
Honors Analysis of Algorithms

Problem Set 6+7

Due on Mon Dec 8, after the class

Collaboration is allowed, but you must write your own solutions. Absolutely no extensions.

For all problems, the alphabet Σ = {0, 1}.

Problem 1

Solve Problem 4 from: http://www.cs.nyu.edu/courses/fall07/G22.3520-001/ps2.pdf

Note: This is the problem about the algorithm A(S).

Problem 2 (Pumping Lemma for regular languages)

Consider a DFA with n states and suppose x is a string accepted by the DFA with |x| > n. Show
that x can be written as x = uvw (i.e. concatenation of three strings u, v, w) such that |v| > 0 and
uviw is accepted by the DFA for every integer i ≥ 0 (i.e. concatenation of u, v repeated i times,
and w).

Using this lemma, prove that {0k1k | k ≥ 1} is not a regular language.

Problem 3

The standard procedure for converting an NFA to an equivalent DFA yields an exponential blowup
in the number of states. That is, if the original NFA has n states, then the resulting DFA has 2n

states. In this problem, you will show that such an exponential blowup is necessary in the worst
case.

Define Ln = {w : The nth symbol from the right is 1}.

1. Give an NFA with n+ 1 states that recognizes Ln.

2. Prove that any DFA with fewer than 2n states cannot recognize Ln. Hint: Let M be any DFA
with fewer than 2n states. Start by showing that there exist two different strings of length n
that drive M to the same state.

Problem 4

Show that the following languages are decidable:

1

1. INFINITEDFA = {〈D〉 | D is a DFA such that L(D) is infinite}.

2. L = {〈R,S〉 | R and S are DFAs such that L(R) ⊆ L(S)}.

Problem 5

In this problem, we explore the notion of oracle reducibility. If A is a language, then a Turing
machine with oracle A is a Turing machine with a “magical” subroutine that decides membership
in A. In other words, the subroutine, when given a string w, tells the machine whether or not
w ∈ A. Let

HALTTM = {〈M,x〉 | M is a Turing machine that halts on x}.

Show that there is a Turing machine with oracle HALTTM that decides the following problem with
only two questions to the oracle: Given three (machine, input) pairs 〈M1, x1〉 , 〈M2, x2〉 , 〈M3, x3〉,
decide for each pair whether the Turing machine halts on the corresponding input.

Note: This is trivial if one allows three questions. Just ask the oracle whether 〈Mi, xi〉 ∈ HALTTM

for i = 1, 2, 3.

Problem 6

Show that P is closed under the star operation (Hint: Use dynamic programming.) Recall that for
a language L,

L∗ = {x1x2 . . . xk | k ≥ 0, xi ∈ L ∀1 ≤ i ≤ k}

Problem 7

Show that these problems are NP-complete (you can assume that SAT and CLIQUE are NP-
complete).

1. DOUBLE-SAT = {〈φ〉 | φ is a boolean formula that has at least two satisfying assignments}.

2. HALF-CLIQUE = {〈G〉 | G is a graph with a clique of size at least |G|/2}.

Problem 8

Let {x1, x2, . . . , xn} be boolean variables. A literal is either a variable or its negation, i.e. xi or xi.
A clause is logical OR of one or more distinct literals. The size of a clause is the number of literals
in it. A 2CNF formula φ is a collection of m clauses (possibly with repetition),

φ = (C1, C2, . . . , Cm)

2

where each Ci is of size at most two. Let MAX-2SAT be the following decision problem: Given a
pair (φ, k) where φ is a 2CNF formula with n variables and m clauses, and k is a positive integer
such that k ≤ m, decide whether there exists an assignment to the n boolean variables that satisfies
at least k clauses. Show that MAX-2SAT is NP-complete, by giving a polynomial time reduction
from VERTEX COVER.

Recall that VERTEX COVER is a problem where, given an undirected graph G = (V,E), with
|V | = n, and given a positive integer ` ≤ n, one needs to decide whether G has a vertex cover of
size at most `. A vertex cover is a subset V ′ ⊆ V such that for every edge in E, at least one of its
endpoints is included in V ′.

Hint: To every vertex in the graph, assign a boolean variable which is intended to be TRUE if and
only if the vertex is included in the vertex cover. Add clauses of size two corresponding to the edges,
and clauses of size one corresponding to the vertices. The clauses corresponding to edges may need
to be repeated a number of times.

Problem 9

Show that these problems are NP-complete:

1. Problem 5 in http://cs.nyu.edu/web/Academic/Graduate/exams/sample/algs f09.pdf

2. Problem 6 in http://cs.nyu.edu/web/Academic/Graduate/exams/sample/algs f08.pdf

Problem 10

Solve Problem 2 in http://cs.nyu.edu/web/Academic/Graduate/exams/sample/algs f08.pdf

3

