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Abstract

The main topic of the thesis is prediction markets as a machine learning tool. The thesis gives
an overview of current state of the art in this research area, relates artificial prediction markets
to existing well-known model combination techniques and shows how they extend them.
It also develops techniques introduced in one of previously known frameworks, contains a
description of a first practical implementation of this framework and evaluates its performance
on both synthetic and real data sets from UCI machine learning repository. Finally, results
of this evaluation are utilised to understand strengths and weaknesses of this approach and
to suggest future directions in this research area.
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Introduction

0.1. Project aims and contributions

This thesis has three main aims. The first one is to give an overview of current state of the
art in using prediction markets as a machine learning tool, relate them to existing well-known
model combination techniques and show how they extend them. Secondly, to further develop
techniques in the framework from [Sto11], create its first practical implementation and eval-
uate its performance. Finally, using results of this evaluation, develop better understanding
of strengths and weaknesses of this approach and suggest future directions in this research
area.

The method of looking for the market equilibrium and the complete implementation of
market mechanisms are the most important contributions of this thesis.

0.2. Thesis outline

The latter part of this thesis has the following structure:

• Chapter 1 contains a very brief general introduction to the basic concepts of machine
learning and current methods for combining classifiers as well as describes various mo-
tivations for combining models.

• Chapter 2 introduces basic prediction market concepts necessary in the latter parts,
describes how real prediction markets are used in practice, outlines their advantages as
a machine learning tool and introduces notation for the rest of the thesis.

• Chapter 3 gives a summary and critical evaluation of one specific approach to utilizing
prediction markets as a stool for machine learning.

• Chapter 4 introduces formalism alternative to the one from Chapter 3 and highlights
its advantages. It also contains an explanation of how to find an equilibrium in this
setup and relates this approach to other machine learning techniques.

• Chapter 5 gives a description of a practical implementation of machine learning mar-
kets in the Edinburgh formulation. It also contains experimental results obtained on a
number of data sets and market parametrisations.

• Chapter 6 summarizes the thesis and suggests future research directions.
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Chapter 1

Background

Machine learning studies computer algorithms
for learning to do stuff.

Professor Robert Schapire

1.1. Supervised and unsupervised learning

If an algorithm is given a set of inputs (also called features vectors) {x1, x2, . . . , xn} and a set
of corresponding outputs (also called labels) {y1, y2, . . . , xn} and the goal of the algorithm is
to learn to produce the correct output given a new input, this is a supervised learning task.
A supervised learning task is called classification if the outputs are discrete or regression if
the outputs are continuous.

If an algorithm is only given a set of inputs {x1, x2, . . . , xn} and no outputs, this is an
unsupervised learning task. Unsupervised learning can be thought of as finding patterns in
the data above and beyond what would be considered pure unstructured noise. Two most
common examples of unsupervised learning are clustering and dimensionality reduction.

Inputs can be vectors of different types of objects, integer numbers, real numbers, strings
or more complex objects. Outputs take values each representing a unique state. For example,
an algorithm may be given a number of vectors representing numerically external features
of a person, such as height, weight, shoe size etc., and corresponding outputs that take one
value from the set {male, female}.

1.2. Classification

Classification is a particular supervised learning task. The objective of a classification algo-
rithm is, given a set of inputs X, that come from a space FL, and corresponding outputs Y ,
that belong to one of K classes, to learn a function h : FL → {1, . . . ,K} that can predict an
output for unseen input.

Usually a good measure of performance of a classifier is misclassification rate1:

1

[a] =

{
1 if a = true,
0 if a 6= true.
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MisclassificationRate =
1

N

N∑
i=1

[h(xi) 6= yi]. (1.1)

Sometimes it’s more convenient to use accuracy, which is equal to 1−MisclassificationRate.

If an algorithm outputs a probability distribution over classes and not just predicted class,
then it learns a function ĥ : FL × {1, . . . ,K} → [0, 1] (h(xi) = arg maxk ĥ(xi, k)). In that
case, a good complementary measure can be log-likelihood :

log–likelihood =

N∑
i=1

log ĥ(xi, yi). (1.2)

This may be a good measure in some circumstances as it does not asses how often the classifier
was right, instead assessing how much probability mass it put on the correct class.

Practical classification algorithms include: support vector machines, logistic regression,
neural networks, k nearest neighbours, decision trees and Naive Bayes. Ensemble methods
(section 1.4) build more complex models using these. Please see [HasTibFri09] for a compre-
hensive overview.

It is important to understand that function h not only has to describe the training data
(X,Y ) but also has to be able to generalize to unseen instances. If a classifier has a very
low misclassification rate on training data but high misclassification rate on test data, it
is said to overfit to the training data. That means that the classifier models the noise in
the training data and not the true underlying pattern that is of our interest. Overfitting
occurs primarily when the model has too many parameters given the amount of training data
available. Therefore, it is very often reasonable to favour simpler models to more complex
ones. Figure 1.1 shows an example of this phenomenon.

Predicting classifier’s performance on unseen data, should never be done on the training
data, overfitting is one the reasons. It is typically the best approach, to partition the data into
three sets: training set - to train the classifier, validation set - to tune classifier’s parameters
and test set - to predict performance on new instances.

1.3. Clustering

Clustering is an unsupervised learning task. The objective is to divide a set of objects,
represented by inputs {x1, x2, . . . , xn}, into a set of disjoint clusters {{x1,1, x1,2, . . . , x1,n1},
{x2,1, x2,2, . . . , x2,n2}, . . ., {x3,1, x3,2, . . . , x3,n3}}, that contain objects similar to each other
in some sense. Typically, similarity between two objects is defined by Euclidean distance2 or
Manhattan distance3.

For a comprehensive overview on clustering algorithms please refer to [Fun01].

1.4. Ensemble methods

Ensemble methods use multiple models to combine them into one stronger model. Experience
shows that it is common for individual algorithms to be outperformed by combinations of

2d(p,q) =

√
n∑
i=1

(pi − qi)2

3d(p,q) =
n∑
i=1

|pi − qi|
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Figure 1.1: Behaviour of test sample and training sample error as the model complexity
(understood in an informal manner as some measure of how complex the model is) is varied.
The light blue curves show the training error, while the light red curves show the test error
for 100 training sets of size 50 each, as the model complexity is increased. The solid curves
show the expected test error and the expected training error. Figure from [HasTibFri09]

.
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(a) Statistical (b) Representational (c) Computational

Figure 1.2: Reasons why an ensemble of classifiers may work better than a single one.

models and heterogeneous combinations are of special interest ([BelKor07]). As mentioned
by [Die00] there are essentially three reasons why ensembles of models perform better than
individual models: statistical, computational and representational (figure 1.2).

Statistical. One way to look at a learning algorithm is to view it as searching a hypothesis
space H to find the best one. Without enough data the algorithm may find a few
different hypotheses in H that give the same accuracy on the training (or validation)
data. By constructing an ensemble, the algorithm can find a point that is, in a certain
sense, an average of the members of the ensemble and thus reduces a risk of choosing
the wrong classifier.

Representational. In many cases the true function f cannot be represented within hypoth-
esis space H. By combining classifiers into an ensemble it may be possible to expand a
set of representable functions. Even though some algorithms, like neural networks (that
actually are universal approximators as shown in [Hor91]), can, in theory, express a lot
of functions, it is important to bear in mind that due to the finite amount of training
data, they will effectively explore a finite number of hypotheses and will stop when the
model fits the training data well enough.

Computational. Even when there is enough data, an algorithm performing local search for
the best hypothesis may get stuck in local optima. That is the case for neural networks
for example. Therefore, starting from different points and combining obtained models
in an ensemble may lead to a model that is closer to the true hypothesis.

The most widely used ensemble methods are Random Forest ([Bre01]) and AdaBoost
([Sch03]).

1.4.1. Random Forest

Entropy and information gain

Definition 1.4.1 Entropy, is a measure of the uncertainty associated with a random vari-
able. For a discrete random variable X with support X , entropy is defined as

12



H(X) =
∑
x∈X

p(x) log
1

p(x)
= −

∑
x∈X

p(x) log p(x). (1.3)

Definition 1.4.2 Given discrete random variable X with support X and Y with support Y,
the conditional entropy of Y given X is defined as

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x) = −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x) (1.4)

Analogous definitions can be formulated for continuous random variables.

Definition 1.4.3 Information gain is the change in entropy of random variable X when a
value of random variable Y is observed, that is

InformationGain(X;Y ) = H(X)−H(X|Y ). (1.5)

Decision trees

A decision tree partitions the feature space into rectangular regions and assigns a class to
every region. The process of partitioning the space is performed in such a way that the
choice of the variable that will be responsible for current split is done by greedily picking a
variable that gives the highest information gain. Decision trees are conceptually very simple
yet accurate. Algorithm 1 gives a precise description on how to build a decision tree.

Algorithm 1 Building a decision tree

BuildTree(D, attributes)
begin
T ← empty tree
if all instances in D have the same class c then
label(T )← c
return T

else if attributes = ∅ or no attribute has positive information gain then
label(T )← most common class in D
return T

else
A← attribute with highest information gain
label(T )← A
for each value a of A do
Da ← instances in D with A = a
if Da = ∅ then
Ta ← empty tree
label(Ta)← most common class in D

else
Ta ← BuildTree(Da, attributes\{A})

end if
add a branch from T to Ta labelled by a

end for
end if
end

13



Forest of random decision trees

A Random Forest is a set of random trees {hm}Mm=1 each of which is trained using a slight
modification of algorithm 1. Classification is done by majority voting, that is picking a
class that was predicted most frequently by the trees in the ensemble. A Random Forest is

Algorithm 2 Building a Random Forest

Input: D = {(x1, y1), . . . , (xm, ym)}
for b = 1 . . . B do
Z ← set of size N drawn from D by sampling with repetitions
Grow a tree Tb by recursively repeating the following steps for each terminal node of the
tree, until the minimum node size nmin is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable among the m.
iii. Split the node into two children nodes.

TB = TB ∪ Tb
end for
Output: ensemble of trees TB

conceptually simple, is computationally inexpensive to train, is resistant to overfitting and is
a surprisingly accurate classification algorithm.

1.4.2. AdaBoost

Boosting, and also more specifically the AdaBoost algorithm, is based on the observation that
finding a single, very accurate prediction rule is much harder than finding many rough rules.
AdaBoost builds multiple weak classifiers, feeding a classification algorithm with a different
distribution of training examples each round. At the end of that process, the algorithm
combines those weak learners, that have to be only slightly better than random, into one
strong classifier.

The two important questions in this approach are how to change the distribution of
training examples and how to combine classifiers. AdaBoost answers the first question by
putting more weight on those examples that are harder to learn and combines classifiers by
plain weighted majority voting, where the weights are chosen according to equations (1.6)
and (1.7), i.e.:

εt =
m∑
i=1

Dt(i)[yi 6= ht(xi)] (1.6)

αt =
1

2
ln

(
1− εt
εt

)
(1.7)

1.5. Bayesian model averaging

Bayesian model averaging is an alternative approach. It answers the following question: “if all
the data was generated by exactly one of the hypotheses, what is the probability of observing
the new pair (x, y)?”. The weights represent uncertainty about what the true hypothesis is.
That is4:

4∝ means “is proportional to”.
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Algorithm 3 AdaBoost algorithm.

Input: (x1, y1), . . . , (xm, ym), where xi ∈ X, yi ∈ Y = {−1,+1}
for i = 1 . . .m do
D1(i)← 1/m

end for
for t = 1 . . . T do

train base learner using distribution Dt

get base classifier ht : X → R
choose αt ∈ R
update Dt+1(i) = Dt(i)e−αtyiht(xi)

Zt
, where Zt is a normalization factor such that Dt+1 will

be a distribution
end for
Output: the final classifier h(x) = sign

(∑T
t=1 αtht(x)

)

p((x, y)|D) ∝
∑
h

p((x, y), D|h)p(h) (1.8)

However, as the algorithm is presented with more data, the weight for the most probable
hypothesis is going to converge to 1 and all the remaining to 0.

15





Chapter 2

Basic concepts

2.1. Definitions

Definition 2.1.1 A market is a mechanism for the exchange of goods. The market itself is
neutral with respect to the goods or the trades. The market itself cannot acquire or owe goods.
Unless explicitly stated otherwise, perfect liquidity1 is assumed and there is no transaction
fee. All participants in the market use the same currency for the purposes of trade.

Definition 2.1.2 Prediction market (also predictive market, information market) is a spec-
ulative market created for the purpose of making predictions. Market prices in the equilibrium
can be interpreted as predictions of the probability of an event ([Man06], [WolZit04]). In this
type of market one type of good is a bet, and the other is a currency. A bet pays a fixed amount
dependent on a particular outcome of a future occurrence, and pays nothing otherwise.

Definition 2.1.3 Artificial prediction market (also machine learning market) is a special
type of prediction market. Market participants in the artificial prediction market are classifiers
that bet for classes. Equilibrium prices estimate probabilities over classes. The classifiers do
not modify their beliefs once they join the market.

Definition 2.1.4 The efficient-market hypothesis asserts that financial markets are infor-
mationally efficient. That is, one cannot consistently achieve returns in excess of average
market returns on a risk-adjusted basis, given the information publicly available at the time
the investment is made.

Definition 2.1.5 The market equilibrium is a price point for which all agents acting in the
market are satisfied with their trades and do not want to trade any further.

Definition 2.1.6 A homogeneous market is a prediction market such that all the participants
are of the same type, that is, they have the same buying function.

Definition 2.1.7 An inhomogeneous market is a prediction market that aggregates partici-
pants who are of different types, that is, they do not all have the same buying function.

Definition 2.1.8 A utility function is a function U : X → R that measures a market par-
ticipant’s satisfaction with its current wealth.

1That is, every good can be bought or sold at every point of time.

17



Contract type Example Reveals market
expectation of . . .

Winner-takes-all Event e: Scottish National Party wins elections.
Contract costs $p, market’s estimation of probabil-
ity of outcome e. Pays $1 if and only if event e
occurs.

Probability that
event e occurs.

Index Contract pays $1 for every percentage point won
by Scottish National Party. Contract costs amount
of money that is equal to the market’s expectation
of the outcome.

Mean value of
outcome e.

Spread Contract costs $1. Contract pays $2 if Scottish
National Party wins more than e*% of votes and
pays $0 otherwise.

Median value of
outcome e.

Table 2.1: Types of contracts traded in real prediction markets. Based on Table 1 from
[WolZit04].

Definition 2.1.9 A buying function (also betting function) represents how much a market
participant is willing to pay for a good depending on its price. It can be either defined arbi-
trarily ([Lay09], [LayBar10], [BarLay11]) or derived from a specific utility function ([Sto11],
[StoMilGer11]).

2.2. Real prediction markets

When information is widely dispersed among economic actors, a prediction market offers a
mechanism to collect and aggregate that information. Much of the enthusiasm for prediction
markets comes from the efficient-market hypothesis (definition 2.1.4). In a truly efficient
prediction market, the equilibrium price is the best predictor of how likely an event is, and
no other use of available information may lead to improved market-generated forecasts.

Prediction markets were used in a number of contexts, including sporting events, po-
litical elections and foreign affairs ([WolZit04]). Evidence from Iowa Electronic Markets
(www.biz.uiowa.edu/iem) suggests that prediction markets outperform large-scale polling or-
ganisations in political domain ([BerForNelRie08]).

As shown in the table 2.1, there are multiple contract types in real prediction markets.
Interestingly, by combining a number of contracts, it is possible to learn more about under-
lying distribution. For example, consider two index contracts, one that just pays in linearly
and a second one that pays according to the square to the index, this is enough to infer the
market’s belief about the variance of e as V ar[e] = E[e2] − E[e]2. For the purposes of this
thesis, however, the only market type considered will be a winner-takes-all market type (cf.
table 2.1).

One important difference between real prediction markets and artificial prediction markets
considered in this thesis is in real prediction markets prices of contracts change as more
information becomes available. There is no such a phenomenon here as all the information,
that is, the feature vector, is available instantly for all market participants. It is, however,
perfectly correct, to consider artificial prediction markets exhibiting different behaviour, even
though the benefits of that from a standpoint of classification are doubtful.

18



2.3. Advantages of artificial prediction markets

Artificial prediction markets have strong foundations in existing knowledge on prediction
markets, that have proven to be successful in various scenarios, and have a number of desirable
properties that motivate study on them as a machine learning tool. These include:

Flexibility. No assumptions about the type of underlying classifier have to be made as
long as it outputs its beliefs as probability distribution over classes. This allows for
greater inhomogeneity. Agents can come to the market and leave the market, which
means that not all the agents have to participate in the market for every data item.

Probabilistic interpretability. A number of standard machine learning techniques can
be shown to be equivalent to this approach.

Parallelism. Agents in the market are naturally independent, the only centralised mecha-
nism in this architecture is the process of finding market equilibrium based on agents’
beliefs that can be generated by the agents completely in parallel.

Expressiveness. When constructing standard machine learning procedures, prior beliefs
have to be expressed in an explicit form. In this formalism however, the class of possible
priors is greater as they can be implicitly defined by the interaction of a number of
market participants. Mixing agents of different types capture some of the benefits of
both factorial and mixture models.

2.4. Notation

For the purposes of this thesis I am going to follow notation from [Sto11] and [StoMilGer11],
that is:

* Market goods are enumerated by k = 1, 2, . . . , NG, each good corresponds to a value
of discrete random variable K (events corresponding to market goods are mutually
exclusive and jointly certain).

* The price of k-th market good is denoted by ck. All prices form a vector
c = (c1, c2, . . . , cNG)T .

* Agents acting in the market are enumerated by i = 1, 2, . . . , NA.

* The wealth of agent i is denoted by Wi.

* Stockholding (also called position, the amount of good an agent wants to buy) of agent
i in good k is denoted by sik. Stockholding of agents i in all goods is denoted by
si = (si1, ss2, . . . , siNG)T . If short positions are allowed, then short position in sik is
indicated by a negative value.

* Each agent in the Edinburgh formulation of artificial prediction market has a utility
function Ui that implies its buying function sik(Wi, c) or is given its buying function
explicitly (in Florida formulation).

* Each agent has a belief Pi, where Pi(k) is the belief of that particular agent i that the
value of random variable K will be k, as k enumerates all possible values,

∑
k Pi(k) = 1.

In the context of classification, this represents agent’s belief that for given feature vector
x the correct class is k, more formally Pi(k) is equal to P (k|x, i).
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* A sequence of first t data items in data set D is denoted by DT and the tth data item
is denoted by Dt.
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Chapter 3

Florida formulation

This formulation of prediction markets as a tool for machine learning has been introduced first
in [Lay09], then subsequently developed in [LayBar10] and [BarLay11]. The key concept in
this approach is a betting function, which is, essentially, a different name for buying function.
It determines what fraction of agent’s wealth (also called budget) it is going to bet for each
class, therefore it is a function of a type FL × [0, 1]NG → [0, 1]NG . However, in contrary
to Edinburgh formulation, these betting functions are arbitrary, meaning that they are not
justified by any underlying utility function. Considered functions are (shown in the Figure
3.1 in a binary setting):

• constant,
sik = Pi(k), (3.1)

• linear,
sik = (1− ck)Pi(k) (3.2)

• aggressive,

sik =


1 if ck ≤ Pi(k)− ε,
0 if ck > Pi(k),
Pi(k)−ck

ε otherwise.

(3.3)

Another important concept exploited by the authors of this approach is specialization, which,
in this context means, that not all agents participate in the trades for all data items. Figure
3.2 gives an example how this can leveraged in a very simple setting. A generic type of base
classifier that can easily be adopted to that is a leaf of a tree from a Random Forest.

The authors show that, on a number of data sets, their approach gives better accuracy
than Random Forrest or AdaBoost. However, it is important to keep in mind, that the results
presented in the papers mentioned above were obtained with parameters chosen experimen-
tally using the validation set. Therefore, it is not necessarily a fair comparison.
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Figure 3.1: Betting functions for two-class problem. Left: constant betting, middle: linear
betting, right: aggressive betting. Shown are si2 (red), si1 (blue), and the total amount bet
si1 + si2 (black dotted). In this example, the classifier probability is Pi(1) = 0.2. Figure from
[LayBar10].

Figure 3.2: An example of a dataset for which using artificial prediction markets may lead
to perfect accuracy. There are eight very simple classifiers: the first always betting that the
class is red if x < 2, the second always betting that the class is blue if x ≥ 2, the third always
betting that the class is red if x ≥ 3, the fourth always betting that the class is blue if x < 3,
the fifth always betting that the class is red if y < 2, the sixth always betting that the class
is blue if y ≥ 2, the seventh always betting that the class is red if y ≥ 3, the eighth always
betting that the class is blue if y < 3. Training this market makes the classifiers betting that
the class is blue lose their money, it is transferred to the classifiers betting that the class is
red. That means, that when a new blue point comes, the classifiers that bet anything are all
betting that the class is blue and when a new red point comes, the classifiers that bet that
the class is red have big influence on the market and the ones betting that the class is blue
have small influence on the market. Therefore, in both cases, the point is classified correctly.

22



Chapter 4

Edinburgh formulation

In contrary to Florida formulation, buying functions in this approach are not arbitrary and
have their justification in underlying utility functions. That allows for relating this approach
to known methods. However, by introducing isoelastic agents, the standard methods can be
extended.

4.1. General setup

This formulation was first introduced in [Sto11]. There are NG goods in the market and there
are NA agents, each endowed with some utility function U , some wealth W and some beliefs
P about the domain from which the data items come from. Only one of the goods pay 1,
the remaining goods pay 0. Agents are presented data items from data set DT in certain
order. After seeing every data item Dt, agents express their beliefs about the class of that
data item. Given these beliefs, agents’ utility functions and wealths, the market equilibrates,
the prices express aggregated market belief about the class current data item belongs to. The
key missing pieces of information in this description are: how the market equilibrates, how
the wealth of participants is decided and from where agents’ beliefs come. The latter part of
this chapter is an attempt to fill those missing pieces.

An important assumption is that there are no arbitrage opportunities in the market.
This means that it is not possible to make a profitable jointly risk free trade. No-arbitrage
assumption implies that:

NG∑
k=1

ck = 1. (4.1)

This is because one class always pays 1, therefore, if
∑NG

k=1 ck < 1 then an agent could buy

equal amounts of goods of all classes and always earn the difference. Similarly, if
∑NG

k=1 ck > 1,
then an agent could sell equal amounts of goods of all classes and again earn the difference.

To be in the equilibrium, the market has to satisfy the following constraint:

NA∑
i=1

si(Wi, c) = 0. (4.2)

This means that the total number of goods bought matches the total number of goods sold.
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4.2. Utility functions

One can think of various utility functions an agent may be endowed with. The class of useful
functions for the our purposes, however, can be greatly limited. From a computational point
of view it is desirable that the function is continuous. Among continuous functions we are
only interested in those that have a positive and strictly decreasing derivative (to be strictly
increasing and grow slower for large values than for small values). The function of that form
makes the agent act rationally, that is, always willing to have more wealth and willing to
have more wealth less when it has a lot of wealth already. Some well known utility functions
([Sto11], [StoMilGer11]) that satisfy these constraints are:

• Exponential
Uexp(x) = −e−x. (4.3)

One important property of this utility function is that −eW−x = −eW e−x, that implies
that a relative change of utility is independent of the current wealth of the agent. This
implies that decisions made by such an agent do not depend on its wealth.

• Logarithmic

Ulog(x) =

{
log(x) if x > 0,
−∞ otherwise.

(4.4)

• Isoelastic (for η > 0)

Uiso(x) =
x1−η − 1

1− η
. (4.5)

η parameter is controlling how risk averse the agent is. If η = 0 then the agent is
risk-neutral as his utility grows linearly with wealth. As η gets bigger, the agent gets
more and more risk averse. When η → ∞, the agent is infinitely risk averse. For
0 < η < 1, limx→∞ Uiso(x) =∞ and for η > 1, limx→∞ Uiso(x) = 1

η−1 .

Strictly speaking1, limη→1 Uiso(x) = Ulog(x). However, for computational reasons (equi-
librium prices for market with isoelastic agents can’t be computed analytically2), these
two functions will be treated distinctively.

All these utility functions are shown in Figure 4.1.

4.2.1. Where the utility functions come from

One, however, may ask where all these functions come from. They may be derived fairly
straightforwardly using the following chain of reasoning ([Pet05]). Given an agent with some
utility function U , and continuous random variable X, representing a lottery that pays off
with probability density function f , the problem is to find a lottery ticket price such that
expected utility of the payoff is equal to the utility of initial wealth of the agent. That will
be the maximum price an agent is willing to pay to participate in this lottery. This is exactly
what Equation (4.6) says:

U(W ) =

∫ ∞
−∞

U(W − p+ x)f(x)dx (4.6)

1See section D.3 for derivation.
2see section 4.4 and C.3 for details
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An approximate simplification of this equation is3:

p =

∫ ∞
−∞

xf(x)dx+
U ′′(W )

U ′(W )

∫ ∞
−∞

(x− p)2

2
f(x)dx (4.7)

This expression shows that the maximum amount that an agent is willing to pay for a lottery
ticket is equal to the mean of X minus a term consisting of two parts. One part is the
integral (always of positive value) related to the variability of the outcome. The other part
depends only on the agent’s utility function. A few categories of utility functions can be

defined depending on what function the ratio U ′′(W )
U ′(W ) is.

Hyperbolic absolute risk aversion (HARA) is the most general class of utility functions
used in practice. A utility function exhibits HARA if its absolute risk aversion A is a hyper-
bolic function, namely:

A(c) = −U
′′(c)

U ′(c)
=

1

ac+ b
(4.8)

Special cases of this occur when:

• a = 0, then A(c) = −U ′′(c)
U ′(c) = 1

b = const and utility is said to exhibit constant absolute
risk aversion. Then the solution of this differential equation is, up to multiplicative and
additive constant, the exponential utility function.

• b = 0, then A(c) = − cU ′′(c)
U ′(c) = 1

a = const and utility is said to exhibit constant relative
risk aversion. Then the solution of this differential equation is, up to multiplicative and
additive constant, the isoelastic utility function.

Therefore, since isoelastic utility generalizes logarithmic utility, I have shown that functions
exhibiting hyperbolic absolute risk aversion generalize all utility functions used in this thesis.

4.3. Buying functions

The next step is to find out what amounts of different stock agents want to buy. As the
outcome is uncertain, a rational agent wants to maximise its expected utility

E[U ] =
∑
k

Pi(k)U(Wi − sTi c + sik), (4.9)

which leads to equation (4.10).

s∗i = arg max
si

∑
k

Pi(k)U(Wi − sTi c + sik). (4.10)

However, there is more than just one set of parameters maximising expected utility, hence
there is no unique function satisfying this optimisation problem as well. In fact, there is a
continuum of functions that maximise expected utility. The reason for this is that every agent
can make financially-neutral risk-free bets just by buying equal amounts of all goods, utilities
of s + α1 are equal. The important thing is what the relative amounts of goods bought and
sold are, therefore, to deal with this issue, a neutral agent, willing to make only financially-
neutral risk-free trades, is introduced. Then it is necessary to specify agent’s position only

3See section D.4 for derivation.
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up to an equivalence class. To represent each class by one position only, it is necessary
to use some standardization constraint. Some sensible constraints to impose on each agent
are sTi c = 0 (agent purchases and sells equal amount of goods) and siNG = 0 (agent does
not purchase or sell the last good). It is important to understand that those constraints
do not change agents’ behaviour in the market, they are introduced only for convenience of
representing classes of equivalent positions. It is also correct to switch between constraints
in the calculations.

si(Wi, c) is a smooth function of si if the utility function is a smooth function. Therefore,
its maximum with respect to si can be found by simple differentiation. Buying functions
corresponding4 to the utility functions introduced earlier are:

• Exponential

s∗ik = logPi(k)− log ck (4.11)

• Logarithmic

s∗ik =
Wi (Pi(k)− ck)

ck
(4.12)

• Isoelastic (for η > 0)

s∗ik = Wi


[
Pi(k)
ck

] 1
η

∑
j cj

[
Pi(j)
cj

] 1
η

− 1

 (4.13)

Again, when η → 1, this becomes equivalent to the buying function derived for loga-
rithmic utility.

All these buying functions are shown in Figure 4.2. The unexpected change of shape of the
function in the Figure 4.2(c) and in the Figure 4.3 as η gets closer to 0 is a consequence of
the fact that, in a binary setting, when η → 0, then5

s∗ik =


Wi
ck

if Pi(k) > ck,

0 if Pi(k) = ck,

− Wi
1−ck if Pi(k) < ck.

(4.14)

Also, when η →∞, then

s∗ik = 0 (4.15)

4.4. Finding an equilibrium

The market has to satisfy the market constraint (4.2). All agents simultaneously try to max-
imise their utility functions. According to [ArrDeb54], if all individual agents have concave
utility functions, there is a unique market equilibrium. To find this equilibrium in this for-
malism, it is necessary to solve equation (4.2). When the market is homogeneous, attempting
to solve market equation analytically gives the following6:

4Please look at appendix A for derivations of buying functions from utility functions.
5See section D.5 for details.
6See appendix C for details.
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Figure 4.1: Utility functions in a binary setting.
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Figure 4.2: Buying functions in a binary setting, for an agent that has a belief Pi(1) = 0.4,
after applying a constraint si2 = 0.
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• Logarithmic

ck =

∑
iWiPi(k)∑

iWi
(4.16)

Interestingly, such a market aggregates participants’ beliefs the same way as a model
known as the mixture of experts.

• Exponential

ck ∝
NA∏
i=1

Pi(k)1/NA (4.17)

This market aggregates participants’ beliefs in such a way as a model known as product
of experts ([Hin02]) does.

• Isoelastic (for η > 0)

ck ∝
NA∑
i=1

Wi

 ck

(
Pi(k)
ck

)1/η
∑NG

j=1 cj

(
Pi(j)
cj

)1/η
 (4.18)

This is not a closed form solution, hence, it has to be solved numerically, except for the
case when η → 1, then the equilibrium price vector is the same as for the homogeneous
logarithmic market.

There is no general analytical solution known to the author when the market is inhomo-
geneous. However, the solution, can also be found numerically by minimizing the following
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function (which will be referred to as market equilibrium function):

E(c) =
∑
k

(∑
i

sik(Wi, c)

)2

(4.19)

If E > 0 there is a mismatch between those who want to sell and those who want to buy
goods at a given price. When E = 0, constraint (4.2) is satisfied. Minimizing function (4.19)
can, in practice, be done using some variant of Newton’s method7. One good initial value
of c that approximates the solution is just a vector of average belief about classes, that is[

1
NA

∑NA
i=1 Pi(1), . . . , 1

NA

∑NA
i=1 Pi(NG)

]
.

4.5. Minimizing market equilibrium function

When plugging function (4.19) into an unconstrained optimisation procedure, the solution
found will not necessarily be a probability distribution (it will not necessarily be a vector
of positive numbers summing up to 1). In order to mitigate against these issues without
formulating this as constrained optimisation, equation (4.19) can be rewritten as:

E(z) =

NG∑
k=1

(
NA∑
i=1

sik (Wi, c(z))

)2

(4.20)

where c is the softmax function of z:

ck(z) =
ezk∑NG
j=1 e

zj

Then derivative of E with respect to z can be found using the chain rule:

∂E

∂z
=
∂E

∂c
.
∂c

∂z

Starting with

∂c

∂z
=



∂c1
∂z1

· · · ∂c1
∂zj

· · · ∂c1
∂zNG

...
. . .

...
... ∂ci

∂zj

...
...

. . .
...

∂cNG
∂z1

· · · ∂cNG
∂zj

· · · ∂cNG
∂zNG


where8 9

∂ci
∂zj

= ci (Iij − cj)

7Experimental work in thesis was done using subspace trust-region method based on the interior-reflective
Newton method implemented by fminunc function from MATLAB Optimization Toolbox.

8See section D.1 for the derivation.
9

Iij =

{
1 if i = j,
0 if i 6= j.
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and

∂E

∂c
=

[
∂E

∂c1
· · · ∂E

∂ck
· · · ∂E

∂cNG

]
where

∂E

∂cq
=

NG∑
k=1

2

(
NA∑
i=1

sik(Wi, c)

)(
NA∑
i=1

∂sik(Wi, c)

∂cq

)

the derivative is equal to:

∂E

∂z
=

[
∂E

∂c1
· · · ∂E

∂ck
· · · ∂E

∂cNG

]


∂c1
∂z1

· · · ∂c1
∂zj

· · · ∂c1
∂zNG

...
. . .

...
... ∂ci

∂zj

...
...

. . .
...

∂cNG
∂z1

· · · ∂cNG
∂zj

· · · ∂cNG
∂zNG


(4.21)

Thus, it is necessary to differentiate the buying functions with respect to the cost vector
in order to use gradient based optimisation methods. Derivatives of the functions introduced
earlier can be derived analytically10. If they could not, numerical derivatives can be used
instead, however, they slow the computations significantly.

4.6. Training the market

4.6.1. Wealth update

Agent i has wealth Wi. Wealth affects agent’s behaviour and, therefore, affects its influence
on the market (except for exponential agents, whose buying function (4.11) does not depend
on wealth). For every market training data item agent i gets sTi c for goods that he bought
and sold and gets return of sik∗ for the good that represented the correct class, hence, in
total sTi c + sik∗ . However, because of the constraint sTi c = 0, sTi c + sik∗ = sik∗ .

A number of ways of updating the budgets could be considered. The two most obvious
are: online update and batch update. Online update means that budget of every participant
of the market changes after every training sample. In that context, W t

i denotes wealth of
agent i after the market saw t data items. Batch update means that agent’s wealth is divided
into equal pieces, one piece for each training point. In that context W ′i denotes the wealth
of agent i after seeing all T data items.

One interesting property of the market that has exclusively isoelastic agents is that the
wealths can all be multiplied by the same constant and the prices are going to be exactly the
same as before.

4.6.2. Update for logarithmic agents

The wealths are initialized in such a way that
∑NA

i=1Wi = 1.

10See appendix B for derivation of ∂sik
∂cq

.
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Figure 4.4: Typical shape of function E when there are three classes. Effectively, this is a
function of just two variables, c1 and c2 as c3 = 1 − (c1 + c2). The curve is convex, as it
should be.
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Online update

W t+1
i = W t

i + sikt = W t
i +

W t
i (Pi(kt)− ckt)

ckt
= W t

i

Pi(kt)

ckt
(4.22)

Assuming that the distribution of vectors of features x is independent of i, the following chain
of equalities holds P (Dt|i)

P (Dt)
= P (x,k|i)

P (x,k) = P (k|x,i)P (x|i)
P (k|x)P (x) = P (k|x,i)

P (k|x) = Pi(kt)
ckt

. Therefore, by equating

W t
i to P (i|DT ), budget update takes the form of

W t+1
i = P (i|DT+1) =

P (Dt+1|i)P (i|DT )

P (Dt+1)
(4.23)

This is Bayesian update rule, initial wealths can be interpreted as a prior distribution. Then
using the assumption that

∑NA
i=1W

t
i = 1, it follows that equation (4.16) can be interpreted

in the following way:

ck =

∑NA
i=1W

t
i Pi(k)∑NA

i=1W
t
i

=

NA∑
i=1

P (i|DT )Pi(k) (4.24)

This is Bayesian averaging procedure mentioned in section 1.5. This is a good method if we
believe that there are many competing hypotheses and only one is correct. However, this
assumption may not always, and, in fact, in most cases is inappropriate ([Min02]). However,
it is still an interesting example of how prediction market mechanism is equivalent to standard
machine learning algorithm.

One way of preventing a scenario where all the wealth available on the market goes to
the best player would be to introduce a salary (a fixed income at the beginning of each turn
or training epoch) and a tax on wealth. This way no agents would lose all their money and
be completely ignored and the agents who have great wealth would not dominate the market
totally. That idea is in the spirit of a technique known as regularisation.

Batch update

Similarly, an interpretation can be given to batch update.

W ′i =
1

T

T∑
t=1

(Wi + sikt) = W t
i +

1

T

T∑
t=1

W t
i (Pi(kt)− ckt)

ckt
=
Wi

T

T∑
t=1

Pi(kt)

ckt
(4.25)

W ′i = P (i|DT ) =
P (i)

T

T∑
t=1

P (Dt|i)
P (Dt)

=
1

T

T∑
t=1

P (i|Dt) (4.26)

This is known as maximum posterior mixture model.
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Chapter 5

Experimental results

5.1. Experimental setup

5.1.1. Data sets

A number of data sets of different characteristics were used in the process of experimental
validation of the algorithms introduced in this thesis.

Data set #Data points #Features #Classes Type of attributes

Waveform 5000 21 3 real

Image 2310 19 7 real

Vehicle 946 18 4 real

Sonar 208 60 2 real

Breast cancer 699 10 2 integer

Ionosphere 351 34 2 integer, real

Magic 19020 11 2 real

Yeast 1484 8 10 real

5.1.2. Splitting the data

Every data set was split into three parts (figure 5.2):

• data to train base classifiers and the market,

• data to tune the parameters,

• data to test the market.

5.1.3. Classifiers

Agents need beliefs to participate in the market. Those beliefs can be just arbitrarily set
prior, however, it makes more sense to derive them from data. Therefore, every agent used
in the experiments had some classifier that was supplying it with probabilistic beliefs about
classes of incoming data items. The base classifiers used were:

• Decision trees. Implemented by classregtree class from MATLAB Statistics tool-
box. Unless specified otherwise, the trees were pruned in such a way that the leaves
had at least 10 data items.
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waveform image sonar vehicle

breast cancer ionosphere magic yeast

Figure 5.1: Class distributions in the data sets. The data sets were chosen in such a way that
there is a variety in the number of features and classes. Waveform is an artificially generated
data set and the others contain real data.

Figure 5.2: Data split. Base classifiers and the market was trained on the same data set.

• Neural networks. Implemented by mlp class in Netlab ([Netlab]) library. Unless
specified otherwise, networks had 10 hidden units and were trained in 300 iterations.

• Logistic regression. Implemented by mnrfit and mnrval functions from MATLAB
Statistics toolbox.

• Naive Bayes. Implemented by NaiveBayes class from MATLAB Statistics toolbox.

• Support Vector Machines. Implemented by svmtrain and svnpredict functions
from LIBSVM ([LIBSVM]) library.

To avoid beliefs equal to zero, which may result in prices equal to zero, which may
cause division by zero, beliefs have been smoothed in the following way, for all NG classes,
Pi(k) := 0.1+Pi(k)T

0.1NG+T
, where T denotes the size of the data set.

5.1.4. Sampling methods1

To generate multiple data sets of size n out of one data set of size N , one of the following
sampling methods was applied.

• No sampling. Just permuting the whole data set.

• Bootstrapping. Sampling the original data set n times with replacement.

1Sampling in this context means picking data items from the original data set to create a new data set
and should not be confused with sampling as in the context of MCMC methods.
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• Sample selection bias. This procedure is described by algorithm 42.

Algorithm 4 Sample selection bias

Input: D = ((x1, y1), . . . , (xm, ym)),
B - number of biased sets to generate,
S - number of training samples in every generated data set,
K - number of classes.
Generate B probability distributions, such that ∀k∈{1,...,K}

∑B
b=1 Pb(k) = B

K
for b = 1 . . . B do
Db ← ∅
while |Db| < S do

(x, y)← random data point from D
if rand(0, 1) ≥ Pb(y) then
Db ← Db ∪ (x, y)

end if
end while

end for
Output: (D1, . . . , DB)

• Subsampling. Sampling the original data set n times without replacement.

5.1.5. Other parameters

Other parameters were:

• number of agents in the market,

• number of iterations of the whole procedure - to have more reliable estimates,

• maximum number of data items - to truncate very large data sets,

• percentages of the data assigned to parts as defined in section 5.1.2.

5.2. Results

Unless specified otherwise, the parameters were set to the following values:

• 10 agents were participating in the market,

• sample selection bias was a sampling method with sample size of 75% of the original
sample,

• experiments were repeated 25 times,

• 60% of the data was used for training, 20% for validation, remaining 20% was left as
test data,

• data sets larger than 1000 data items were truncated to 1000 data items,

• there was one training epoch with batch update.

2See section D.2 to see how to generate such probability distributions as mentioned in the algorithm.

37



A number of experiments was executed using this setup:

1. Comparison of individual classifiers with markets consisting of agents endowed with
these base classifiers (Figure 5.3).

2. Comparison of sampling methods (Figure 5.4).

3. Comparison of markets with different number of agents (Figure 5.5).

4. Comparison of markets trained using diffent number of data items (Figure 5.6). For
this experiment only the number of training items was a variable and the number of
validation data items was set to 200.

5. Comparison of homogeneous markets of isoelastic agents with different η (Figure 5.7).

6. Comparison of market training techniques (Figure 5.8). The number of repetitions was
set to 50 for this experiment.

7. Comparison of learning rates for online training (Figure 5.9).

Some additional figures that did not fit in the main part of the thesis, extending those
mentioned above, are contained in appendix E.

The seed for random numbers generator was set in such a way that data was split the
same way for every set of parameters in a given iteration.

Two ways of visualising the data was used. Box plot and plotting just the mean. In
the box plot, the central mark is the median, the edges of the box are the 25th and 75th
percentiles, the whiskers extend to the most extreme data points not considered outliers, and
outliers are plotted individually.
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Figure 5.3: Accuracy and log-likelihood for markets consisting of agents endowed with dif-
ferent classifiers. The red diamonds plotted over box plots are the means of results of the
markets and cyan diamonds are means of the results of standalone classifiers trained on whole
data sets. Individual decision trees and neural networks vary much more for data sampled
using sample selection bias, which results in greater improvement in accuracy.
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Figure 5.4: Accuracy and log-likelihood for different sampling methods. The diamonds are the
means. Sample selection bias and subsampling outperform other methods for both datasets.
Sample selection bias is of particular interest as this is a kind of situation when machine
learning markets could be used.
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Figure 5.5: Accuracy and log-likelihood as a function of the number of agents in the market.
The values plotted are the means. Even for small number of agents accuracy of the market
is better than accuracy of a single classifier trained with the whole training set. However,
after reaching some point, increasing the number of agents does not increase accuracy or log-
likelihood. It is also clearly visible that neural networks can gain much more in log-likelihood
while increasing the number of agents in the market that decision trees.
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Figure 5.6: Accuracy and log-likelihood as a function of the number of points in the training
set. The values plotted are the means. Both metrics for the market improve while increasing
the number of training data items. However, the difference between the accuracy of a stan-
dalone classifier trained on the whole training data set is a different function in each case. The
market with agents endowed with all types of utility functions outperforms a single neural
network regardless of the number of training data items.
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Figure 5.7: Accuracy and log-likelihood as a function of η. The red dots plotted over the box
plots are the means. Even though the change of η does not result in big changes in accuracy,
a significant effect is achieved for log-likelihood. Interestingly, the change in log-likelihood
does not necessarily have a direct impact on accuracy. Also, the shapes of these curves are
very different for decision trees and neural networks.
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Figure 5.8: Accuracy and log-likelihood as a function of the number of training epochs for
batch and online training. The values plotted are the means. The effects of training are
small, however, it is worth noting that, in both cases, isoelastic agents with log-normally
distributed η have gained more in log-likelihood than isoelastic agents all with the same η.
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Figure 5.9: Accuracy and log-likelihood as a function of the number training epochs for online
training for different learning rates. The values plotted are the means. Learning rate changes
the number of epochs necessary to reach to the best combination, however, the maximum
value is the same for both accuracy and log-likelihood.
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Chapter 6

Summary

A market of agents endowed with classifiers trained on data sampled with sample selection
bias outperforms a single classifier presented with equivalent data. A market consisting of
logarithmic agents is equivalent to a mixture model and a market consisting of exponential
agents is equivalent to a product model. Logarithmic agents can be extended by isoelastic
agents. Even though the effects of introducing isoelastic agents are not as dramatic as I
initially anticipated, there are a couple of important conclusions to make:

• Homogeneous markets of isoelastic agents with η picked using validation data outper-
form, especially with respect to log-likelihood, homogeneous markets of logarithmic
agents.

• The structure of the market, that is, utility functions and base classifiers agents are
endowed with, is much more important parameter of the system influencing accuracy
and log-likelihood than the market training procedure. However, when the structure is
already decided, the training procedure may lead to significant improvements in both
metrics.

Some future research directions in this area may be:

• Using specialized agents that participate in the market only on subspaces of the feature
space like done in [LayBar10]. Such agents could be created for example by clustering
the feature space and training each agent on the data from one cluster.

• Introducing new agents to the market in the process of training. New agents coming to
the market could be trained only on the instances that are harder or harder instances
could get a higher weight. That would be in the spirit of boosting.

• Adopting this approach to regression. This is especially promising as the markets
exhibit much better behaviour with respect to log-likelihood, which is a continuous
quantity, than with respect to accuracy which is discretized.

• Better, more computationally efficient, ways of looking for market equilibrium. Current
method does not scale well for problems that have a large number of possible class labels.
For batch update the training procedure can also be speeded up by being executed in
parallel for individual data items.

• Studying effect of additional inhomogeneity by introducing agents that do not all have
the same base classifier.
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• Introducing tax on winnings and salary so that no agent goes bankrupt. That would
result in a similar effect to a technique known as regularisation.

• Developing better understanding of how updates for isoelastic agents can be interpreted
and how they can be related to other methods.
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Appendix A

Derivations of buying functions
from utility functions

In general, the function to be optimised is (4.9) and the constraint that is to be satisfied is
sTi c = 0. Therefore, Lagrange multiplier λ is introduced and the function to be optimised is
now

ÛEi (Wi, c, si) =

NG∑
k=1

Pi(k)U(Wi − sTi c + sik) + λsTi c (A.1)

Using sTi c = 0 constraint we get:

ÛEi (Wi, c, si) =

NG∑
k=1

Pi(k)U(Wi + sik) + λsTi c (A.2)

Then differentiating with respect to siq (treating all other elements of the vector si as con-
stants) and equating the derivative to 0 gives:

0 = Pi(q)U
′(Wi + sik) + λcq (A.3)

And finally:

siq = −Wi + (U ′)−1
(
−λcq
Pi(q)

)
(A.4)

Usually, however, it is easier to start from equation (A.3). It is also very handy to manipulate
λ as it remains a constant anyway.

A.1. Exponential utility

Equation (A.3) takes the form:

∂ÛEi
∂siq

= −Pi(q)e(−Wi−siq) + λcq (A.5)

0 = −Pi(q)e(−Wi−siq) + λcq

0 = −Pi(q)e−siq + λ′cq

logPi(q)− siq = log λ′ + log cq

siq = logPi(q)− log λ′ − log cq

49



Then using the constraint s∗iNG = 0 gives:

0 = logPi(NG)− log λ′ − log cNG

log λ′ = log
Pi(NG)

cNG

Therefore:
s∗ik = logPi(k)− log cq − logPi(NG) + log cNG (A.6)

A.2. Logarithmic utility

Equation (A.3) takes the form:

0 =
Pi(q)

Wi + siq
+ λcq (A.7)

Then:

0 = Pi(q) + λcqWi + λcqsiq

Summing over q:

0 =

NG∑
q=1

Pi(q) + λWi

NG∑
q=1

cq + λ

NG∑
q=1

cqsiq

Then using the constraint sTi c = 0, the fact that
∑NG

q=1 Pi(q) = 1 and no-arbitrage assumption∑NG
q=1 cq = 1:

0 = 1 + λWi

λ = − 1

Wi

Therefore, combined with the constraint s∗iNG = 0:

s∗ik =
Wi(Pi(k)− ck)

ck
− Wi(Pi(NG)− cNG)

cNG
(A.8)

A.3. Isoelastic utility

Equation (A.4) takes the form:

siq = −Wi + λ′
[

cq
Pi(q)

]− 1
η

(A.9)

Multiplying both sides by cq, summing over q and using constraint sTi c = 0 to get:

NG∑
j=1

cjsij = −Wi

NG∑
j=1

cj + λ′
NG∑
j=1

cj

[
cj

Pi(j)

]− 1
η

λ′ =
Wi∑NG

j=1 cj

[
cj

Pi(j)

]− 1
η
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Which, combined with the constraint s∗iNG = 0, gives the following:

s∗ik = Wi


[
Pi(k)
ck

] 1
η

∑NG
j=1 cj

[
Pi(j)
cj

] 1
η

− 1

−Wi


[
Pi(NG)
cNG

] 1
η

∑NG
j=1 cj

[
Pi(j)
cj

] 1
η

− 1



= Wi


[
Pi(k)
ck

] 1
η −

[
Pi(NG)
cNG

] 1
η

∑NG
j=1 cj

[
Pi(j)
cj

] 1
η


(A.10)
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Appendix B

Derivatives of buying functions

B.1. Exponential utility

∂s∗ik
∂cq

=


0 if k = NG,
1
ck

if k 6= NG, q = NG,

− 1
ck

if k 6= NG, q 6= NG, k = q,

0 if k 6= NG, q 6= NG, k 6= q.

(B.1)

B.2. Logarithmic utility

∂s∗ik
∂cq

=


0 if k = NG,
WiPi(k)

c2k
if k 6= NG, q = NG,

−WiPi(k)
c2k

if k 6= NG, q 6= NG, k = q,

0 if k 6= NG, q 6= NG, k 6= q.

(B.2)

B.3. Isoelastic utility

∂s∗ik
∂cq

=



0 if k = NG,

Wi

(
Pi(q)
cq

) 1
η


(

1
ηcNG

)∑NG
j=1 cj

[
Pi(j)

cj

] 1
η

−(1− 1
η

)[Pi(k)
ck

] 1
η−
[
Pi(NG)

cNG

] 1
η


∑NG

j=1 cj

[
Pi(j)

cj

] 1
η

2

 if k 6= NG, q = NG,

Wi

(
Pi(q)
cq

) 1
η


(
− 1
ηcq

)∑NG
j=1 cj

[
Pi(j)

cj

] 1
η

−(1− 1
η

)([
Pi(k)

ck

] 1
η−
[
Pi(NG)

cq

] 1
η

)
∑NG

j=1 cj

[
Pi(j)

cj

] 1
η

2

 if k 6= NG, q 6= NG, k = q,

−Wi

(
Pi(q)
cq

) 1
η

(
1− 1

η

)(Pi(k)
ck

) 1
η−
(
Pi(NG)

cNG

) 1
η


∑NG

j=1 cj

[
Pi(j)

cj

] 1
η

2 if k 6= NG, q 6= NG, k 6= q.

(B.3)
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Appendix C

Derivations of equilibrium prices

C.1. Exponential utility

By substituting sik in equation (4.2) with equation (4.11).

0 =

NA∑
i=1

Wi(Pi(k)− ck)
ck

0 =

NA∑
i=1

Wi(Pi(k)− ck) =

NA∑
i=1

WiPi(k)− ck
NA∑
i=1

Wi

ck =

∑NA
i=1WiPi(k)∑NA

i=1Wi

Which is exactly the same as equation (4.17).

C.2. Logarithmic utility

By substituting sik in equation (4.2) with equation (4.12).

0 =

NA∑
i=1

(logPi(k)− log ck − log λi) =

NA∑
i=1

logPi(k)−
NA∑
i=1

log ck −
NA∑
i=1

log λi

=

NA∑
i=1

logPi(k)−NA log ck −
NA∑
i=1

log λi

log ck =
1

NA

∏NA
i=1 Pi(k)∏NA
i=1 λi

ck =

(∏NA
i=1 Pi(k)∏NA
i=1 λi

) 1
NA

=

(
NA∏
i=1

(Pi(k))
1
NA

)(
NA∏
i=1

λi

)−1

From which equation (4.16) follows directly.
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C.3. Isoelastic utility

By substituting sik in equation (4.2) with equation (4.13).

0 =

NA∑
i=1

Wi


[
Pi(k)
ck

] 1
η

∑
j cj

[
Pi(j)
cj

] 1
η

− 1

 =

NA∑
i=1

Wi


[
Pi(k)
ck

] 1
η

∑
j cj

[
Pi(j)
cj

] 1
η

− NA∑
i=1

Wi

NA∑
i=1

Wi =

NA∑
i=1

Wi


[
Pi(k)
ck

] 1
η

∑
j cj

[
Pi(j)
cj

] 1
η



ck =

∑NA
i=1Wi

 ck

[
Pi(k)

ck

] 1
η

∑
j cj

[
Pi(j)

cj

] 1
η


∑NA

i=1Wi

From which equation (4.18) follows directly. When η = 1, it is equivalent to equation (4.16),
as it should be.
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Appendix D

Other derivations and algorithms

D.1. ∂c
∂z

If q = k

∂cq
∂zq

=
ezq
∑

j e
zj − e2zq(∑

j e
zj
)2

=
ezq
(∑

j e
zj − ezq

)
(∑

j e
zj
)(∑

j e
zj
)

=
ezq∑
j e

zj
.

∑
j e

zj − ezq∑
j e

zj

=
ezq∑
j e

zj
.

(
1− ezq∑

j e
zj

)

If q 6= k

∂cq
∂zk

=
−ezqezk(∑

j e
zj
)2

=
−ezqezk(∑

j e
zj
)(∑

j e
zj
)

=
ezq∑
j e

zj
.
−ezk∑
j e

zj

=
ezq∑
j e

zj
.

(
0− ezk∑

j e
zj

)

Therefore,

∂cq
∂zk

=
ezq∑
j e

zj
.

(
Iqk −

ezk∑
j e

zj

)
= cq(Iqk − ck)
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D.2. Generating random bistochastic matrices

Theoretical justification of correctness of this algorithm known in the literature can be found
in [CapSomBruŻyc09].

Algorithm 5 Generating random bistochastic matrices

Input: K,N
M ← K-by-N matrix of random numbers between 0 and 1
D ← vector of length K filled with ones
while max(D) > ε do

for k = 1 . . .K do
M(k, :)←M(k, :)/sum(M(k, :))

end for
for n = 1 . . . N do
M(:, n)←M(:, n)/(sum(M(:, n)) ∗ (N/K))

end for
for k = 1 . . .K do
D(k) = |sum(M(k, :))− 1|

end for
end while
Output: M

D.3. lim
η→1

Uiso(x) = Ulog(x)

Using L’Hôpital’s rule:

lim
η→1

x1−η − 1

1− η
=

lim
η→1

d
dη

(
x1−η − 1

)
d
dη (1− η)

=

lim
η→1

d
dη

(
eloge x

1−η
)

−1
=

lim
η→1

d
dη

(
e(1−η) loge x

)
−1

=

lim
η→1

−e(1−η) loge x loge x

−1
=

lim
η→1

e(1−η) loge x loge x =

loge x

D.4. Arrow-Pratt measure of absolute risk-aversion

Beginning with equating expected utility to initial utility:

U(W ) =

∫ ∞
−∞

U(W − p+ x)f(x)dx.
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Then using Taylor expansion, approximately:

U(W ) =

∫ ∞
−∞

[
U(W ) + U ′(W )(x− p) + U ′′(W )

(x− p)2

2

]
f(x)dx

U(W ) = U(W ) + U ′(W )

∫ ∞
−∞

(x− p)f(x)dx+ U ′′(W )

∫ ∞
−∞

(x− p)2

2
f(x)dx

0 = U ′(W )

∫ ∞
−∞

(x− p)f(x)dx+ U ′′(W )

∫ ∞
−∞

(x− p)2

2
f(x)dx

p =

∫ ∞
−∞

xf(x)dx+
U ′′(W )

U ′(W )

∫ ∞
−∞

(x− p)2

2
f(x)dx

D.5. Buying function for isoelastic utility when η → 0

s∗ik =Wi


[
Pi(k)
ck

] 1
η −

[
1−Pi(k)
1−ck

] 1
η

ck

[
Pi(k)
ck

] 1
η

+ (1− ck)
[
1−Pi(k)
1−ck

] 1
η



=Wi


[
Pi(k)
ck

] 1
η

ck

[
Pi(k)
ck

] 1
η

+ (1− ck)
[
1−Pi(k)
1−ck

] 1
η

−

[
1−Pi(k)
1−ck

] 1
η

ck

[
Pi(k)
ck

] 1
η

+ (1− ck)
[
1−Pi(k)
1−ck

] 1
η



=Wi


1

ck + (1− ck)
[

ck
Pi(k)

1−Pi(k)
1−ck

] 1
η

− 1

ck

[
1

ck
Pi(k)

1−Pi(k)
1−ck

] 1
η

+ (1− ck)


Then from the fact that:

lim
η→0

[
ck

Pi(k)

1− Pi(k)

1− ck

] 1
η

=


0 if Pi(k) > ck,
∞ if Pi(k) < ck,
1 if Pi(k) = ck.

It follows that:

lim
η→0

s∗ik =


Wi
ck

if Pi(k) > ck,

0 if Pi(k) = ck,

− Wi
1−ck if Pi(k) < ck.
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Appendix E

Additional figures

Some figures that did not fit in the main part of the thesis are:

• Figure E.1 extends Figure 5.8.

• Figure E.2 extends Figure 5.4.

• Figure E.3 extends Figure 5.5.

• Figure E.4 extends Figure 5.6.

• Figure E.5 extends Figure 5.7.
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Figure E.1: Accuracy and log-likelihood as a function of the number of training epochs for
batch and online training. Extension of Figure 5.8, with results for neural networks.
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Figure E.2: Accuracy and log-likelihood for different sampling methods. Extension of Figure
5.4, with box plots.
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Figure E.3: Accuracy and log-likelihood as a function of the number of agents in the market.
Extension of Figure 5.5, with box plots.
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Figure E.4: Accuracy and log-likelihood as a function of the number of points in the training
set. Extension of Figure 5.6, with box plots.
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Figure E.5: Accuracy and log-likelihood as a function of η. Extension of Figure 5.7, with
more data sets.

72



Bibliography

[ArrDeb54] Kenneth J. Arrow, Gerard Debreu, Existence of an equilibrium for a competitive
economy, Econometrica: Journal of the Econometric Society, 22(3):265290, 1954.

[BarLay11] Adrian Barbu, Nathan Lay, An Introduction to Artificial Prediction Markets,
arXiv:1102.1465v3 [stat.ML].

[BelKor07] Robert M. Bell, Yehuda Koren, Lessons from the Netflix prize challenge, ACM
SIGKDD Explorations Newsletter, 9(2):7579, 2007.

[BerForNelRie08] Joyce Berg, Robert Forsythe, Forrest Nelson, Thomas Rietz, Results from
a Dozen Years of Election Futures Markets Research, Handbook of Experimental Eco-
nomics Results, 2008, vol. 1, pages 742-751.

[Bis06] Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[Bre01] Leo Breiman, Random Forests, Machine Learning 45(1): 5-32, 2001.
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