
The NYU Breast Ultrasound Dataset v1.0
Farah Shamouta,*, Yiqiu Shenc, Jan Witowskid,b, Jamie Oliverd, Kawshik Kannanf, Nan Wuc, Jungkyu Parkd,g, Beatriu
Reigd,e, Linda Moyd,b,e,g, Laura Heacockd,e, and Krzysztof J. Gerasd,b,c,g,*

aEngineering Division, NYU Abu Dhabi; bCenter for Advanced Imaging Innovation and Research, NYU Langone Health; cCenter for Data Science, New York University;
dDepartment of Radiology, NYU Langone Health; ePerlmutter Cancer Center, NYU Langone Health; fCourant Institute of Mathematical Sciences, New York University; gVilcek
Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine

This manuscript was compiled on April 28, 2021

Ultrasound imaging is often used to diagnose breast cancer, espe-
cially in young women, women with palpable masses, and women
with dense breast tissue. In this report, we present the NYU Breast
Ultrasound Dataset consisting of 288,767 breast ultrasound exams
with 5,442,907 total images acquired from 143,203 patients examined
between 2012 and 2019 at NYU Langone Health. We summarize the
statistics of the dataset, image collection process, and image pre-
processing procedures. This dataset is intended to be used for the
development of deep neural networks for the detection of breast can-
cer. Although this is a private dataset, we are publishing this report
to improve reproducibility of our work and to share practices and
insights that may be useful to others.

1. Statistics of the dataset
The NYU Breast Ultrasound Dataset v1.0 consists of 288,767
breast ultrasound exams (containing 5,442,907 images) from
143,203 patients examined between 2012 and 2019 in the NYU
Langone Health system (New York, NY, USA). It was ob-
tained with approval from the NYU Langone Institutional
Review Board. Consecutive breast ultrasound examinations,
performed in a screening setting (asymptomatic patient) or
in a diagnostic setting (symptomatic patient, follow-up exam-
ination of a previously identified ultrasound finding, patient
had an abnormal screening ultrasound, or patient had an ab-
normality detected on other breast imaging examinations e.g.
mammography or magnetic resonance imaging (MRI)) were
included. All exams were performed using hand-held ultra-
sound technique by sonographic technologists who specialize
in breast imaging. Each exam contains images of one or both
breasts. The images were originally stored using the Digital
Imaging and Communications in Medicine (DICOM) Standard.
We pre-processed each image and applied the filtering criteria,
as described in Section 2. At the time of examination, the
patients’ ages ranged between 16 and 102 years, with a mean
age of 55 (see Figure 1). The number of images per exam
ranged between 4 and 70 images, with 18.8 images per exam on
average (see Figure 2). The average size of a processed image
is 665 pixels in width and 603 pixels in height. In Table 1, we
show the average width and height of the images grouped by
the year of examination. In the same table, we also show the
three most frequently used ultrasonic transducers in each year
of the study. A few examples of the final cropped ultrasound
images are shown in Figure 3.

To develop and evaluate deep neural networks, the dataset
was further split into training, validation, and test sets, as de-
scribed in the following Section 1.A. The dataset also includes
two breast-level binary labels for each breast: one indicating
whether the imaged breast has at least one malignant finding
and the other one indicating whether the breast has at least
one benign finding, which will be further described in Section
1.B. The labels were extracted from pathology reports, as

described in Section 3. The labels were assigned by matching
each exam to pathology reports recorded either within 120
days after or 30 days before the date of examination. The
natural language processing pipeline used for extracting the
labels is described in our previous mammography data report,
The NYU Breast Cancer Screening Dataset (1). In the test
set, the cancer labels were further refined to reduce label noise.
Further details on the filtering of the test set will be presented
in Section 2.E. Each exam is also associated with a Breast
Imaging-Reporting and Data System (BI-RADS) risk assess-
ment and mammographic breast density labels as summarized
in Section 1.C. The exams were performed by a variety of ul-
trasound machines and sonographic transducers from multiple
vendors, as detailed in Section 1.D.

A. Training, validation and test sets. To split the dataset, the
ultrasound exams were first grouped according to their patient
identifier. Next, we randomly divided the patients into disjoint
training (60% of the patients), validation (10% of the patients)
and test (30% of the patients) sets. Hence, if a patient had
multiple ultrasound exams over the study period, then the
exams were all included in the same dataset (i.e., training,
validation, or test set). The test set was further filtered to
refine the cancer labels (see Section 2.E). The overall proce-
dure resulted with 209,162, 34,850 and 44,755 exams in the
training, validation and test sets, respectively, corresponding
to 3,930,347, 653,924, 858,636 images, respectively. The train-
ing set contained exams collected between October 23, 2012,
and September 30, 2019, the validation set contained exams
collected between January 6, 2012, and September 30, 2019,
and the test set contained exams collected between September
10, 2012, and September 30, 2019. The distributions of the
patients’ age in each subset are shown in Figure 1.
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Fig. 1. Distribution of patients’ age at the time of examination in the training, validation
and test sets.
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Fig. 2. Distribution of the number of images per exam in the overall dataset.

Table 1. The average image width and height after image cropping,
grouped based on the year the ultrasound exam was conducted. The
image resolution generally increased over time, reflecting develop-
ments in ultrasound technology.

Year Total Width Height Top 3 Devices

2012 4452 613 492 S2000 (83%), LOGIQ5 (15%), LOGIQ9 (2%)
2013 79149 566 468 S2000 (67%), LOGIQ7 (18%), LOGIQ5 (13%)
2014 222723 516 457 LOGIQ7 (36%), S2000 (27%), Xario (11%)
2015 349139 553 498 LOGIQ7 (22%), S2000 (16%), S3000 (14%)
2016 1060810 633 587 S1000 (42%), S3000 (14%), Affiniti 70G (8%)
2017 1300776 684 628 Affiniti 70G (56%), S1000 (20%), S3000 (13%)
2018 1422517 697 630 Affiniti 70G (57%), S1000 (16%), S3000 (14%)
2019 1003341 710 627 Affiniti 70G (56%), S3000 (15%), S1000 (13%)

(a) (b)

(c)

Fig. 3. Examples of images after applying the cropping procedure. We show three
examples with different width to height ratios: (a) example of the minimum ratio
present in the dataset, (b) example of the mean ratio present in the dataset, and (c)
example of the maximum ratio present in the dataset.

B. Breast-level cancer labels. Here, we describe the distribu-
tion of the breast-level cancer labels. In total, the dataset
contained images of 510,271 breasts (255,551 left breasts and
254,720 right breasts). There were 28,914 ultrasound exams
(10% of total exams) associated with at least one biopsy per-
formed within 120 days after or 30 days before the date of
the ultrasound examination. Among these, there were 5,593
breasts with at least one biopsy-confirmed malignant find-
ing and 26,843 breasts with at least one biopsy-confirmed
benign finding. Additionally, 2,171 breasts were associated

with both biopsy-confirmed malignant and benign findings.
The remaining breasts were not matched with any pathology
reports. These exams were assigned a ‘negative’ cancer label.
Figure 4 shows the distribution of the time between the study
date of the ultrasound exam and the latest pathology results
across the entire dataset. Table 2 shows the distribution of
malignant and benign findings across left and right breasts in
the training, validation, and test sets.
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Fig. 4. Distribution of the number of days between ultrasound study date and pathol-
ogy results. For ultrasound exams associated with multiple pathology reports, we
selected the date of the latest report.

Table 2. Number of breasts with malignant and benign findings
based on the labels extracted from the pathology reports, across the
left and right breasts in the training, validation, and test sets.

malignant benign

right left right left

training 1,794 1,867 8,116 8,159
validation 310 298 1,276 1,413

test 691 633 4,065 3,814

overall 2,795 2,798 13,457 13,386

C. BI-RADS risk assessment & mammographic breast den-
sity labels. We also extracted the associated BI-RADS risk
assessment and mammographic breast density labels for each
ultrasound exam from their ultrasound report and existing
mammography reports, respectively. BI-RADS risk assessment
labels are assigned by radiologists to indicate their suspicions
of malignancy while reporting breast mammographic, ultra-
sound and MRI findings (2)∗. Mammography reports should
also include a visual assessment of the breast density, ranging
from entirely fatty to extremely dense breasts. Therefore, we
extracted breast density information for patients in our dataset
who had undergone a screening or diagnostic mammogram in
the past and had a matching radiology report available. Fur-
ther details on the extraction of the BI-RADS risk assessment
labels and the mammographic density labels are described in
Section 3.B and Section 3.C, respectively. The distributions of
the BI-RADS risk assessment labels and the mammographic
breast densities for the exams in our dataset are summarized
in Table 3 and Table 4, respectively.

∗BI-RADS 0: incomplete exam and needs additional imaging evaluation, BI-RADS 1: negative (nor-
mal exam), BI-RADS 2: benign (normal exam with a benign finding) 0% probability of malignancy,
BI-RADS 3: probably benign, <2% probability of malignancy, short interval follow-up suggested,
BI-RADS 4: suspicious for malignancy, >2-95% probability of malignancy, biopsy should be con-
sidered, BI-RADS 5: highly suggestive of malignancy, >95% probability of malignancy, appropriate
action should be taken, and BI-RADS 6: known biopsy-proven malignancy.
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Table 3. Breakdown of BI-RADS risk assessment labels assigned to
each exam. BI-RADS risk assessment labels were extracted from the
patient’s ultrasound report. ‘Unknown’ indicates exams with missing
or ambiguous information.
BI-RADS risk assessment Overall Training set Validation set Test set

0 14078 (4.9%) 11151 (5.3%) 1835 (5.3%) 1092 (2.4%)
1 86347 (29.9%) 63499 (30.4%) 10474 (30.1%) 12374 (27.6%)
2 136322 (47.2%) 98044 (46.9%) 16603 (47.6%) 21675 (48.4%)
3 27711 (9.6%) 20722 (9.9%) 3403 (9.8%) 3586 (8.0%)
4 22133 (7.7%) 14266 (6.8%) 2289 (6.6%) 5578 (12.5%)
5 1348 (0.5%) 865 (0.4%) 145 (0.4%) 338 (0.8%)
6 518 (0.2%) 393 (0.2%) 56 (0.2%) 69 (0.2%)

Unknown 310 (0.1%) 222 (0.1%) 45 (0.1%) 43 (0.1%)

Table 4. Breakdown of mammographic breast density labels as-
signed to each exam. The density labels were extracted from screen-
ing and diagnostic mammogram reports associated with the same
patient. ‘Unknown’ indicates exams with missing or ambiguous in-
formation.

Mammographic breast density Overall Training set Validation set Test set

A (breasts are almost entirely fatty) 5384 (1.9%) 4107 (2.0%) 582 (1.7%) 695 (1.6%)
B (scattered areas of fibroglandular density) 69948 (24.2%) 50609 (24.2%) 8291 (23.8%) 11048 (24.7%)

C (breasts are heterogeneously dense) 165855 (57.4%) 119417 (57.1%) 19929 (57.2%) 26509 (59.2%)
D (the breasts are extremely dense) 31829 (11.0%) 22660 (10.8%) 3980 (11.4%) 5189 (11.6%)

Unknown density 15751 (5.5%) 12369 (5.9%) 2068 (5.9%) 1314 (2.9%)

D. Scanner information. We also extracted information on
the ultrasound system used to acquire each image using the
ManufacturerModelName attribute in the DICOM file. The im-
ages in the dataset were collected from 8 manufacturers, includ-
ing Philips, General Electric (GE), Siemens, Toshiba, Medison,
Advanced Technology Laboratories, Supersonic Imagine, and
Samsung, using 20 different types of ultrasound transducers,
as shown in Table 5. The most commonly used ultrasound
machines were the Affiniti 70G (Philips), S1000 (Siemens),
S3000 (Siemens), and S2000 (Siemens). This highlights the
diversity of the dataset in terms of the acquisition devices.

Table 5. Distribution of types of ultrasound machines used to collect
the exams in the training, validation and test sets.

Device Training set Validation set Test set

Affiniti 70G 79080 13329 14715
S1000 40097 6684 9148
S3000 29676 4937 5785
S2000 24701 4054 5655

LOGIQ7 6316 1035 1647
Xario 6029 947 1541
iU22 4988 803 1696

LOGIQ9 3659 585 544
TUS-A300 3540 618 954

Accuvix V10 2478 389 788
Antares 2468 395 709
LOGIQ5 2232 471 832
Sequoia 1868 263 28

Accuvix V20 1851 311 680
LOGIQE9 152 19 26
HDI 5000 10 6 1
LOGIQS8 8 1 5
Aixplorer 4 1 0

LOGIQS7 4 2 1
UGEO H60 1 0 0

2. Image collection and preprocessing

In this section, we describe in detail the complete pipeline used
for processing the ultrasound images, starting from extracting
the images from the DICOM files. This pipeline consists of

six phases: image collection and extraction, image cropping,
breast laterality extraction using optical character recognition
(OCR), filtering of the overall dataset based on the inclusion
and exclusion criteria, filtering of the test set, and removal of
burnt-in annotations.

A. Image collection and extraction. We extracted certain
metadata fields from all DICOM files, where each file
represented a single ultrasound image and each exam
contained several ultrasound DICOM files. The extracted
metadata included (i) exam and patient identifying infor-
mation (PatientID, AccessionNumber, & StudyDate) (ii)
patient demographics (PatientBirthDate & PatientSex),
(iii) characteristics of the image and acquisition process
(Modality, InstanceCreationTime, SOPInstanceUID which
represents a unique image identiifer, number of Rows, num-
ber of Columns, ImageType, PhotometricInterpretation,
ManufacturerModelName, & Manufacturer) and (iv) type
of procedure (PerformedProcedureStepDescription,
RequestedProcedureDescription, & StudyDescription).
This metadata was used to filter the exams as described in
Section 2.D. Before filtering and pre-processing the data, the
data was anonymized by replacing the patients’ identifiers
and names with randomly generated identifiers.

B. Image cropping. The pixel values of each image were ex-
tracted from the PixelData attribute in the DICOM file. Each
image contained a margin of textual metadata surrounding
the ultrasound picture of the breast. Unaltered examples of
these ultrasound images are provided in Figure 7(a). The
background surrounding the breast ultrasound image was ap-
proximately zero-valued, except for the burnt-in metadata.
The number of metadata strings and their location varied
across exams and different acquisition devices. Additionally,
depending on the acquisition probe or transducer that was
used by the ultrasound technologists to optimize image qual-
ity, some images were in a rectangular, trapezoidal, or convex
shape, as shown in Figure 5. Thus, the images required design-
ing a careful cropping procedure to obtain the picture of the
breast and discard the surrounding margins. This procedure
consisted of two parts: (i) binary erosion and dilation to obtain
the largest nonzero connected component and (ii) heuristic
assessment of the pixel values at the boundaries of the cropped
image to perform any additional cropping. Further details are
provided below.

(a) (b) (c)

Fig. 5. Examples of image shapes provided by ultrasound transducers: (a) 2D
rectangular, (b) 2D trapezoidal, or (c) 2D convex (curved). Our pre-processing
procedure obtains a rectangular crop of 2D trapezoidal and 2D convex images.

B.1. Erosion and dilation. To obtain the largest nonzero con-
nected component, all images were first converted to grayscale
since some images were not in grayscale. Such images had the
attribute PhotometricInterpretation set to RGB or YBR.
Next, we obtained the nonzero mask of the image, which is
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Fig. 6. Further cropping of non-rectangular image shapes. The red lines show the
boundaries of the largest mask after erosion and dilation. (a) 2D convex image shape
cropped as trapezoid with the new blue boundaries yA and yB. (b) 2D trapezoid
image shape further cropped as rectangular with new blue boundaries xA and xB.

simply a binary mask of nonzero pixels. For devices where
the background pixel value was not exactly zero, we obtained
the binary mask by thresholding based on the most common
pixel value in the image (i.e., the mode of all pixel values).
Binary erosion and dilation (3, 4) were then applied to the
binary mask of the ultrasound image for a number of iterations
(numIter). In brief, erosion of image A by structural element
B is defined as:

A	B = {z ∈ E|Bz ⊆ A},

where E denotes Euclidean space and Bz denotes the transla-
tion of B by the vector z. Dilation of image A by structural
element B is defined as

A⊕B = {z ∈ E|(Bs)z ∩A 6= ∅},

where Bs = {x ∈ E| − x ∈ B}. The structural element B is
defined as:

B =

[0 1 0
1 1 1
0 1 0

]
,

where only the pixels directly connected to the center are
considered as neighbors. Therefore, one iteration of erosion
shrinks nonzero shapes in an image by one pixel, and dila-
tion expands nonzero shapes in an image by one pixel. We
applied erosion to the nonzero binary mask, obtained the
largest connected component in the image, then discarded all
surrounding artifacts that were not connected to the image.
Next, we applied dilation to the largest connected component
and used that as the initial cropping window location w. This
procedure allowed us to eliminate any artifacts surrounding
the breast ultrasound image.
B.2. Additional cropping based on image shape. Images in the
dataset were acquired using a variety of ultrasound trans-
ducers, as shown in Table 5. Each device has its own physical
dimensions and scanning properties, providing a range of im-
age resolutions and shapes (5). The shapes that were common
in our dataset are shown in Figure 5. The easiest image shape
to crop was the 2D rectangular shape (Figure 5(a)) where
no further cropping steps were required after the erosion and
dilation process. Those images are obtained by the transducer
through a linear scanning in the xz plane. On the other hand,
images in the 2D trapezoidal shape (Figure 5(b)) are obtained
through a shift in the angle of the acoustic beam in an arc
in the xz plane, while the images in the 2D convex shape
(Figure 5(c)) are obtained along a curved surface rather than
the straight xz plane (5). Here, we describe the additional
steps taken to (i) detect 2D convex images, (ii) crop 2D convex

images as 2D trapezoidal convex images, (iii) detect trape-
zoidal images, and (iv) crop the trapezoidal images as 2D
rectangular images.

The largest mask of each image consisted of four edges after
erosion and dilation: bottom (ybottom) and top (ytop) edges
identified by point coordinates on the y-axis, and right (xright)
and left (xleft) edges identified by point coordinates on the x-
axis, as shown in Figure 6. Assume mx is the midline between
the vertical xright and xleft edges. To detect 2D convex images,
we retrieved the coordinate of the first occurring non-zero
pixel along mx, which is point Z in Figure 6(a), yielding the
horizontal line yA. If yA was more than 20 pixels away from
ytop, then ytop was readjusted to yA since this means that
the original top edge (ytop) had zero pixels in the middle (i.e.,
convex). The ‘20 pixels buffer’ was incorporated to ensure
that there is a significant gap between ytop and yA. After
adjusting the top edge of the 2D convex image, the proportion
of nonzero pixels were calculated along the y-axis (i.e., per row).
We defined yB as the row containing the highest proportion
of nonzero pixel values. Then, ybottom was readjusted to
yB. Therefore, yA and yB defined the new top and bottom
boundaries. This procedure detects and further crops 2D
convex images to 2D trapezoids by adjusting the top and
bottom edges.

To detect trapezoidal images based on pixel values, we
compared the proportion of zero pixels at the top edge of
the image (i.e., ytop) with the proportion of zero pixels along
the horizontal midline of the image (i.e., ymid as shown in
Figure 6(b)). We adjusted the right (xright) and left (xleft)
edges of an image when the proportion of zero pixels at its top
edge was at least 3 times the proportion of zero pixels at ymid.
In particular, xleft was shifted to xA and xright was shifted to
xB. Each vertical edge was shifted by half the total number
of zero pixels at ytop. Finally, we added bufferSize pixels as
buffer to all edges to ensure that our cropping window was
not missing anything. Examples of the images produced with
the overall cropping procedure for all image shapes are shown
in Figure 7.

B.3. Experimental observations. Prior to dilation and erosion, we
removed all non-zero headers (i.e. rectangular banner located
at the top of the image; 25-80 pixels in length depending
on the device), since some headers were directly connected
to the ultrasound image and hence were included as part
of the largest connected component after erosion and di-
lation. In particular, images acquired by Siemens Acuson
S1000 (Siemens), S2000 (Siemens), S3000 (Siemens), TUS-
A300 (Toshiba), Antares (Siemens), iU22 (Philips), LOGIQ5
(GE), LOGIQ7 (GE), LOGIQ9 (GE), Affiniti 70G (Philips),
Xario (Toshiba), LOGIQE9 (GE), and Accuvix V10 (Medison),
required the removal of a non-zero header that is 56 pixels in
height.

During preliminary experiments, we determined that
numIter = 5 for erosion and dilation was sufficient for most
cases. However, due to the variety of transducers and variable
image quality, we included sanity checks after cropping to
assess whether the new image dimensions were reasonable.
For example, some images were largely dark in the bottom
or in the center due to acoustic shadow, leading to incor-
rectly cropped images. Therefore, we determined heuristic
procedures to identify and fix such cases. First, some images
contained large patches of zero pixels in the upper half of the
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(a) (b) (c) (d) (e) (f)

Fig. 7. Examples of the cropping procedure applied to breast ultrasound images with a 2D rectangular shape in the first row, a 2D trapezoidal image shape in the second row,
and a 2D convex shape in the third row. (a) An image with surrounding metadata before cropping. (b) Binary image mask obtained by assigning ones to pixels with values
greater than 0 and leaving zeroes unchanged. (c) Binary image mask after erosion. (d) Largest nonzero connected component selected after dilation. (e) Final cropped image.
(f) The image before cropping with position of the final cropped image indicated by the red rectangle.

image due to acoustic shadowing, resulting in a binary mask
similar to the one in Figure 8(h). Applying 5 iterations of
erosion to such masks results with the selection of the area
under the zero-valued patch as the largest nonzero connected
component. This incorrectly discards the zero-valued patch
and the area above it, which are supposed to be part of the
breast image. To fix those cases, we first checked if the new
top edge was more than 200 pixels away from the original top
edge (which means the crop was too large). If so, we re-applied
the erosion procedure to the original image with numIter = 2
iterations only.

Second, there were images that had a high proportion of
zero pixels in the bottom half of the breast image (> 50%
of all pixels). To address these cases, we set limits for the
extent to which images could be cropped vertically. We also
assessed the ratio of image width and height. If the width was
more than twice the height, then we ignored any adjustments
done to ytop and ybottom by the convex image detection step.
This mainly affected images that had many zero pixels around
the top center of the image but were not necessarily convex.
Alternatively, if the width was less than half of the height,
then we ignored any adjustments done to xleft and xright by
the trapezoid detection step. Finally, bufferSize was set to 5.
The full algorithm is summarized in Algorithm 1 to obtain the
final cropping window w and the image of the breast cropped
by w.

C. Breast laterality extraction. Each ultrasound exam con-
sisted of a series of images that belonged to only one or both
breasts. Since the metadata of the DICOM images did not
include any information to indicate which breast the image
belongs to, we extracted the laterality from the burnt-in anno-
tations in each image. This procedure consisted of a series of
three steps: extracting all text within the image using OCR,
processing the extracted text, and interpolating laterality for
images with missing laterality.

C.1. OCR for text extraction. Burnt-in annotations containing in-
formation regarding image laterality were embedded in the
bottom portion of each image. We applied the following steps
to extract the relevant textual information from each image.
First, we selected the bottom half of the image (500 pixels
in height), in order to only process the region that includes
the burnt-in text pertaining to image laterality and to reduce
the amount of text processed by the OCR engine for efficiency
purposes. Next, the cropped region was smoothed using me-
dian filtering with a kernel size of 3 (6), and thresholded at
a value of 150, such that pixel intensities less than 150 were
mapped to 0 and pixel intensities greater than or equal to
150 were mapped to 255. Finally, we applied the open-source
Python-tesseract (7) OCR engine to detect all text embedded
in the processed image.

C.2. Processing of extracted text. The text was first converted to
lowercase. Then, we performed exact matching of words left
and right, as well as common abbreviations such as lt and
rt. If phrases for both left and right side were detected in the
image, then we selected the one which appeared first. This is
because the burnt-in text, on rare occasions, contained addi-
tional information regarding the orientation of the transducer
and the location on the breast. For example, lt sag right
designates the sagittal orientation, or longitudinal plane, on
the right side of the left breast. Since the OCR procedure
would have detected both lt and right, we chose lt, left, as
the breast laterality since it appeared first in the string.

After detecting exact string matches, we performed partial
string pattern matching, such that any image was matched
with left if it contained patterns of .eft, l.ft, le.t, lef., or
ft breast and with right if it contained patterns of .ight,
r.ght, ri.ht, rig.t, righ., or ght breast, where the dot
matches any character except a newline. This was done be-
cause, in some images, the laterality information overlapped
with other burnt-in annotations in the image and was therefore
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Examples of images seen during data preprocessing. The first row (images a-d) show examples of images that were automatically rejected since they did not represent
valid US images: (a) ImageType was ‘INVALID’, (b) PerformedProcedureStepDescription was ‘US GUIDED FINE NEEDLE BREAST ASPIRATION’, and the needle could
be seen in the upper right corner, (c) PerformedProcedureStepDescription was ‘US HEAD AND NECK’, or (d) the fraction of non-zero pixels ratio was smaller than 20%.
The second row (images e-h) shows examples of images that we encountered during image pre-processing: (e) Some images contained two adjacent US images and (f) others
had to be inverted prior to further pre-processing like the one shown here. For some images, the majority of pixel values were zero or they contained a large zero-pixel path in
the center, so either (g) the image was rejected if the ratio of the image width and height was extreme after preprocessing as in the case of the shown image, or (h) the number
of erosion steps was decreased to avoid resulting with two disjoint masks.

Algorithm 1 Given image A, obtain the cropping window location w

1: procedure crop_ultrasound(numIter, bufferSize)
2: Get mask b where A > 0 (or A > mode(A) for certain devices, i.e., pixel value that appeared the most)
3: Apply erosion for numIter iterations to get eroded mask e
4: Get the nonzero largest connected component c of e
5: Apply dilation c for numIter iterations to get a dilated mask d
6: Select a window w1 from A which contains d and set w = w1
7: if image A1 cropped by w1 is 2D convex then
8: Select a new window w2 from A1, and set w = w2

9: if image A2 cropped by w2 is trapezoidal then
10: Select a new window w3 from A2, and set w = w3

11: Assess image per sanity checks described in Section 2.B.3
12: Include bufferSize pixels in all directions, record the final location of w, and save the image cropped by w

not detected accurately by the OCR engine. If there were no
exact or partial matching of left and right, then the image
laterality was denoted as missing.

In ultrasound examinations, the technologist generally ex-
amines the left breast followed by the right breast, or vice versa.
Alternatively, the technologist may examine just one of the two
breasts during the exam. To detect errors incurred by the OCR
engine and the text pre-processing procedure, we sorted images
within the same exam based on the InstanceCreationTime
attribute in the image DICOM file, which indicates the date
and time that the image was acquired. For any image with left
laterality situated between two images with right laterality,
or vice versa, the laterality of the respective image was set as
missing because this was highly unlikely to occur in practice
and was likely to be an OCR error. One limitation of this
approach is that it ignores the rare cases where the OCR
extraction fails or the technologist does indeed switch between
the left and right breasts several times.

C.3. Interpolation technique for missing laterality. For each exam
in which laterality was successfully extracted for at least 10%
of its images, we further interpolated the remaining missing

lateralities. First, for each image with a missing laterality,
situated between two images with available lateralities (i.e.,
collected before or after the respective image), we interpolated
the laterality of the image that is closest in time. Next, we
identified the first image during the exam where the laterality
switches from one laterality to another from a set of three
possible values (left, right, missing). We denote those
as ‘transition’ points. We also define a ‘splitpoint’ as the
transition point when the technologist switches between left
and right, or vice versa, and we assume that there is at most
one splitpoint per exam. To interpolate the laterality within
an exam, we first search for the first occuring transition point,
which may or may not be the splitpoint. The transitions may
indicate one of several scenarios:

1. Identification of a left->right transition, i.e., the
splitpoint: The technologist switches to examining the
right breast after examining the left breast. If such a
scenario is detected, then we simply used a backward
fill to interpolate the laterality of all images prior to the
splitpoint as left, and a forward fill to interpolate the
laterality of all images following the splitpoint as right.
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The same applies if the technologist switches from right
to left (right->left).

2. Identification of a left->missing transition and
the exam contains images with left and right lat-
erality: If such a scenario is detected, we first interpo-
late the laterality of the closest available image laterality
for the missing value. Then, we repeat the interpola-
tion procedure and detect a new transition point, until
the splitpoint is identified. This same step applies for
right->missing, missing->left, and missing->right.

3. Identification of a left->missing transition and
the exam only contains images with left lateral-
ity: In this scenario, we simply fill all missing values
with the available image laterality. The same applies for
right->missing, missing->left, and missing->right,
and only a single image laterality is available in the exam.

D. Filtering of overall dataset. The initial dataset originally
contained 425,859 exams. Amongst those, we successfully ex-
tracted 425,506 ultrasound exams containing 8,448,978 images
collected from 212,716 unique patients. The excluded 353
exams represented non-ultrasound imaging modalities (e.g.,
CT, MRI), which were excluded by examining whether the
Modality attribute in the DICOM file was ‘US’, had corrupted
metadata, or were ultrasound videos. The extracted dataset
was then further filtered to discard images that were not within
our clinically-defined inclusion criteria as described below.

1. Overall, there were 96 exams containing images associated
with one of 76 non-integer patient IDs, which are invalid.
By matching based on the anonymized patient name and
birth date, we were able to fix 39 patient IDs. We then
excluded the remaining images that had corrupt patient
IDs. This resulted with the exclusion of 1,150 images and
only 2 exams.

2. Before filtering, the dataset contained exams collected
between 2008 and 2019. We excluded all exams collected
between 2008 and 2011 (18 exams), and included data
from 2012 onwards.

3. We excluded any exams collected from patients younger
than 16 years of age. This corresponded to 703 excluded
exams (10,697 images).

4. We discarded 307,433 images with duplicate
SOPInstanceUID, as these indicated duplicates of
the same image.

5. We discarded 2,994 exams with PatientSex different than
‘F’ (female).

6. We discarded 74,786 images that had invalid entries in the
list ImageType attribute. Invalid image types included
‘INVALID’, ‘REPORTDATA’, ‘DEMOGRAPHICDATA’,
‘0000’, ‘0009’, and ‘0019’, as those image types were not
associated with breast ultrasound images. Example of an
INVALID image is shown in Figure 8(a).

7. We excluded 364,296 images that were col-
lected during biopsy procedures based on the
values of PerformedProcedureStepDescription,
StudyDescription & RequestedProcedureDescription,
in that order. Performed procedure step description was
prioritized because it contains information about what

was actually performed during image acquisition (8). An
example of a fine needle aspiration procedure is shown
in Figure 8(b). Some of the excluded images were also
acquired from other body parts, such as the thyroid
gland as shown in Figure 8(c).

8. We further excluded 18,925 images with
missing PerformedProcedureStepDescription,
RequestedProcedureDescription, & StudyDescription
attributes.

9. We excluded 3,568 images which had less than 20%
nonzero pixels after cropping, as they usually were mostly
empty images as shown in Figure 8(d).

10. We also excluded 1,174 exams that were associated with
multiple patient IDs or study dates, as it is not possible
for an exam to be performed across multiple dates and
each exam must be associated with a single patient.

11. We further excluded 2,636 images whose height or width
did not change after the cropping procedure. Images that
were not cropped at all in both dimensions mainly con-
sisted of invalid images. They were missed by the filtering
procedure presented in step 6 because their ImageType
attribute did not contain any of the mentioned codes.
Other images that were excluded in this step consisted
of two adjacent US images, as shown in Figure 8(e), that
were only cropped in height but not in width.

12. One drawback of the erosion-dilation procedure is that
US images may contain areas that are entirely black, also
referred to as anechoic due to the absorption of sound
waves. Hence, when the center of the US image is largely
black, such as in Figure 8(g), the US image is wrongly split
into two large masks, and only one of them is selected
leading to a small crop. Although this was generally
avoided for the majority of cases, we excluded any images
that had an extreme width to height ratio (either greater
than the 99th percentile or lower than the 1st percentile
of the image ratio distribution.) This led to the exclusion
of 81,441 images.

13. We also excluded 12,356 exams that had an extreme
number of images. That is, if the total number of images
was greater than 70 images (99th percentile of image
number distribution) or lower than 3 images. Exams with
a very small number of images were either a result of the
image exclusion process described above or, if not, were
typically highly targeted diagnostic ultrasound exams
where only one region of one breast was imaged.

14. After applying the OCR pipeline to extract laterality
and interpolate it wherever possible, we excluded 32,042
exams that had at least one image with missing laterality
data.

The dataset was then split randomly into training (60%),
validation (10%), and test (30%) sets based on patient IDs. To
decrease the noise in the cancer labels, we applied additional
filtering to the test set as described in the next section. After
applying the aforementioned exclusion and inclusion criteria
and filtering the test set, the final dataset included 288,767
exams containing 5,442,907 images, which were acquired from
143,203 patients. The training set contained 3,930,347 images
collected in 209,162 exams from 101,493 patients. The valida-
tion set contained 653,924 images collected in 34,850 exams
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from 16,707 patients. The test set contained 858,636 images
collected in 44,755 exams from 25,003 patients.

E. Filtering the test set. We performed a rigorous filtering pro-
cess on our test set to ensure that our benign and malignant
labels associated with each ultrasound exam were correct. To
confirm benign labels, we evaluated the medical records of
patients to see if any follow-up imaging or pathology results
contradicted the benign label. For exams associated with ma-
lignant labels, we filtered exams based on their BI-RADS risk
assessment labels (radiologist’s overall diagnostic impression)
as well as the the imaging modality that was ultimately used
to obtain the breast tissue biopsy (determined using biopsy
reports). Since breast ultrasound produces 2D images and
does not contain comprehensive images of the entire breast, a
proportion of patients diagnosed with breast cancer did not
actually have images of the cancer in their ultrasound exams.
This analysis of BI-RADS risk assessment labels and biopsy
reports was necessary to ensure that all exams associated with
a malignant label did in fact have cancers that were visible.
Because of these more rigorous restrictions, we excluded 341
test set exams that had missing ultrasound BI-RADS risk
assessment labels and were not associated with any biopsy
procedures, as these exams could not be processed using this
filtering protocol. The extraction procedure of the BI-RADS
risk assessment labels is described in Section 3.B.

First, we examined benign exams that did not undergo
biopsy within -30 to +120 days of their ultrasound exam.
To confirm that these exams were benign, we evaluated the
patients’ electronic medical record to determine what follow
up imaging they received and whether any additional breast
pathology was obtained in the 15 months following their ul-
trasound exam. Non-biopsied patients who had negative (BI-
RADS 1) or benign (BI-RADS 2) ultrasound exams were only
included in the test set if they did not have any malignant
breast pathology found within 0-15 months following their
ultrasound exam and had follow up imaging between 6 and 24
months that was also negative or benign (BI-RADS 1-2) as is
shown in Figure 9(a). Patients who did not undergo biopsy
and had probably benign ultrasound exams (BI-RADS 3) were
included in the test set if they did not have any malignant
breast pathology found within 0-15 months following their
exam and met one of two additional criterion: they had at
least one follow up ultrasound exam at 24-36 months (2 year
follow-up) after the initial study which were all BI-RADS 1-3
or all of their follow up ultrasound exams in the 4-36 months
following their initial ultrasound exam were BI-RADS 1-2.
This step of the filtering procedure is outlined in Figure 9(b).

We also examined exams with biopsy-proven benign lesions
in the test set. Specifically, benign biopsy reports were eval-
uated using textual analysis to determine if the pathology
results were deemed by the radiologist to be concordant (the
imaging findings are accounted for by the pathology results)
or discordant with the imaging features of the breast lesion.
Discordance usually occurs in the setting where the ultrasound
features appear suspicious, but a biopsy yields benign breast
pathology. In this setting, there is concern that there was
inadequate biopsy sampling of the lesion. Therefore, a repeat
biopsy or surgical excision where the entire lesion is removed is
typically recommended. Patients with a benign biopsy report
that mentioned a discordant finding were only included in the
test set if they received a subsequent biopsy (that was not

discordant) or breast surgery in the 6 months following the
discordant biopsy. Patients with benign discordant biopsies
that did not receive subsequent pathological evaluation were
excluded (34 exams excluded from this criterion).

Patients with biopsy-proven cancer were also examined in
the test set. Since breast ultrasound produces 2D images
and ultrasound exams do not contain comprehensive images
of the entire breast, a proportion of patients diagnosed with
breast cancer did not have images of the cancer in any of their
ultrasound exams. Ultrasound exams with a malignant label
and a BI-RADS risk assessment label of 1-2 were excluded as
these exams typically did not contain images of the cancer.
Additionally, patients diagnosed with breast cancer who did
not have any breast pathology obtained using US-guided biopsy
were also excluded, since the majority of patients diagnosed
using MRI and stereotactic-guided biopsies had malignancies
that were sonographically occult. Ultrasound exams that
received a BI-RADS risk assessment label of 0, 3, and 6, as
well as patients who had breast pathology obtained using multi-
modal image guidance (ultrasound plus stereotactic and/or
MRI guided biopsies) had their cases manually reviewed to
confirm the breast cancer was visible on the ultrasound exam.
Only patients who were given a BI-RADS risk assessment label
of 4-5 and had all of their breast pathology obtained using
US-guided biopsy were presumed to have visible cancers and
were not manually reviewed. This component of the filtering
process is outlined in Figure 9(c). In total, of the 1822 US
exams associated with a malignant pathology report initially
included in the test set, 595 (32.7%) were excluded due to this
filtering procedure.

F. Removal of burnt-in annotations. A fraction of the images
in this dataset contain burnt-in annotations, which are created
by the technologist to highlight findings for the radiologist.
These annotations may consist of asterisks and dots, typi-
cally placed by a technologist to measure the size of lesions,
such as in Figure 10(a,b), as well as bounding boxes around
lesions that are used in Doppler ultrasonography to deter-
mine the vascularity of breast tissue within a specific region
of interest, as shown in Figure 10(c). In order to reduce the
likelihood that our deep learning models trained using this
dataset would learn to rely on these annotations, we designed
a pipeline to remove them. This system removed all aster-
isks, measurements, and other text that a technologist might
write on an image. However, the bounding boxes and color
overlay from Doppler ultrasonography were not removed, as
this information regarding lesion vascularity can be critical
in distinguishing benign and malignant lesions. By nature,
these images also always had a region of interest selected as
part of the acquisition process. As illustrated in Figure 11,
the annotation removal pipeline consisted of three main steps
that involve a deep learning classifier. We explain these three
steps in detail below.

ResNet-18 Classifier. First, we trained a ResNet-18 (9)
classifier to determine if an image contained any burnt-in
annotations. To prepare the training data for this ResNet-18,
we manually selected 1,000 images that contained annotations
along with 2,000 images that did not contain any annotations
(training set A). We then trained the ResNet-18 on training set
A and applied it to the entire dataset. We denote each image
within the entire dataset as a positive image if the trained
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Fig. 9. Filtering protocol for non-biopsied patients whose ultrasound exams had BI-RADS risk assessment labels 1-2 (a), BI-RADS risk assessment label 3 (b), and patients
with biopsy-proven cancer (c).

(a) (b) (c)

Fig. 10. Example images with burnt-in annotations. (a) Asterisk-like annotations that marks the shape of a finding. (b) Asterisk-like annotations with dots that indicate the size
of a finding. (c) Bounding box that indicate the location of a finding.

ResNet-18 computed a positive prediction of the presence of
annotations. We then compared each positive image to all
other images collected within the same exam. A positive image
was matched to another negative image (i.e., the ResNet-18
computed a negative prediction) within the exam if the two
images shared more than 95% pixel similarity. This process
yielded 380,642 pairs of matched images (training set B). We
then trained the ResNet-18 classifier on training set B and
applied it on the entire dataset again.

U-Net segmentation network. For those images that were
classified as containing annotations by the ResNet-18 classifier,

we utilized U-Net (10) to produce a segmentation mask which
determined the pixel-level locations of the annotations. To
prepare the training data for this U-Net segmentation network,
we extracted 462,702 images (training set C) from training set
B. Among training set C, 380,642 images were classified as
positive by the ResNet-18 and had a matched image within
the same exam that shared > 95% pixel similarity, and 82,060
images were randomly sampled from the negative samples in
the dataset (i.e., do not contain annotations). We obtained
the segmentation labels for these 380,642 positive images by
comparing pixels value of each positive image with its paired
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negative image. All pixels whose value in the positive image
differed from the value in the paired image were treated as an
annotation. A zero matrix was assigned as the segmentation
label for the 82,060 negative images. The U-Net was then
trained on training set C and applied to all positive images.

Image Inpainting. Finally, we applied image in-painting (11)
to the original image to recover the pixels that were selected
as burnt-in annotations by the U-Net.

ResNet-18 has
segmentation? UNet

in-painting

original image

processed image segmentation mask

Fig. 11. Annotation removal pipeline. We first utilized a ResNet-18 (9) to predict if
an image contained any burnt-in annotations. We then used U-Net (10) to predict
the pixel-level locations of annotations. Finally, we applied in-painting to remove the
annotations.

3. Label extraction

In this section, we describe how we extracted three types
of labels for each breast imaged within an ultrasound exam.
The labels include biopsy-proven cancer labels extracted from
pathology reports, BI-RADS risk assessment labels extracted
from ultrasound reports, and mammographic breast density
labels extracted from associated screening and diagnostic mam-
mography reports.

A. Biopsy-proven cancer labels. We extracted benign and ma-
lignant labels for each breast within the breast ultrasound
dataset from pathology reports. As a first step, we processed
pathology reports as described in our screening mammography
data report (1). Pathology reports summarize findings by
pathologists after examining a small amount of tissue obtained
from the breast through a breast biopsy or surgical excision.

Next, for each breast, we assigned a cancer label if the
pathology report was dated within 120 days after the ultra-
sound exam or 30 days before the ultrasound exam. If at least
one of the matched pathology reports contained malignant
findings, then the breast was assigned a positive malignant
label. If at least one of the matched pathology reports con-
tained benign findings, then the breast was assigned a positive
benign label, noting that malignant and benign findings are
not mutually exclusive. For breasts imaged within ultrasound
exams that were not matched with any pathology reports, we
assumed that they did not contain any benign or malignant le-
sions. This is a common assumption, although we acknowledge
that patients may have had biopsies at other institutions.

B. BI-RADS risk assessment labels. BI-RADS risk assessment
categories were collected from free-text radiology reports,
matched with the studies by accession numbers. For extraction
of BI-RADS risk assessment labels, we developed a lexicon of
phrases used to describe the BI-RADS categories either as a
number (e.g. ‘BIRADS: 3’) or a verbose phrase (e.g. ‘bi-rads:
probably benign’). We followed categories as defined by the
5th edition of ACR BI-RADS Atlas.

Rarely a single report yielded multiple conflicting BI-RADS
risk assessment labels. In cases where it did yield conflicting
labels, the reports were manually reviewed to find the correct
label.

C. Mammographic breast density labels. The breast tissue
density labels were extracted from screening and diagnos-
tic mammography reports. First, we searched for keywords
associated with the four breast tissue density classes defined
by the BI-RADS lexicon for breast density. In addition to
the typical phrases used to describe breast density, we also
included phrases that evaluate the percentage of glandular
tissue present, which was a criterion used in the 4th edition of
the BI-RADS lexicon. All classifying phrases are listed below:

• BI-RADS A (breasts are almost entirely fatty): ‘predom-
inantly fatty’, ‘entirely fatty’, ‘breasts are comprised of
fatty tissue’, ‘10% dense’ or ‘20% dense’.

• BI-RADS B (there are scattered areas of fibroglandular
density): ‘scattered areas of fibroglandular tissue densi-
ties’, ‘scattered areas of fibroglandular density’, ‘scattered
fibroglandular elements in both breasts’, ‘scattered fibrog-
landular densities’, ‘scattered fibroglandular elements in
the left breast’, ‘scattered fibroglandular elements in the
right breast’, ‘scattered fibroglandular’, ‘scattered nodular
densities’, ‘30% dense’, ‘40% dense’ or ‘50% dense’.

• BI-RADS C (the breasts are heterogeneously dense, which
may obscure small masses): ‘heterogeneously dense’, ‘pre-
dominantly dense glandular elements’, ‘60% dense’ or
‘70% dense’.

• BI-RADS D (the breasts are extremely dense, which low-
ers the sensitivity of mammography): ‘extremely dense’,
‘very dense’, ‘80% dense’ or ‘90% dense’.

Next, we matched each breast ultrasound exam with the
mammographic breast density label from the closest available
mammography exam. If no mammography exam / density
label was available then the ultrasound exam was assigned
a density label of ‘unknown’. Assuming that mammographic
breast density does not change much over time and given that
our dataset was collected over 7 years, we did not set a time
limit on this merging procedure.
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