
Honors Analysis of Algorithms

Problem Set 4+5

Due on Monday Nov 12, after the class

Collaboration is allowed, but you must write your own solutions. Proofs of correctness are a must.

Problem 1

1. Solve: [Kleinberg Tardos] Chapter 3, problem 2, page 107.

2. Solve: [Kleinberg Tardos] Chapter 3, problem 4, page 107.

3. Solve: [Kleinberg Tardos] Chapter 3, problem 9, page 110.

Problem 2

Solve: [Kleinberg Tardos] Chapter 3, problem 12, page 112.

Hint: Create a directed graph with two nodes for each person, one representing his birth-date and
the other representing his death-date.

Problem 3

Consider a flow network on four nodes {s, t, a, b} and five edges with capacities

c(s,a) = c(s,b) = c(a,t) = c(b,t) = 1000 and c(a,b) = 1.

Show that starting with the zero flow, the Ford-Fulkerson max-flow algorithm could take upto 2000
augmentation steps.

Reading assignment: If edge capacities are irrational numbers, Ford-Fulkerson algorithm may
never terminate and the flow could converge to a value other than the value of a max-flow. Study
the example from wikipedia page for Ford-Fulkerson algorithm.

Problem 4

As suggested by Dinitz as well as Edmonds and Karp, during the execution of the Ford-Fulkerson
max-flow algorithm, suppose we always select an augmenting path in the residual graph that
contains a minimum number of edges. Prove that the Ford-Fulkerson algorithm terminates in
O(mn) iterations where n and m are the number of vertices and edges in the network respectively.

Hint: Consider the BFS starting at the source s and the corresponding layers in the residual graph
R. As we know, every edge in R either stays in the same layer, goes to a previous layer or goes to
a layer that is immediately next. Let R′ be the residual graph after an augmentation step using a
shortest s-t path. How does R′ look compared to R? Let dist(s, t) denote the length of a shortest
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s-t path. Show that dist(s, t) in R′ is at least equal to dist(s, t) in R. Show that this distance must
increase by at least one after at most m iterations.

Problem 5

In an undirected graph G(V,E), a vertex cover is a set S ⊆ V such that every edge e ∈ E has
at least one endpoint in S. A matching is a set M ⊆ E such that no two edges in M share an
endpoint.

1. Show that if S is a vertex cover and M is a matching, then |M | ≤ |S|.

2. Give an example of a graph where the maximum size of any matching is strictly less than the
minimum size of any vertex cover (Hint: Look at graphs with three vertices).

3. Now assume that the graph is bipartite, i.e. the vertex set is partitioned as V = U ∪W and
every edge e ∈ E has one endpoint in U and the other in W . The goal is to prove that the
maximum size of a matching is equal to the minimum size of a vertex cover. Prove this by
designing a polynomial time algorithm to simultaneously find a maximum matching as well
as a minimum vertex cover.

Hint: Construct a flow network as described in class by adding a source s and a sink t.
Compute the max-flow and the corresponding min-cut. Let the min-cut be {s} ∪ A ∪ B and
{t} ∪ (U \A) ∪ (W \B). Let C ⊆ (W \B) be the set of neighbors of A in W \B. Show that
(U \ A) ∪ B ∪ C is a vertex cover. Why is its size equal to the value of the max-flow (which
in turn equals the size of maximum matching)?

Problem 6 (Randomized Algorithms)

Solve: [Kleinberg Tardos] Chapter 13, problem 1, page 782.

Problem 7 (Randomized Algorithms)

Solve: [Kleinberg Tardos] Chapter 13, problem 10, page 789.

Hint: Consider an agent such that there are k agents with a higher bid than her. What is the
probability that her bid results in an update of b∗?

Problem 8 (Randomized Algorithms)

Solve: [Kleinberg Tardos] Chapter 13, problem 11, page 789.

Problem 9

Given a directed graph G(V,E), call two vertices u and v equivalent if there is a path from u to
v and vice versa. Give a polynomial time algorithm (there are O(|V |+ |E|) time implementations
but don’t worry in this problem) to partition the vertex set V into non-empty sets P1, P2, . . . , Pk

such that:
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• For every 1 ≤ i ≤ k, all vertices in Pi are equivalent to each other.

• For every 1 ≤ i < j ≤ k, no vertex in Pi is equivalent to any vertex in Pj .

Such a partition is called decomposition into strongly connected components. Now construct a
directed graph G′ on vertex set {1, 2, . . . , k} and add an edge (i, j) if there is an edge from some
vertex in Pi to some vertex in Pj . Show that G′ is acyclic.

Problem 10 (Do not submit)

Solve Problem 1, 2, and 7 (Sightseeing, Colorful Paths (I), and Min-Max Graphs) in this assignment
from Fall’06.

http://www.cs.nyu.edu/courses/fall06/G22.3520-001/ps5.pdf

General tip for problems on directed graphs: first solve the problem assuming the graph is acyclic.
Then work on the general case by finding strongly connected components of the graph. You can
assume that strongly connected components can be found in O(|V |+ |E|) time.
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