
Solutions to Homework I

CS6520

Computational Complexity

February 15, 2005

Problem: Show that deciding if an instance of 2-SAT is satisfiable is in P.
Solution: The idea is eliminate one variable from the system at every
step. This can be done as follows:

• If x or x̄ occurs as a singleton in some clause, set x accordingly. If
both occur, then reject.

• If x̄ does not occur in any clause, set x to True (and vice versa).

• Hence x and x̄ both occur but only in clauses of size 2. Assume these
caluses are x∨yi and x̄∨zj . Replace these clauses by the clauses yi∨zj

for every i, j. Eliminate all duplicate clauses.

Since the number of 2−SAT clauses in n-variables is O(n2) and the number
of variables reduces by 1 at every step, the running time is O(n3). To prove
correctness, we will show that the system x ∨ yi, x̄ ∨ zj has a solution iff
yi ∨ zj for all i, j has a solution. The forward direction is easy. Assume that
yi ∨ zj for all i, j has a solution. Then it must be that all yis are True or all
zjs are True. Else there is some i, j so that yi and zj are set to False. Then
the clause yi ∨ zj is unsatisfied. We now set xi accordingly. �

Another solution to this Problem (see Papadimitriou’s book) is to construct
a graph. This in fact shows that 2-SAT is NL-complete.

Problem: Show that deciding if there is an assignment that satisfies at
least K out of M clauses is NP-complete.
Solution: Given graph G(V,E) with n vertices and m edges, we define an
instance of 2-SAT as follows:

1

• Add x̄i fpr 1 ≤ i ≤ n as a clause for every vertex in V .

• Add n copies of xi ∨ xj for each edge (i, j)

There is an assignment satisfying nm+n−k clauses iff G has a vertex cover
of size k. (check this!) �

For a reduction from 3-SAT, see Papadimitriou.

Problem: The class EXP is defined as

EXP = ∪
k

DTIME(2nk
)

Show that NP ⊆ EXP and co-NP ⊆ EXP.
Solution: If L ∈ NP , there is a deterministic polynomial time verifier V
such that for every x ∈ L, there is y of size |x|k such that V (x, y) accepts.
We construct a machine V ′ that runs V (x, y) on all possible ys. V ′ accepts
if there is some y where V accepts and rejects otherwise. V ′ runs in time
2nk

. This shows NP ⊆ EXP . Since EXP is closed under complement so
co−NP ⊆ EXP . �

Problem: Show that if P = NP, there is a polynomial time algorithm
to find a satisfying assignment to a 3-SAT formula if such an assignment
exists.
Solution: If P = NP there exists a polynomial time algorithm A to decide
if a 3 − SAT is satisfiable. Assume we have a satisfiable 3 − SAT instance
φ. To find a solution, we try x1 = 0 and see if the resulting 3-SAT φ0 is also
satisfiable. If it is not, we set x1 = 1 (this instance φ1 has to be satisfiable).
Repeat for remaining variables. �

Does such an equivalence hold for every NP-complete problem?

Problem: Let BIPARTITE denote the language of all (undirected) graphs
which are bipartite. Show that BIPARTITE ∈ NL.
Solution: We describe an NL machine for ¯BIPARTITE. Recall that G
is non-bipartite iff it contains an odd cycle.

We keep a counter k for path length. We guess a start vertex v and store
it. For k ≤ n we guess the next vertex u on the path. If it happens that
u = v and k is odd, we accept since the graph must contain an odd cycle.

Now since NL=co-NL, we have BIPARTITE ∈ NL. �

2

Problem: A directed graph is strongly connected if for every pair of ver-
tices (u, v) there is a directed path from u to v in G. Show that the problem
of deciding whether a graph is strongly connected is NL-complete.
Solution: We reduce STCONN to the problem of deciding if a graph is
strongly connected. Given G(V,E) with (s, t), we add directed edges from
every vertex v 6= s, t to s and from t to v. It is easy to show that this graph
is strongly connected iff there is a path from s to t in G. �

Problem: Deciding if the following equation has an integer solution is in
P.

n∑
i=1

aiXi = b

Solution: Compute g = GCD(a1, · · · , an). Accept if g/b. If g 6 |b, there is
not solution. Else, there exist yis such that

∑
i yiai = g. Hence Xi = b

gyi is
a solution. Finally GCD of n numbers can be computed in P . �

In this question, it is crucial that we are allowed arbitrary integers. If
we restrict to positive integers, the problem is again NP-complete. In other
words, deciding whether there is an integer solution to the equation

n∑
i=1

aiXi = b 0 ≤ Xi

is NP-complete.

Problem: Show that the following problem is NP-hard. Given a poly-
nomial P (X1, · · · , Xn) with integer coefficients, the problem is to decide
whether the following equation has an integer solution :

P (X1, · · · , Xn) = 0

Solution: By reduction from knapsack.

P (X1, · · · , Xn) = (
∑

i

aiXi − b)2 +
∑

i

X2
i −Xi

Note that X2
i −Xi is 0 at 0, 1 and positive for all other integers. �

3

Note that one cannot guess a solution since the size may not be poly-
nomially bounded in the sizes of the coefficients of P . In fact this problem
(finding an integer solution to an equation) was Hilbert’s tenth problem and
it was shown to be undecidable. Adleman and Manders showed that the
following is NP-complete: find an integer solution to

aX2
1 + bX2 + c = 0

For a language L ⊆ {0, 1}∗, and a function f(n) (assume that f(n)
is computable in time O(f(n))), let Lf ⊆ {0, 1,#}∗ denote the following
language :

Lf := {x#f(|x|) | x ∈ L}

Problem: Suppose that L ∈ DTIME(f(n)). Then show that Lf ∈
DTIME(O(n)). Show similar results for non-deterministic time classes and
deterministic space classes.
Solution: To show Lf ∈ DTIME(O(n)), we first check that the input is
of the form x#∗. We then check x ∈ L. We then check that the number of
#s is indeed f(n). If so accept. �

Problem: Show that if f(n) is a polynomial function, then L ∈ P iff
Lf ∈ P.
Solution: If L ∈ P , clearly Lf ∈ P . Assume that Lf in P . Given an
input x to test membership in L, we simply pad it with f(n) = poly(n) #
symbols and run Lf on it. Since Lf runs in polynomial time in input, it is
also polynomial in |x|. �

Problem: Show that P 6= DSPACE(O(n)).
Solution: Assume equality holds. Take a language L ∈ DSPACE(O(n2)).
By taking f(n) = n2, we can get Lf ∈ DSPACE(O(n)) = P . Now by the
previous problem we have L ∈ P = DSPACE(O(n)). But this violates the
Space hierarchy theorem, since there are languages in DSPACE(O(n2))
which are not in DSPACE(O(n)). �

Problem: Define the class NEXP as

NEXP := ∪kNTIME(2nk
)

Prove that if P = NP then EXP = NEXP.
Solution: Assume P = NP . Take a language L ∈ NTIME(2nk

). By

4

taking f(n) = 2nk
, we can get Lf ∈ NP = P . By the above argue-

ment, this gives an exponential time deterministic machine for L, hence
NEXP ⊆ EXP . �

5

