T;) which have weight greater than 0 together with v.

Then

v if v is a leaf

maxWeight With(T) = { Uso{maxWeightWith(T;)} Uv otherwise

Lastly, putting this together we get:

maxWeight(7T) = max{maxWeight With(7"), maxWeightSans(T)}

We note that the number of distinct recursive calls is at most 3|7’ (three recursive functions
which can get applied to any node) so, by cashing the answers on each recursive call (i.e. using
dynamic programming) the run time of the algorithm is 3|7'|.

O

Problem 2

Let G = (V, E) be a directed acyclic graph (i.e. it does not contain any directed cycle).

1. Prove that the graph must have a vertex ¢ that has no outgoing edge.

PS2,3-1

2. Suppose |V| = n. A topological ordering of the acyclic graph is a labeling of its vertices by
integers from 1 to n such that

e Any two distinct vertices receive distinct labels.
e Every (directed) edge goes from a vertex with a lower label to a vertex with a higher
label.

Give a polynomial time algorithm to Find a topological ordering of the graph.

3. Fix a node ¢ that has no outgoing edge. For every node v € V', let P(v) be the number of
distinct paths from v to ¢. Define P(v) = 0 if no such path exists and define P(t) = 1 for
convenience. Give a polynomial time algorithm to compute P(v) for every node v.

Solution:

1. Pick an arbitrary vertex v and follow an arbitrary path “away from” v until you reach a
vertex t that has no outgoing edges. Since there are no cycles, the path will never visit any
vertex twice and hence the above process must terminate after some finite number of steps
proving the existence of t.

2. See http://www.cs.nyu.edu/courses/fall06/G22.3520-001 /lec14.pdf. Slides 20-23. Or CLRS
pages 549-551.

3. Run a topological sort on G. Let label(v) be the value assigned to v by the sort, and N(v)
be the neighbor-set of v. Then

0 label(v) > label(t)
npaths(v,t) = 1 o=t
Ev/eN(v) npaths(v’, t) otherise

Problem 3

Let p(1),...,p(n) be positive real numbers. A k-shot strategy S is a sequence of at most k ordered
integer pairs (b1,51),..., (bm,sm), with 1 < by < s1 < by < $2... < by, < Sp. Let val(S) =
Sty (p(si) — p(bi)). For any k we want to find the k-shot strategy which maximizes val(.S).

Solution:
Let

M j) = ifgggj(p(J) — p(b))

be the maximum amount of money you can make in one buy/sell transaction with sell date j
and buy date b : i <b < j. It is easy to compute M, ;) for all 1 < i < j in time O(n?).

Now the best k-shot strategy in the days 4,7+ 1,...,n must consist of making the best possible
transaction with a sell date prior to some date b and the following the best & — 1-shot strategy in
the days b+ 1,...,n. Formally,

PS2,3-2

0 k<Qori>n

BEST (ki) = { MaXi<p<n (M(i,b) + BEST(k—1,b+ 1)) otherwise

There are at most nk distinct values of BEST(k,i) that need to be computed and each runs in
time n for a total run time of O(n?® + kn?). The above algorithm needs to be modified to return

the actual strategy rather than just the profit, but this just requires some simple book-keeping.
L]

Problem 4

Given a graph G with some edge weights such that the all cycles in G have positive weight, together
with vertices s, t find the number of shortest paths from s to ¢.

Solution:

Use Bellman-Ford to find the length best(u,t,n) of the shortest path from any node u to the
node ¢ which uses fewer than n edges. Now we define npaths(u, t,n) to be the number of shortest-
paths from u to ¢ using fewer than n edges. Then npaths(u,t,n) = Zwes(u)(npaths(w,t,n - 1))
is the sum of the number of shortest paths from w to t using fewer than n — 1 edges, for all
neighbors w such that some shortest path from u to ¢ goes through w. We call this set S(u).
But w € S(u) & c(u,w) + best(w,t,n — 1) = best(w, t,n) (where c¢(u,w) is the cost of the edge
(u,w)).So it is easy to check if a vertex is in S(u). Therefore we get

1 u=t
npaths(u, t,n) = 0 wtn =0
ZweS(u) npaths(w,t,n —1) otherwise

There are |V|? distinct problems each of which takes at most |V| steps to compute for a run-time

of OV). O

Problem 5

Given n jobs such that job ¢ takes time ¢; and must finish before deadline d; find a schedule which
runs the maximum number of jobs.

Solution:

1. First we show that there is an optimal schedule in which the jobs run in order of increasing
deadlines. Imagine that S is an optimal schedule and that, in S, tasks do not run in order
of increasing deadlines. Then there must be two tasks which run adjacent in S such that the
later one has an earlier deadline. But we can always switch the order of these tasks and they
finish within their deadlines (and the rest of the schedule is unchanged). By performing this
re-ordering operation many times, we get a schedule where jobs run in order of increasing
deadlines.

PS2,3-3

2. Sort tasks in order of increasing deadlines. In sorted order, let the deadlines be dy,...,d,
and the run-times t1,...,¢,. Let sched(i, s) be the optimal (value) of the schedule for tasks
1,7+ 1,...,n starting at time s. Then the optimal schedule either runs the first task, and
then runs the optimal schedule of the remaining n — 1 tasks from time s + ¢;, or it does not
run the first task and just runs the optimal schedule of the remaining tasks from time s.

0 s>dpori>n

sched (i, s) = { max(1 + sched(i 4 1,5 + t;),sched(i + 1, s)) otherwise

Figuring out the actual schedule requires simple additional book-keeping which we skip. We
see that there are at most n x d,, possible problems each of which takes O(1) time so, using
dynamic programming the run-time of the above recursion is O(n x d,,) together with sorting
we then get a run time of O(nlogn + nd,,) (where d,, is the maximal deadline).

O

Problem 6

An independent set Iin a graph is called maximal if the graph does not contain an independent
set I' such that I C I, |I| < |I'|. Given a tree on n vertices, and an integer 0 < k < n, give a
polynomial time algorithm to determine whether the tree has a maximal independent set of size k.
(Hint: Design an algorithm that solves the problem for all possible values of k.).

Solution:
As the main idea, each node v of the tree will store two sets:

maxWith(v) : the set of all k£ such that the subtree rooted at v contains some maximal
independent subset of size k which includes v.

maxSans(v) : the set of all k£ such that the subtree rooted at v contains some maximal
independent subset of size k which ezcludes v.

We also define maxAny(v) = maxSans(v) U maxWith(v).

It is clear that, if v is a leaf then maxWith(v) = {1} and maxSans(v) = {0}. If v has children
V1,...,Uy then

maxWith(v) = {1+t +ta+ ...+t : t1 € maxSans(v1),...,t, € maxSans(v,)}

since an independent subset containing v must not include its children, and the maximal subset
of the subtree rooted at v must contain some maximal independent subset of the trees rooted at
Vly...,Um. Also

maxSans(v) = {t; +ta+ ...+t : t1 € maxAny(vi),...,t, € maxAny(vy,)}

Now we just need to recursively compute maxAny(root) and check if k is included in the
answer. By caching the values at the nodes (i.e. using dynamic programming) we see that we
actually only solve two problems per node. Also, the amount of work done at the nodes is only the
merging of the sets maxWith(v;) maxSans(v;) computed for the children v;. Each such set is of
size at most |V| and hence the merging as well as the total algorithm run in polynomial time. [J

PS2,3-4

Problem 7

Binary search of a sorted array takes logarithmic search time, but the time to insert a new element
is linear in the size of the array. We can improve the time for insertion by keeping several sorted
arrays. Specifically, suppose that we wish to support SEARCH and INSERT on a set of n elements.
Let k = [log(n+1)], and let the binary representation of n be < ng_1,...,n9 >. We have k sorted
arrays Ao, ..., Ap_1, where the size of array A; is 2°. Each array is either full or empty, depending
on whether n; = 1 or n; = 0, respectively. The total number of elements held in all k arrays is
therefore Zf:_ol n;2" = n. Although each individual array is sorted, elements in different arrays
bear no particular relationship to each other.

a. Describe how to perform the SEARCH operation for this data structure. Analyze its worst-
case running time.

b. Describe how to perform the INSERT operation. Analyze its worst-case and amortized run-
ning times.

c. Discuss how to implement DELETE.

Solution:

a. We binary search on each sorted array. For array A;, of size 2¢, this takes O(i) time, so in
total the search operation takes at most Zfz_oli = O(k?) = O(log®n) time.

b. Suppose the smallest b arrays Ao, ..., Ap_1 are all populated, and A, = (). We implement
INSERT by merging these b sorted arrays along with the element x to be added, and putting
the resulting sorted array in A;. Specifically, the most efficient implementation merges x with
Ap, then the resulting array with Ay, then with As, and so on. The worst case running time
of this is the cost of running merge sort on multiple arrays, which is ¢ 2221 2k = (201 —2) =
O(n) for some constant c. As for amortized cost, define the potential function

O(A)=—c > k2
k| A #£0

where ¢ is some constant that will be determined later. Clearly, we have ®(()) = 0. When
we add the element x to A to get A’, if Ay is the smallest empty array, we have that

b—1 b—1
P(AN—B(A) =¢ (—62” +)° kz2k> </ (-bzb +(b—1) Zz’f) = (=224 (b—1)(2°—-1)) < —

k=0 k=0
Thus, if we choose ¢’ = 2¢, we get an amortized cost of

c(2TL —2) + B(A) — B(A) = (2 —2) — 2P = 0(1)
c. Let = be the element we want to delete. We first search for z, taking time O(log?n), and

suppose we find x in Ap. Let A. be the smallest non-empty array. We take any element y
out of A. and replace x with y in A, and then move y to its correct place in Ay, taking time
O(n) in the worst case of ¢ = k — 1. We then take the remaining elements out of A. and
populate arrays A.—1, Ac—2, ..., Ap, again taking time O(n) in the worst case of c = k — 1.

O

PS2,3-5

Problem 8

Consider an ordinary binary search tree augmented by adding to each node x the field size[z| giving
the number of keys stored in the subtree rooted at x. Let o be a constant in the range % <a<l
We say that a given node z is a-balanced if sizeleft[z]] < « - size[z] and size[right[z]] < « - size|x].
The tree as a whole is a-balanced if every node in the tree is a-balanced.

a. Given a node z in an arbitrary binary search tree, show how to rebuild the subtree rooted at

x so that it becomes %—balanced. Your algorithm should run in time ©(size[z]), and it can

use O(size[z]) auxiliary storage.
b. Show that performing a search in an n-node a-balanced BST takes O(logn) worst-case time.

For the remainder of this problem, assume o > % Suppose that INSERT and DELETE are
implemented as usual for an n-node binary search tree, except that after every such operation, if
any node in the tree is no longer a-balanced, then the subtree rooted at the highest such node in
the tree is “rebuilt” so that it becomes %—balanced.

We shall analyze this rebuilding scheme using the potential method. For a node z in a binary

search tree T', we define A(z) = |size[left[z]] — size[right[z]]|, and we define the potential of T as

o(T)=c > Alx)

z€T:A(x)>2
where c is a sufficiently large constant that depends on «.

c. Argue that any binary search tree has nonnegative potential and that a %—balanced tree has
potential 0.

d. Suppose that m units of potential can pay for rebuilding an m-node subtree. How large must
¢ be in terms of « in order for it to take O(1) amortized time to rebuild a subtree that is not
a-balanced?

e. Show that inserting a node into or deleting a node from an n-node a-balanced tree costs
O(logn) amortized time.

Solution:

a. We perform an in-order traversal on the BST rooted at x to store it as a sorted array. We
then construct a %—balanced BST out of these elements by first rooting our tree at the median
element (or one of the two medians if we have an even-size array). Next, we recurse on the
elements to the left and right of m to form left[m] and right[m], respectively. A simple proof
by induction shows that the resulting tree is %—balanced. Additionally, size we spend O(1)
time per element (to put it into the sorted array, and then into the new BST), we clearly
spend O(size[z]) time in total, and O(size[z]) space as well since all the data structures used

have linear size.

b. To see that binary search on this BST takes O(logn) time, we realize that, after each step,
we have at most an a-fraction of nodes left to search. Therefore we obtain the recursion

T(n) <14 T(an)

PS2,3-6

One way to proceed from here is by induction, where we assume the strong inductive step
T(an) < clog(an) for some constant ¢ we will pick later. Then we have

T(n) <1+T(an) <1+ clog(an) =1+ cloga + clogn

Since we have a < 1, we get log(a) < 0, so we pick ¢ large enough so that 1+ cloga < 0 and
T(n) < clogn, as desired.

Another way to proceed is to calculate the runtime directly. Since we have at most an
a-fraction of vertices left after each step, we take at most k steps where a@ < na®f < 1.
Rearranging this and taking the log of both sides gives (k — 1) loga > —logn, which can be

logn

rearranged again to give k < o (1) + 1 =0(logn), as desired.

. Since A(x) is obtained by taking an absolute value, any BST must have nonnegative potential
if ¢ > 0. Now, for any node z in a 1-balanced BST, we have that A(xz) < 1 since the subtree
rooted at z is maximally balanced (can formally justify this by working out the inequalities),
so by the definition of @, %—balanced BSTs have potential 0.

. Let 2/ be the highest node in the subtree rooted at x that is not a-balanced, and let m =
size[z']. The drop in potential after we rebalance the subtree rooted at 2’ can be bounded
from below by cA(z'), since the potential after rebalancing must be 0 by part c.. Now,
suppose WLOG we have size[left[z]] > am. We then have size[right[z]] < (1 — a)m — 1, so
we can lower bound cA(z’) in turn by ¢((2a — 1)m — 1). Since we are assuming m units of
potential pays for rebalancing, we need the drop in potential to be at least m, which follows

from requiring ¢((2a —1)m — 1) > m and ¢ 2 5.

. Without rebalancing, inserting or deleting a node into the BST takes O(logn) time without
amortization. With amortization, we add at most ¢ units of potential per level, since we add
or remove at most one element from every subtree. By b., our BST has O(logn) levels, so
the increase in potential is also O(logn). With rebalancing, by d., the decrease in potential
fully pays for the cost of rebalancing if we choose ¢ carefully enough, so the amortized cost
of insertion and deletion is O(logn) as desired.

O

PS2,3-7

