Solutions to Homework 1
CS6520
Computational Complexity

February 15, 2005

Problem: Show that deciding if an instance of 2-SAT is satisfiable is in P.
Solution: The idea is eliminate one variable from the system at every
step. This can be done as follows:

e If x or T occurs as a singleton in some clause, set = accordingly. If
both occur, then reject.

e If = does not occur in any clause, set = to True (and vice versa).

e Hence x and T both occur but only in clauses of size 2. Assume these
caluses are Vy; and TV z;. Replace these clauses by the clauses y; V z;
for every i, j. Eliminate all duplicate clauses.

Since the number of 2— SAT clauses in n-variables is O(n?) and the number
of variables reduces by 1 at every step, the running time is O(n?). To prove
correctness, we will show that the system x V y;, Z V z; has a solution iff
y; V z; for all 4, j has a solution. The forward direction is easy. Assume that
y; V z; for all 4, j has a solution. Then it must be that all y;s are True or all
zjs are True. Else there is some 7, j so that y; and z; are set to False. Then
the clause y; V z; is unsatisfied. We now set x; accordingly. [J

Another solution to this Problem (see Papadimitriou’s book) is to construct
a graph. This in fact shows that 2-SAT is NL-complete.

Problem: Show that deciding if there is an assignment that satisfies at
least K out of M clauses is NP-complete.

Solution: Given graph G(V, E) with n vertices and m edges, we define an
instance of 2-SAT as follows:



e Add z; fpr 1 < i < n as a clause for every vertex in V.
e Add n copies of z; V x; for each edge (3, j)

There is an assignment satisfying nm +mn — k clauses iff G has a vertex cover
of size k. (check this!) O

For a reduction from 3-SAT, see Papadimitriou.

Problem: The class EXP is defined as
EXP = %DTIME(W)

Show that NP C EXP and co-NP C EXP.

Solution: If L € NP, there is a deterministic polynomial time verifier V'
such that for every x € L, there is y of size |z|* such that V(z,y) accepts.
We construct a machine V' that runs V' (z,y) on all possible ys. V' accepts
if there is some y where V accepts and rejects otherwise. V' runs in time
27", This shows NP C EXP. Since EXP is closed under complement so
co— NPCEXP. O

Problem: Show that if P = NP, there is a polynomial time algorithm
to find a satisfying assignment to a 3-SAT formula if such an assignment
exists.

Solution: If P = NP there exists a polynomial time algorithm A to decide
if a 3 — SAT is satisfiable. Assume we have a satisfiable 3 — SAT instance
¢. To find a solution, we try x1 = 0 and see if the resulting 3-SAT ¢ is also
satisfiable. If it is not, we set x1 = 1 (this instance ¢; has to be satisfiable).
Repeat for remaining variables. [

Does such an equivalence hold for every NP-complete problem?

Problem: Let BIPARTITE denote the language of all (undirected) graphs
which are bipartite. Show that BIPARTITE € NL.

Solution: We describe an N L machine for BIPARTITE. Recall that G
is non-bipartite iff it contains an odd cycle.

We keep a counter k for path length. We guess a start vertex v and store
it. For k < n we guess the next vertex u on the path. If it happens that
u = v and k is odd, we accept since the graph must contain an odd cycle.

Now since NL=co-NL, we have BIPARTITE € NL. O



Problem: A directed graph is strongly connected if for every pair of ver-
tices (u,v) there is a directed path from u to v in G. Show that the problem
of deciding whether a graph is strongly connected is NL-complete.
Solution: We reduce STCONN to the problem of deciding if a graph is
strongly connected. Given G(V, E) with (s,t), we add directed edges from
every vertex v # s,t to s and from ¢ to v. It is easy to show that this graph
is strongly connected iff there is a path from s to t in G. [J

Problem: Deciding if the following equation has an integer solution is in

P. .
Z CLZ‘XZ' =b
i=1

Solution: Compute g = GCD(aq,- - ,a,). Accept if g/b. If g fb, there is
not solution. Else, there exist y;s such that ), y;a; = g. Hence X; = gyi is
a solution. Finally GCD of n numbers can be computed in P. [

In this question, it is crucial that we are allowed arbitrary integers. If
we restrict to positive integers, the problem is again NP-complete. In other
words, deciding whether there is an integer solution to the equation

n
=1

is NP-complete.
Problem: Show that the following problem is NP-hard. Given a poly-

nomial P(X1,---,X,) with integer coefficients, the problem is to decide
whether the following equation has an integer solution :

P(Xy,---,X,)=0

Solution: By reduction from knapsack.

P(Xy,- Xp) = O aiXi = b’ + > X7 - X,

Note that Xi2 — X; is 0 at 0,1 and positive for all other integers. [



Note that one cannot guess a solution since the size may not be poly-
nomially bounded in the sizes of the coefficients of P. In fact this problem
(finding an integer solution to an equation) was Hilbert’s tenth problem and
it was shown to be undecidable. Adleman and Manders showed that the
following is NP-complete: find an integer solution to

aX?4+bXo4+c=0

For a language L C {0,1}*, and a function f(n) (assume that f(n)
is computable in time O(f(n))), let Ly C {0,1,#}* denote the following
language :

Ly:= {a#/1*) | 2 e L}

Problem:  Suppose that L € DTIME(f(n)). Then show that L; €
DTIME(O(n)). Show similar results for non-deterministic time classes and
deterministic space classes.

Solution: To show Ly € DTIME(O(n)), we first check that the input is
of the form z#*. We then check x € L. We then check that the number of
#s is indeed f(n). If so accept. O

Problem: Show that if f(n) is a polynomial function, then L € P iff
L f € P.

Solution: If L € P, clearly Ly € P. Assume that Ly in P. Given an
input = to test membership in L, we simply pad it with f(n) = poly(n) #
symbols and run Ly on it. Since Ly runs in polynomial time in input, it is
also polynomial in |z|. O

Problem: Show that P # DSPACE(O(n)).

Solution: Assume equality holds. Take alanguage L € DSPACE(O(n?)).
By taking f(n) = n?, we can get Ly € DSPACE(O(n)) = P. Now by the
previous problem we have L € P = DSPACE(O(n)). But this violates the
Space hierarchy theorem, since there are languages in DSPACE(O(n?))
which are not in DSPACE(O(n)). O

Problem: Define the class NEXP as
NEXP := U,NTIME(2"")

Prove that if P = NP then EXP = NEXP.
Solution: Assume P = NP. Take a language L € NTIME(2”k). By



taking f(n) = 2”k, we can get Ly € NP = P. By the above argue-
ment, this gives an exponential time deterministic machine for L, hence
NEXPCEXP. O



