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Deep learning models’ generalization ability relies on the size and
the quality of the data available for training. Therefore, a large, well
curated and representative dataset with high-quality labels is needed
to develop a highly predictive model for breast cancer screening, and
to further provide insights for other problems in medical imaging.
This technical report introduces the NYU Breast Cancer Screening
Dataset, which consists of 229,426 digital screening mammography
exams (1,001,093 images) from 141,473 patients screened between
2010 and 2017 at NYU Langone Health. Below we outline its statistics,
details of image collection and preprocessing, as well as details of
the extraction of corresponding labels from screening and pathology
reports. Although we do not make this dataset public, we hope to
make our research more transparent and reproducible through this
technical report. We also hope that other research groups entering
the area of medical image analysis with machine learning will find
this report a valuable resource.

1. Statistics of the dataset

This dataset is a larger and more carefully curated version
of a dataset used in our earlier work (1, 2). It consists of
229,426 digital screening mammography exams (1,001,093
images) from 141,473 patients screened between 2010 and
2017 at NYU Langone Health. Each exam contains at least
four∗ images, corresponding to four standard views used in
screening mammography: R-CC (right craniocaudal), L-CC
(left craniocaudal), R-MLO (right mediolateral oblique) and
L-MLO (left mediolateral oblique). A few examples of exams
are shown in Figure 1.† Patients’ ages at the time of the exam
range from 16 to 99 years with a majority between 40 to 80
years (see Figure 2).

In addition to the images, the dataset contains four types
of associated labels:

- Breast-level cancer labels: (i) a binary label for each
breast indicating whether a biopsy showed that there is at
least one malignant finding in the breast and (ii) a binary
label for each breast indicating whether a biopsy showed
that there is at least one benign finding in the breast.

- Pixel-level cancer labels: indicating exact position of
malignant and benign findings in the images in which
biopsied findings are visible.

- Exam-level BI-RADS labels: one label for each exam,
indicating what the initial diagnosis of the radiologist was
after screening mammography.

∗Some exams contain more than one image per view as mammographic technologists may need
to repeat an image or provide a supplemental view to completely image the breast in a screening
examination.

†Details of how the images were extracted are in section 2.

- Exam-level breast density labels: one label for each
exam, indicating radiologists assessment of breast density.

For breast-level cancer labels, our reference standard was
the biopsy report where a pathologist, a doctor who specializes
in the evaluation of cells and samples of tissue to diagnose dis-
ease, made a final pathologic diagnosis. For pixel-level cancer
labels, the annotation of the mammograms were performed
by radiologists who have specific training in breast imaging.

A. Splitting the data into training, validation and test sets.
For each patient, we obtained outcomes through linkage to
our electronic health records within our healthcare system and
reviewed each mammogram and pathology reports for patients
who underwent a biopsy and/or breast surgery. We sorted
the patients according to the date of their latest exam and
divided them into disjoint training (first 80%), validation (next
10%) and test (last 10%) sets. The validation set contains the
exams of patients whose latest exams are more recent than
those in the training set, and the test set contains exams of
patients whose latest exams are the most recent. For patients
in the training and validation sets we utilized all the exams
available for each patient; for test patients we dropped all but
the latest exam for each test patient. After this procedure
there were 186,816, 28,462 and 14,148 exams in the training,
validation and test sets respectively. By partitioning the data
in the way described above, we aim to obtain an estimate of
the generalization error for patients that we have not seen
before whose exams may use more recent imaging equipment
and/or a different vendor. There is no significant difference of
the age distribution between training, validation and test sets
(see Figure 2).

B. Breast-level cancer labels. To obtain labels indicating
whether each breast of the patient was found to have malignant
or benign findings at the end of the diagnostic pipeline, we
used pathology reports from biopsies. We have 6,305 breasts
(stemming from 5,832 exams) with at least one biopsy per-
formed within 120 days of the screening mammogram. Among
these, for 985 (8.4%) breasts, a biopsy confirmed malignancy,
for 5,556 (47.6%) breasts, a concerning imaging finding was
biopsy-proven benign and 236 (2.0%) breasts had both ma-
lignant and benign findings. The remaining breasts were not
matched with any biopsy and assigned a label corresponding
to the absence of malignant or benign findings in both breasts.
Please refer to Section 3.A for more details on the process of
extracting these labels.

C. Pixel-level cancer labels. To collect pixel-level labels, we
asked a group of radiologists (provided with the corresponding
1To whom correspondence should be addressed. E-mail: k.j.geras@nyu.edu.
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Fig. 1. Twelve exams with four standard views (R-CC, L-CC, R-MLO and L-MLO). (a) Exams without any related biopsy. (b) Exams with biopsies, which proved the finding to be
benign. The breasts labeled as benign were: left in the first row, right in the second row, left in the third row, and right in the fourth row. (c) Exams with biopsies, which yielded
diagnoses of malignancy. The breasts labeled as malignant were: right in the first row, left in the second row, left in the third row, and left in the fourth row.
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Fig. 2. Distribution of patients’ age at the time of the exam in training, validation and
test sets.

pathology reports) to retrospectively indicate the location of
the biopsied lesions on a pixel level in all images in which they
were visible. Each radiologist was working separately on the
subset of data. The findings were marked with three colors:
green for benign findings (e.g. cyst, fibroadenoma, fibrocystic
change), yellow for high-risk‡ findings that increase the risk
of cancer but are not cancer (e.g. atypical ductal hyperplasia,
LCIS) and red for malignant findings (e.g. IDC, ILC, DCIS).
Figure 3 shows ten examples of such segmentations produced
by radiologists. Among the 5,832 exams we provided to the
radiologists, there were 3,917 exams (8,080 images) returned
with at least one marked finding. Some breasts had multiple
benign and/or malignant findings. See Table 1 for the statistics
of collected segmentations in detail. We found that, accord-
ing to the radiologists, approximately 32.8% of exams were
mammographically occult, i.e., the lesions that were biopsied
were not visible on mammography, even retrospectively, and
were identified and biopsied using other imaging modalities,

‡Unless stated explicitly otherwise, high-risk benign findings were elsewhere considered as a subset
of benign findings.

ultrasound or MRI. More details about the occult cases on
the breast level are in Table 2.

Table 1. Number of segmentations for biopsied findings for benign,
high-risk benign and malignant categories as indicated by the radiol-
ogists.

category

benign high-risk benign malignant

training 4753 849 1790
validation 629 93 128

test 386 78 136

overall 5768 1020 2054

Table 2. Number of breasts with malignant and benign findings
based on the labels extracted from the pathology reports, broken
down according to whether the findings were visible or occult. We
found that much fewer malignant findings than benign findings were
occult.

malignant benign

visible occult visible occult

training 750 107 2,586 2,004
validation 51 15 357 253

test 54 8 215 141

overall 855 (86.8%) 130 (13.2%) 3,158 (56.84%) 2,398 (43.16%)

D. Exam-level BI-RADS and breast density labels. In addition
to the labels extracted from pathology reports, for each exam,
we also extracted BI-RADS (Breast Imaging Reporting and
Data System) labels (3) reflecting initial diagnosis made by
a radiologist at the time of the screening mammography and
breast density labels reflecting the amount of fibroglandu-
lar tissue in the breast. Both types of labels were extracted
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Table 3. Breakdown of data distribution with respect to breast density and BI-RADS. “Unknown” indicates exams with missing or ambiguous
information on breast density.

Breast density BI-RADS

1 2 3 4 Unknown 0 1 2 Total

training 17967 (9.64%) 78532 (42.12%) 78857 (42.30%) 11085 (5.94%) 375 (0.00%) 24230 (12.97%) 86238 (46.16%) 76348 (40.87%) 186816
validation 2517 (8.86%) 11798 (41.53%) 12684 (44.65%) 1410 (4.96%) 53 (0.00%) 3314 (11.64%) 13223 (46.46%) 11925 (41.90%) 28462

test 1260 (8.92%) 5964 (42.23%) 6338 (44.88%) 560 (3.97%) 26 (0.00%) 2246 (15.87%) 6083 (43.00%) 5819 (41.13%) 14148

overall 21744 (9.50%) 96294 (42.05%) 97879 (42.75%) 13055 (5.70%) 454 (0.00%) 29790 (12.98%) 105544 (46.00%) 94092 (41.02%) 229426

Fig. 3. Examples of segmentations provided by radiologists. The biopsied findings were marked with three colors on the original image: green for benign findings (e.g. cyst,
fibroadenoma, fibrocystic change), yellow for high risk benign findings that increase the risk of cancer but are not cancer (e.g. atypical ductal hyperplasia, LCIS), red for
malignant findings (e.g. IDC, ILC, DCIS).

from reports produced by a radiologist following breast cancer
screening. We considered three BI-RADS categories used in
screening mammography: BI-RADS 0 (“incomplete, needs
additional imaging”) BI-RADS 1 (“normal”) and BI-RADS 2
(“benign”). Please refer to Section 3.B for more details of the
process of extracting these labels. Breast density was qualita-
tively categorized into four types used in clinical practice in
the United States: almost entirely fatty (1), scattered areas
of fibroglandular density (2), heterogeneously dense (3) and
extremely dense (4) per BI-RADS criteria (3). Please refer to
Section 3.C for more details of the process of extracting these
labels. Detailed statistics for BI-RADS and breast denisty
labels are in Table 3.

E. Scanner information. We extracted information
about scanner used for acquiring each image using
ManufacturerModelName attribute in DICOM files. The
images in the dataset are coming from four types of scanners:
Mammomat Inspiration, Mammomat Novation DR, Lorad
Selenia and Selenia Dimensions. Distribution of types of
scanners in training, validation and test data can be found in
Table 4.

Table 4. Distribution of types of scanners with respect to images in
training, validation and test data.

Mammomat Inspiration Mammomat Novation DR Lorad Selenia Selenia Dimensions

training 203939 114157 343083 154497
validation 22477 8335 51412 41700

test 3011 657 21694 36131

overall 229427 123149 416189 232328

2. Image collection and preprocessing

In this section we explain in detail the complete processing
pipeline for extracting the screening mammography images
from raw DICOM data. This pipeline consists of four major
phases: (A) data extraction, (B) image cropping and (C)
filtering.

A. Image collection. We collected metadata from all DI-
COM files. Out of 3,050,238 DICOM files, 941,094 files
without necessary fields (PatientID, AccessionNumber,
PatientsName, PatientsBirthDate, StudyDate,
SOPInstanceUID, ViewPosition, ImageLaterality, Rows,
Columns, EstimatedRadiographicMagnificationFactor,
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FieldOfViewHorizontalFlip, ImageType) were excluded.
Manual inspection revealed that excluded images were not
mammograms and were representing either some type of
metadata or were representing other imaging modalities.

B. Image Cropping. We apply a rigorous procedure to crop all
valid mammography images to contain only the relevant breast
regions, as shown in Figure 4. As a result of this procedure,
we were able exclude large regions of background, significantly
reducing image loading time.

Because the background is zero-valued in all correctly pro-
cessed screening mammograms, we took the largest nonzero
connected component of each image to be the breast region.
Unfortunately, there were many cases where nonzero artifacts
in the background were connected to the largest nonzero com-
ponent, leading to the cropped image still containing large
portions of background. In addition, mammography images
occasionally capture patients’ chin at the top of the image or
abdominal wall at the bottom. These prevent accurate and
tight cropping of images.

To address the above issues and correctly identify the loca-
tion of the breasts, we applied morphological binary erosion
and dilation to the mammograms (4, 5). We applied erosion
and dilation to the nonzero mask (binary mask of strictly
nonzero pixels, not necessarily connected) of the images. For-
mally, erosion of image A by structural element B is defined
as:

A	B = {z ∈ E|Bz ⊆ A},

and dilation of image A by structural element B is defined as

A⊕B = {z ∈ E|(Bs)z ∩A 6= ∅},

where E denotes Euclidean space and Bz denotes the trans-
lation of B by the vector z and Bs = {x ∈ E| − x ∈ B}. We
use the following structural element B, where only the pixels
directly connected to the center are considered neighbors:

B =

[0 1 0
1 1 1
0 1 0

]
.

With our choice of structural element, one iteration of ero-
sion shrinks nonzero shapes in an image by one pixel, and
dilation expands nonzero shapes in an image by one pixel. By
performing erosion for some number of iterations followed by
performing dilation for the same number of iterations (also re-
ferred to as morphological opening), we were able to eliminate
small nonzero artifacts from the binary masks of mammo-
grams. This procedure is often used for noise removal in
image processing. Our procedure slightly differs from stan-
dard morphological opening as we only dilate the nonzero
largest connected component after erosion and discard the
rest. As we were only interested in the breast region, which
is most often the largest connected component, we chose to
ignore irrelevant regions such as arms or the stomach which
are typically disconnected from the breast after a sufficient
number of iterations of erosion.

Afterwards, we cropped the region of the image which
contains the dilated largest connected component, with a
small pixel buffer (in case of imperfect restoration of small
regions such as the nipple or very small breasts). We found
that performing 100 iterations of erosion and dilation and

including a 50-pixel buffer in all directions worked well. The
full algorithm is summarized in Algorithm 1.

Examples of the images produced as an outcome of this
cropping procedure are shown in Figure 5. As a result, we
reduced the total number pixels in our images by about 50%,
which also reduced loading time during training an inference
by approximately 50%.

We used the results of this cropping algorithm to further
filter out incorrectly acquired images. We discarded 77 images
that had no nonzero component after our erosion-and-dilation
procedure–these cases were either entirely blank images, or
consisted only of uninformative visual artifacts.

In total, we processed 2,109,067 valid images. In the next
stage, images were rejected based on the following cropping-
related reasons. If the largest connected component did not
contain the midpoint of the image in y-axis (i.e. the largest
connected component is contained entirely in the top half or
bottom half of the image), this usually indicated that the
image captured an object that is not a breast. We discarded
269 such images as shown in Figure 6(f). In addition, the
first column of pixels on the side opposite to the direction the
breast is oriented must contain nonzero values. For example, if
the breast is oriented to the right, then the first pixel column
on the left side of the image should contain nonzero values
because that is the side where the breast region begins from
the body. If this is not the case, then the image might have
been incorrectly processed or flipped in a different direction
from what we expect from the metadata. We discarded 37,361
such images.

C. Filtering. We further filtered the remaining 2,109,067 im-
ages to discard invalid images, as well as sets of images which
did not form valid exams.

1. We discarded 127,179 images with duplicate
SOPInstanceUID, as these indicated duplicates of
the same image.

2. We discarded 161,392 images which contain ‘ORIGINAL’
in ImageType, as these images have gone through different
types of post-processing from the rest of the images which
contain ‘DERIVED’ in ImageType. An example of such
image is shown in Figure 6(e).

3. We discarded 142,516 images with ViewPosition different
than ‘CC’ or ‘MLO’ and with ImageLaterality other
than ‘L’ or ‘R’. The three most common discarded views
are ‘XCCL’ (43,592), ‘LM’ (38,510) and ‘ML’ (37,721)§.

4. We discarded 9,353 images with
EstimatedRadiographicMagnificationFactor out-
side the range of [1, 1.1]. Rejected values ranged from 1.4
to 1.8.

5. We discarded 952 images with PatientSex different than
‘F’ (female).

6. We discarded 87,587 with BreastImplantPresent differ-
ent than ‘NO’. An example of an image with implants is
shown in Figure 6(d).

7. We discarded 2,804 images whose original image matrix
size before cropping were smaller than 2290× 1890 pixels.

§We acknowledge that, for some exams, these additional views which are non-standard for screen-
ing mammography might show findings not visible in the standard four views. This is a simplifying
design choice we made.
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Fig. 4. Example of cropping windows containing breast regions from exam images. The green overlay is the window used in cropping. Red points are the rightmost nonzero
pixels after the breasts are flipped to be oriented to the right. Yellow points are the bottommost nonzero pixels for MLO views. These points are used in calculating the size and
location of cropping windows.

(a) (b) (c) (d)

Fig. 5. Effects of using erosion and dilation. The blue area is the bounding box of the largest connected component of the image. The green area is the bounding box of the
nonzero mask of the image after selecting largest connected component, dilating, and adding buffers, which is the final product of our preprocessing algorithm. The teal area is
the overlap between the two bounding boxes. Green bounding boxes in (a), (b), (c), (d), have areas smaller by 17%, 18%, 43%, and 61% compared to corresponding blue
bounding boxes, respectively.

The most common invalid size was 1458 × 1458 pixels
with 2,070 occurrences.

8. We discarded 703 images for which the cropped breast
region were smaller than 350 pixels in width or 1000 pixels
in height. These images were incorrectly acquired images
or from male patients.

9. We discarded 846,720 diagnostic mammography
images and tomosynthesis images based on the
values of PerformedProcedureStepDescription,
SeriesDescription and ProtocolName. An exam-
ple of a diagnostic image is shown in Figure 6(b). The
most common cause was 234,335 occurrences of ‘MAMMO
TOMOSYNTHESIS SCREENING BILATERAL’ in
PerformedProcedureStepDescription.

10. We discarded 45,999 images whose ratios of nonzero pixels
were more than 95% and 682 images with less than 5%,
as they usually indicate empty images or images with
invalid processing.

11. We discarded 11,293 images whose
PresentationLUTShape were not ‘identity’, as they
usually indicate images with inverted pixel intensities.
We hypothesize that these images were created in error
by technologists. An example of an inverted image is
shown in Figure 6(c). All 11,293 rejected images had
PresentationLUTShape value set to ‘INVERSE’.

12. We discarded 319 images whose ExposureStatus were not

‘NORMAL’, as they were usually incorrectly taken images
(i.e. the process of taking image is aborted in the middle).
An example of an aborted image is shown in Figure 6(a).
All 11,293 rejected images had ExposureStatus value of
‘ABORTED’.

13. Exam-level filtering:

(a) All images in an exam must have the same
FieldOfViewHorizontalFlip value: either uni-
formly ‘YES’ or ‘NO’. We discarded exams that did
not, as we empirically found that in most of these
cases the value of this field was not set correctly.
Three exams were discarded.

(b) The BI-RADS label (details of how the BI-RADS
labels were extracted are in Section 3.B) for that
exam must be present. 89,713 exams had missing or
incorrect labels.

(c) All four standard views must be present in an exam:
R-CC, L-CC, R-MLO, and L-MLO. 38,422 exams
had some views missing.

Some images were discarded for more than one of the
reasons above. At the end of this filtering procedure, we found
242,498 valid exams with 1,057,978 valid images.

D. Selecting optimal image windows for model input. Even
after cropping, the images remain very large, which poses a
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Algorithm 1 Cropping mammograms
1: procedure crop_mammogram(numIter, bufferSize)
2: Given image A, Get the mask m where A > 0
3: Apply erosion for numIter iterations to get eroded mask e.
4: Get the nonzero largest connected component c of e.
5: Apply dilation c for numIter iterations to get dilated mask d.
6: Select a window w from A which contains d and buffers of bufferSize in all directions.
7: Record the location of w and save the image cropped by w.

(a) (b) (c) (d) (e) (f)

Fig. 6. Examples of rejected mammograms. (a) ExposureStatus is ‘ABORTED’. (b) ProtocolName contains ‘Diagnosis’. (c) PresentationLUTShape is ‘INVERSE’. (d)
BreastImplantPresent is ‘YES’. (e) ImageType contains ‘ORIGINAL’. (f) cropped image is in the bottom half of the original image.

challenge for the limited GPU memory when processing images
with a deep neural network. To find the most informative
region of the image, we calculated heuristically the optimal
image matrix size for each of the two views (CC and MLO).
Furthermore, we also calculated optimal center points based
on which cropping window contained the most nonzero pixels
in each image, assuming a fixed window size. Keeping the
number of pixels for both views approximately the same, we
chose to adopt different aspect ratios for the CC and MLO
views; shapes of nonzero pixels in MLO views tend to be longer
in the y-axis than those of CC views since they contain the
upper breast. In addition, we sought to have the cropping
window contain the outer breast region rather than other tissue
such as the pectoralis major.

For CC-view images, it sufficed to have the windows contain
the rightmost points of the breasts (nonzero pixel) when the
breast flipped accordingly to be oriented to the right. For MLO-
view images, because of the significant vertical asymmetry, we
enforced that the windows contain the bottommost points of
the breasts. This is necessary in order to avoid prioritizing
non-breast regions such as arms. The rightmost points are
calculated from the bottom two-thirds of the image for the
same reason. If an MLO view image was large enough that
the cropping window cannot contain both rightmost and the
bottommost points, we instead constrained the window to
contain the rightmost points of the image, and then selected
the new bottommost point obeying that constraint. As a result,
when we calculated the optimal image matrix sizes for each
view to capture the most nonzero pixels for the entire training
data, the window for MLO view ended up being narrower than
that of CC view.

By selecting for maximal nonzero pixels above a threshold
over the training set, we determined optimal image matrix sizes
of 2677× 1942 pixels for the CC view and 2974× 1748 pixes
for the MLO view. These optimal window size and locations
are necessary to apply data augmentation such as random
shifts and rotations around the most informative portions of

the mammograms.

3. Label extraction

A. Extraction of breast-level cancer labels. To obtain breast-
level labels indicating whether a patient had breast cancer
at the time of the screening exam, we extracted information
from pathology reports created following biopsies of suspicious
findings. A standard pathology report contains information
about the location, size, appearance and type of cells found
in the biopsied tissue which helps determine a diagnosis. We
used information from two sections of the reports: “specimens”
and “diagnosis”. Using these, we extracted diagnostic infor-
mation on each biopsied finding separately, and the extracted
information was summarized in four binary labels: (i) whether
there was at least one benign finding in the left breast, (ii)
whether there was at least one benign finding in the right
breast, (iii) whether there was at least one malignant finding
in the left breast, (iv) whether there was at least one malig-
nant finding in the right breast. The three main phases of
our algorithm for automatic cancer label extraction: (i) text
extraction and separation, (ii) semantic classification, and (iii)
information grouping are explained below in detail. Figure 7
shows a pathology report and the outputs we obtained after
each phase.

A.1. Text extraction and separation. Although pathology reports
are written following certain common conventions, there re-
mains significant variability in their structure. These differ-
ences arise if the reports were collected from different hospitals
or even if were written by different pathologists in the same
hospital. Despite these differences, for a vast majority of
correctly written reports, the “specimens” and “diagnosis” sec-
tions contained all the information necessary to determine
in which breast (left or right) the listed biopsied findings
were found, and what the diagnostic conclusion is for each
or both. To extract these two sections, we manually collated
a list of common section headers and footers, and extracted
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text extraction  
and  

separation 

semantic
classification 

information  
grouping 

 
Biopsy 1: 
specimen:  

right breast tissue and scar
diagnosis:  

breast tissue and scar, right: excision 
- atypical lobular hyperplasia with microcalcifications. 
e-cadherin immunostain is confirmatory. 
- fibrocystic change, proliferative type, associated with
microcalcifications. 
- prior surgical site change with scarring 
 

Biopsy 2:
specimen: 

 left breast tissue and scar
diagnosis:  
            breast tissue and scar, left: excision 
            - skin with scar

 
NEW YORK UNIVERSITY HOSPITALS CENTER 
 
 
 
 
 
SURGICAL PATHOLOGY REPORT
SPECIMEN NUMBER: 
COLLECTION DATE: 
 
SPECIMENS:
 
1. RIGHT BREAST TISSUE AND SCAR
2. LEFT BREAST TISSUE AND SCAR
 
DIAGNOSIS:
 
1. BREAST TISSUE AND SCAR, RIGHT: EXCISION
 ATYPICAL LOBULAR HYPERPLASIA WITH MICROCALCIFICATIONS.
ECADHERIN IMMUNOSTAIN IS CONFIRMATORY.
 FIBROCYSTIC CHANGE, PROLIFERATIVE TYPE, ASSOCIATED WITH
MICROCALCIFICATIONS.
 PRIOR SURGICAL SITE CHANGE WITH SCARRING
2. BREAST TISSUE AND SCAR, LEFT: EXCISION
 SKIN WITH SCAR.
             M.D.
Pathologist
 
CLINICAL HISTORY AND PRE  OPERATIVE DIAGNOSIS:
 
Right breast tissue and scar
 
MACROSCOPIC DESCRIPTION:
 
The specimen is received in formalin, in two parts, each labeled
with the patient's name.
1. Part one is labeled 'right breast tissue and scar at 1034'. It
consists of three irregular portion of tan white yellow fibroadipose
breast tissue, measuring 1.5 x 1 x 0.8 cm to 5.5 x 4.5 x 2.5 cm. The
external surface of the specimen is inked in black. Cut sectioning
reveals tan white rubbery to firm, fibrous cut surface.
Representative sections are submitted in five cassettes.
2. Part two is labeled 'left breast tissue and scar at 1055'.It
consists of a 5.3 x 0.3 cm irregular portion of tan brown soft
tissue with attached underlying subcutaneous tan white soft white
fibroadipose tissue, measuring up to 0.5 cm in maximal thickness.
Representative section is submitted in one cassette.
Dct/           , PA/lac
 
SUMMARY OF SECTIONS:
 
1A1E representative
2A representative
SPECIAL PROCEDURES:
ECadherin on 1B.
Final Diagnosis performed by
            M.D.
Electronically signed 
The electronic signature attests that the named Attending
Pathologist has evaluated the specimen referred to in the signed
section of the report and formulated the diagnosis therein.
This report may include one or more immunohistochemical stain
results that use analyte specific reagents.
The tests were developed and their performance characteristics
determined by NYU Department of Pathology.
They have not been cleared or approved by the US Food and Drug
Administration.
The FDA has determined that such clearance or approval is not 
necessary.

Fig. 7. An illustration of the three main phases in the process of extracting breast-level cancer labels: text extraction and separation, semantic classification, and information
grouping. The violet box on the left shows an example of a pathology report (anonymized). The corresponding output of each phase is shown on the right. In this example,
there are two biopsies (Biopsy 1 and Biopsy 2). In the text extraction and separation phase, we obtain the relevant specimen and diagnosis information for each biopsy. The
output of the the semantic classification phase consists of four pieces of information for each biopsy: location, malignant terms found, benign terms found and exclusion
terms found. Finally, in the last stage (information grouping) the above information is consolidated and the final binary malignant and benign labels for each breast are
obtained. In this example, one of biopsied specimens is from the left breast one is from the right breast. Only benign terms were found for the right breast. No terms concerning
breast cancer were found for the left breast. At the end of the label extraction process, the right breast was labeled as benign and as not malignant, while the left breast was
labeled as not benign and as not malignant.

text between detected header-footer pairs. For each section,
we partitioned the extracted text into subsections if multiple
biopsies were enumerated in the report. After completing this
extraction, we obtained a list containing information on all
biopsied findings separately.

A.2. Semantic classification. In this phase, we extracted location
and diagnosis information for each biopsy. To identify a loca-
tion, we searched for words and phrases indicating the side
of the breast, such as “left“, “right“ and their variants. To
determine the diagnosis, we built two comprehensive lexicons
for benign and malignant related terms, including words and
phrases. We also collected a list of phrases that indicate a
specific biopsy is not breast cancer related, and used it as a
separate lexicon. The ten most frequent terms in each lexicon
are listed below, along with the number of occurrences:

• Malignant terms: ductal carcinoma (2046), ductal car-
cinoma in situ (1464), invasive ductal carcinoma (1149),
invasive carcinoma (557), metastases (414), metastatic
(224), invasive lobular carcinoma’, 180), adenocarcinoma
(160), invasive mammary carcinoma (128), metastatic
carcinoma, (117).

• Benign terms: fibrocystic change (5842), fibroadenoma
(3768), hyperplasia (2569), cyst content (2882), benign
breast tissue (1364), fibrocystic changes (1279), fibrosis
(1235), negative for malignancy (1049), adipose tissue
(1026).

• Exclusion terms: benign skin (150), explant (93), non-
diagnostic (80), no mammary epithelium is identified (59),
breast capsule (53), breast implant (48), fibrous capsule
(48), no benign or malignant epithelial cells seen (48), no
mammary epithelial cells (45), dermal scar (43).

In addition, we collected two kinds of prefixes, indicating
prior breast cancer history and negation of malignancy. The
relationships between phrases in all three lexicons are complex.
For example, intraductal papilloma is an indicator for benign
findings but intraductal papilloma with ductal carcinoma in
situ indicates malignancy. Simply checking for the presence
of each term in the text could lead to a significant number of
incorrect labels. Instead, we organized all the terms in the
three lexicons as a forest, and designed a custom algorithm
for searching for terms based on an overall lexicon forest.
Given the above lexicon forest and prefixes of history and
negation of malignancy, the algorithm is designed to search
for all semantically valid terms in the lexicon forest in the
input text. Terms are searched in an increasing order of their
degree in the lexicon forest. To ensure validity over semantics,
terms were removed if there was any prefix before it, or if it
is included in another longer term which has already been
found. The returned terms are grouped into three classes,
malignant, benign and excluded¶, according to the lexicon it
is in. In summary, for each biopsy, we collected the location

¶Exclusion terms indicate that the biopsy was from location other than the breast, therefore they
should not be taken into consideration for breast cancer.
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Fig. 8. Two examples for trees in the lexicon forest. The roots of trees in the forest are phrase not including in any other ones. Parent in a tree always contain its children. Terms
with different degrees are in different colors and their type (malignant, benign or excluded) is indicated in the brackets.

Algorithm 2 Searching for terms in the text about diagnosis based on lexicon forest.
term is a class with two instance variables:

term.term is the term (phrase or word) itself;
term.type ∈ {BENIGN, EXCLUDED, MALIGNANT}, is the corresponding type of the term.

lexicon_forest.terms is a dictionary of terms grouped by their degree.
lexicon_forest.terms[degree] is a list of instances of term.

lexicon_forest.degree is the maximum degree of all the trees in the forest.
history_prefixes is a list of strings that serve as prefixes before terms indicating breast cancer history.
negation_prefixes is a list of strings that serve as prefixes before terms indicating negating malignancy.
negations is a class with three instance variables:

negations.BENIGN is an empty list
negations.EXCLUDED is an empty list
negations.MALIGNANT is a list including strings in both history_prefixes and negation_prefixes

1: function text_cleaning(term, text, negations)
2: cleaned_text = text
3: for prefix in negations do
4: cleaned_text.remove(prefix + ’ ’ + term)

return cleaned_text

5: function search_in_lexicon(text, lexicon_forest)
6: for degree in [0, lexicon_forest.degree] do
7: for term in lexicon_forest.terms[degree] do
8: text_to_search = TEXT_CLEANING(term.term, text, negations.term.type)
9: if degree 6= 0 then

10: for phrase in terms_found do
11: if term.term in phrase then
12: text_to_search = TEXT_CLEANING(phrase, text_to_search, [])
13: if term.term in text_to_search then
14: terms_found + = term

return terms_found

and identified all terms indicating whether the tissue was
benign, malignant or that it was not correctly acquired (and
excluded). Examples of trees in the lexicon forest are shown
in Figure 8, and the algorithm is summarized in Algorithm 2.

A.3. Information grouping. We grouped the information ex-
tracted by the above procedure and translated them into
binary labels. The possible initial classes for a single biopsy
sample is one of benign, malignant and excluded. The logic of
assigning the initial class was as follows. (i) Excluded, if any
term indicating necessity of exclusion are found. (ii) Malignant,
if there is no term indicating the need of exclusion and at least
one malignant term is found. (iii) Benign, if only benign terms
are found. Next, we overwrote excluded cases to be benign
if we found any specially designated benign terms (such as
scant benign-appearing ductal cells and proteinaceous debris).
We then aggregated the information for different biopsies into
a breast-level label in the following manner. If there was a
benign or malignant biopsy for a given breast, it was labeled
as positive for the corresponding class. We consider benign
and malignant labels separately and allowed for a breast to
be classified as potentially both benign and malignant. Hence,

in an exam with two breasts, this led to four binary labels:
left-benign, right-benign, left-malignant, and right-malignant.

After applying the above automatic cancer label extrac-
tion procedure, we tasked an attending fellowship-trained
breast radiologist with providing labels for excluded cases. We
also asked an attending radiologist to verify cases labeled as
both malignant and benign. In summary, out of the 15,152
pathology reports we collected, 1,219 cases had labels pro-
vided or refined by the radiologist. We successfully collected
breast-level cancer labels for all the pathology reports we have.
Among them, we had 1,182 reports including malignant biop-
sied findings of left breast and the same number of reports
including malignant biopsied findings of right breast. There
were 6,710 reports in which we found benign findings in left
breast and 6,587 reports in which benign findings were found
in right breast. And there are also 48 reports where we found
both malignant and benign findings in the left breast and 85
reports indicating both types of findings in the right breast.

Finally, we matched the cancer labels extracted from pathol-
ogy reports with the screening mammography exams to con-
struct our dataset. We assigned a cancer label to an exam if
the biopsy was performed within 120 days after the screen-
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ing mammogram. In cases where there are multiple biopsies
within that window, if any findings are positive (i.e. presence
of a benign finding in left breast) for any report in that win-
dow, we applied the positive label to that exam. Screening
mammography exams that were not matched to any cancer
label were given negative labels for all four labels.‖

B. Extraction of exam-level BI-RADS labels. To obtain exam-
level BI-RADS labels for the screening exams, we used a
conservative, keyword-based heuristic to parse 419,739 reports
and extract the corresponding labels for each exam. We
used the following metadata from reports: RawReport, which
contains textual diagnosis, ExamDescription, which describes
the type of exam, Acc, which contains accession number, and
Mrn, which contains patient identifier. In many cases, the
screening exam reports contain BI-RADS information out of
the scope of our analysis, such as BI-RADS determined from
an ultrasound exam. We retained only the exams for which
we could successfully extract a valid screening mammography-
based BI-RADS category.

First, we rejected all reports pertaining to diagnostic, to-
mosynthesis, or ultrasound exams based on the corresponding
keywords in the ExamDescription field in the exam metadata.
Next, we excluded sections of the report text based on section
headers and textual markers, such as ‘DIAGNOSTIC’ section
headers and identifiable strings indicating the start of a stan-
dard legend describing each label class. After isolating the
relevant text, we proceeded to identify BI-RADS labels con-
tained within the remaining text. We performed an exhaustive
search for strings exactly matching one of the following label
formats:

(a) ‘birads: label’

(b) ‘bi-rads: label’

(c) ‘bi-rads: label’

(d) ‘bi-rads category: label’,

wherein the label corresponds to either the number or ex-
act text string representing one of the following BI-RADS
categories: 0 (‘incomplete’), 1 (‘negative’), 2 (‘benign’), 3
(‘probably benign’), 4a (‘low suspicious’), 4b (‘moderate sus-
picious’), 4c (‘high suspicious’) and 5 (‘highly suggestive of
malignancy’). After obtaining exact matches based on the
above, we only kept exams for which there was exactly one
successful match. If there were zero or more than one matches,
we conservatively excluded that exam, as it indicates a failure
mode of our heuristic.

As BI-RADS 0 and BI-RADS 1 and BI-RADS 2 should be
the only BI-RADS categories used in screening mammography,
we condensed all BI-RADS categories into three classes for
the purposes of training our model. BI-RADS 0, 4a/b/c and
5 were mapped to a new ‘BI-RADS 0’ as each indicates a
possibility of malignancy. BI-RADS 1 is retained at ‘BI-RADS
1’. BI-RADS 2 and 3 are mapped to a new ‘BI-RADS 2’, as
they both indicate benign findings. This procedure resulted

‖We acknowledge that assigning negative labels to exams with no follow-up biopsies is based on
a simplifying assumption that 100% of patients, who were recommended further imaging after
screening mammography, returns to complete it. In reality, a small fraction of patients decides not to
continue or to continue at a different institution. Although this phenomenon introduces some small
level of noise to our labels, comparisons between different predictive models or human readers
utilizing these labels as ground truth are still fair as all are affected equally by this noise.

in a dataset consisting of a single BI-RADS label over three
classes for each of our valid screening mammography exams.

C. Extraction of exam-level breast density labels. We used a
similar keyword-based heuristic to extract the breast density
labels for each exam from RawReport. Keywords considered
for each category of breast density were the following:

• almost entirely fatty (1): predominantly fatty, entirely
fatty, breasts are comprised of fatty tissue;

• scattered areas of fibroglandular density (2): scat-
tered areas of fibroglandular tissue densities, scattered
areas of fibroglandular density, scattered fibroglandular,
scattered nodular densities;

• heterogeneously dense (3): heterogeneously dense,
heterogeneously dense with a nodular parenchymal pat-
tern;

• extremely dense (4): extremely dense, breasts are very
dense;

Exams coming with a report that only contains one type of
keyword were kept and labeled as the corresponding category
of breast density. All other exams, including exams without
any matching keywords and exams matching with more than
one type of keywords, are considered as ‘Unknown’, indicating
missing or ambiguous information on breast density. There
are 228,972 exams successfully aligned with a reliable breast
density class, which is over 99% of the entire dataset (see
Table 3).
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