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Abstract

A common practice for solving machine learning problems is currently to consider

each problem in isolation, starting from scratch every time a new learning problem

is encountered or a new model is proposed. This is a perfectly feasible solution

when the problems are sufficiently easy or, if the problem is hard when a large

amount of resources, both in terms of the training data and computation, are

available. Although this näıve approach has been the main focus of research in

machine learning for a few decades and had a lot of success, it becomes infeasible

if the problem is too hard in proportion to the available resources. When using

a complex model in this näıve approach, it is necessary to collect large data

sets (if possible at all) to avoid overfitting and hence it is also necessary to use

large computational resources to handle the increased amount of data, first during

training to process a large data set and then also at test time to execute a complex

model.

An alternative to this strategy of treating each learning problem indepen-

dently is to leverage related data sets and computation encapsulated in previously

trained models. By doing that we can decrease the amount of data necessary to

reach a satisfactory level of performance and, consequently, improve the accuracy

achievable and decrease training time. Our attack on this problem is to exploit

diversity – in the structure of the data set, in the features learnt and in the

inductive biases of different neural network architectures.

In the setting of learning from multiple sources we introduce multiple-source

cross-validation, which gives an unbiased estimator of the test error when the data

set is composed of data coming from multiple sources and the data at test time are

coming from a new unseen source. We also propose new estimators of variance of

the standard k-fold cross-validation and multiple-source cross-validation, which

have lower bias than previously known ones.

To improve unsupervised learning we introduce scheduled denoising autoen-

coders, which learn a more diverse set of features than the standard denoising

auto-encoder. This is thanks to their training procedure, which starts with a

high level of noise, when the network is learning coarse features and then the

noise is lowered gradually, which allows the network to learn some more local

features. A connection between this training procedure and curriculum learning

is also drawn. We develop further the idea of learning a diverse representation
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by explicitly incorporating the goal of obtaining a diverse representation into the

training objective. The proposed model, the composite denoising autoencoder,

learns multiple subsets of features focused on modelling variations in the data set

at different levels of granularity.

Finally, we introduce the idea of model blending, a variant of model com-

pression, in which the two models, the teacher and the student, are both strong

models, but different in their inductive biases. As an example, we train con-

volutional networks using the guidance of bidirectional long short-term memory

(LSTM) networks. This allows to train the convolutional neural network to be

more accurate than the LSTM network at no extra cost at test time.
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Lay summary

A common practice for solving machine learning problems is currently to

consider each problem in isolation, starting from scratch every time a new learning

problem is encountered or a new model is proposed. This is a feasible solution

when the problems are easy or, if the problem is hard, large amount of resources,

both in terms of the training data and computation, are available. Although this

approach was the main focus of research in machine learning for a few decades and

had a lot of success, it becomes infeasible if the problem is too hard in proportion

to the available resources. When using a complex model in this näıve approach,

it is necessary to collect large data sets to avoid the model simply memorising the

training data and hence it is also necessary to use large computational resources

to handle the increased amount of data, first during training to process a large

data set and then also at test time to execute a complex model.

An alternative to this strategy of treating each learning problem indepen-

dently is to leverage related data sets and computation encapsulated in previously

trained models. By doing that we can decrease the amount of data necessary to

reach a satisfactory level of performance and, consequently, improve the accuracy

achievable and decrease training time. Our attack on this problem is to exploit

diversity – in the structure of the data set, in the features learnt and in the design

of different neural network architectures.

In the setting of learning from multiple sources we introduce an error esti-

mation procedure which gives accurate estimates of the test error when the data

set is composed of data coming from multiple sources and the data at test time

are coming from a new unseen source. We also propose new ways of estimating

variability of the test error estimation which are more accurate than previously

known ones. To improve learning without labels we introduce scheduled denoising

autoencoders and composite denoising autoencoder, which learn a more diverse

set of features than the denoising auto-encoders. Finally, we introduce the idea

of model blending, a way to transfer knowledge between two machine learning

models, in which the two models, the teacher and the student, are both strong

models, but different in their design. As an example, we train convolutional

networks using the guidance of a recurrent network. This allows to train the

convolutional neural network to be more accurate than the recurrent network at

no extra cost at test time.
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Chapter 1

Introduction

1.1 Data, models and algorithms in the wild

A common practice for solving machine learning problems is currently to consider

each problem in isolation, starting from scratch every time a new learning prob-

lem is encountered or a new model is proposed. This typical pipeline involves

collecting a new data set and training the model starting from random initiali-

sation of its parameters (or from generic priors if it is a Bayesian model). This

is a perfectly feasible solution when the problems are sufficiently easy or, if the

problem is hard, when a large amount of resources, both in terms of the amount

of training data and computation, are available. We will consider a problem to be

simple if a simple model, trained with little data, can solve the problem with high

accuracy in a very short period of time. For example, in the case of classification,

we will consider a learning problem to be easy if the data is low-dimensional and

different classes in the data are linearly separable in the input space. On the other

hand, we will consider a problem to be hard, if the model necessary to achieve a

desirable level of performance has to be very complex to be sufficiently expressive

to capture relevant patterns in the data or, less often, if a simple model is capa-

ble of achieving high performance at a huge computational cost. We would argue

that any interesting machine learning problem is, indeed, hard according to the

above definition. Artificial intelligence, the long-term goal of machine learning,

even limited just to perceptual tasks like large-scale computer vision and speech

recognition, certainly falls into this category.

Although this näıve approach was the main focus of research in machine learn-

ing for a few decades and had a lot of success, it becomes infeasible if the problem

1



Chapter 1. Introduction 2

is too hard in proportion to the available resources. When using a complex model

in this näıve approach, it is necessary to collect large data sets (if possible at all)

to avoid overfitting and hence it is also necessary to use large computational re-

sources to handle the increased amount of data. First during training to process

a large data set and then also at test time to execute a complex model. An

alternative to this strategy of treating each learning problem independently is to

leverage related data sets and computation encapsulated in previously trained

models. By doing that we can decrease the amount of data necessary to reach a

satisfactory level of performance and, consequently, improve the accuracy achiev-

able and decrease training time. Our attack on this problem is to exploit diversity

– in the structure of the data set, in the features learnt and in the inductive bi-

ases of different neural network architectures. Leveraging this concept allows us

to make progress in the direction of more efficient machine learning in following

three aspects of machine learning.

- Learning from multiple sources of data (diversity in the structure

of the data set). In many applications of machine learning, such as sen-

timent classification, machine translation or speech recognition, data come

from multiple sources both at training time and at test time. These sources

can be, for example, different types of products being reviewed for senti-

ment classification or different speakers for speech recognition. Training

data are then sampled from the same underlying distribution within each

source but the distributions might differ between sources. At test time, the

data might also come from a different distribution associated with a new

unseen source. The structure of sources of the data is often known. As

demonstrated in Chapter 3, this knowledge can be leveraged not only for

making more accurate predictions but also for more accurate evaluation of

machine learning models. We show that when working with such a diverse

data set, while the standard k-fold cross-validation provides a biased esti-

mate of the test error, multiple-source cross-validation which we propose

is unbiased. We also give new estimators of the variance for both of these

cross-validation procedures.

- Unsupervised learning (diversity in the features learnt). The ma-

jority of data that we, humans, see have no explicit labels. Yet, we are

capable of learning to recognise new object classes based on very few exam-
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ples. That is an existence proof that building strong representations from

unsupervised data is possible. Unsupervised learning, especially within the

framework of neural networks, is an attempt to achieve this kind of label-

efficient learning. For example, if the final task is classification, unsuper-

vised pre-training regularises the network by discovering important factors

of variation in the data before approaching the final task. In Chapter 4 and

Chapter 5 we present two new methods for unsupervised learning which can

learn features at multiple levels of granularity. The representations learnt

this way are more robust, containing features which could have been learned

by a diverse set of models.

- Transferring knowledge from previously trained models (diversity

in the inductive biases). As the data sets grow bigger, so too do the

models that capture relevant patterns in the data. An obvious consequence

of this growth is the complexity of execution of such large highly accurate

predictive models. A possible question to ask in this situation in the con-

text of neural networks is what is the relation between the class of functions

learnable within a given architecture and the class of functions representable

within the same architecture. For example, previous work [Ba and Caruana,

2014] suggests that, in some cases, shallow networks have enough capacity to

represent accurate functions learnt by deep networks, even though standard

training methods do not allow them to learn these functions. In Chapter 6,

we present experimental evidence suggesting that, fast to execute, convo-

lutional neural networks, at least for speech recognition, can represent as

complicated functions as, slow to execute, long short-term memory (LSTM)

networks, if the convolutional neural network (CNN) is provided with guid-

ance of an LSTM during training. We train the CNN with model blending

through model compression, which leverages the fact that the two models,

the CNN and the LSTM, are strong, yet different in their inductive bias. A

resulting model is a form of an implicit ensemble.

Exploiting diversity has a long history in machine learning in a number of

contexts. One of the classic machine learning techniques embracing diversity in

the data is transfer learning (e.g. Thrun [1996], Pan and Yang [2010]). Its aim

is to leverage data from one task (source task) to help solve another, related,

task (target task). Within transfer learning, different problems arise depending
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on the assumptions made on how the source and targets tasks differ in the in-

put, p(x), and the output, p(y|x). Pan and Yang [2010] differentiate between

inductive transfer learning, where the source and target tasks differ in the output

(potentially the support of the distribution, as well as the distribution itself), and

transductive transfer learning, where the source and target task differ in the the

input (again, potentially over the support of the distribution as well as the distri-

bution itself). One important special case of the latter is domain adaptation (e.g.

Daumé [2007]), where the source and target data differ in the distribution over

the input but the distribution over the output is the same for both tasks. Impor-

tantly, the two tasks are assumed to have the same support of the corresponding

input and output distributions. Another related technique is multi-task learning

[Caruana, 1997], where multiple prediction problems are solved simultaneously,

sharing at least some of the input features.

A different family of methods leverage diversity inside the learning model. The

most important examples from this group include: ensembling (e.g. Dietterich

[2000]), where predictions of multiple diverse models are averaged and boosting

[Schapire, 1990], where a sequence of models is built specifically in such a way

that the models later in the sequence learn patterns different than the models

that precede them.

The approaches to exploiting diversity we explore in this thesis are related.

In learning from multiple sources, similarly to the setting of domain adaptation,

we merge data from multiple sources to use a larger training set which improves

generalisation. In our work, we show that we can leverage the knowledge of the

diverse structure of the data set to improve the quality of the estimate of the test

error. In the context of applications of neural networks we consider in this the-

sis, the benefits of diversity are similar to what we observe when using a classic

technique of ensembling. Features learnt at different scales and different neu-

ral network architectures, which have different inductive biases, capture different

patterns in the data. In both cases, by combining the two elements we get a more

robust model, as shown experimentally in this thesis. Our findings are consistent

with earlier work on enforcing and exploiting diversity in neural networks. For

example, Ciresan et al. [2012] construct a multi-column deep convolutional net-

work, where each column of the network learns a different representation due to

the training being data pre-processed in a different way. Similarly to our work on

unsupervised learning, Tang and Mohamed [2012] were building feature represen-
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tations at different scales, although they enforced diversity in the representation

by directly feeding the neural network copies of images at different resolutions.

1.2 Outline of the thesis

The rest of this thesis has the following structure.

- Chapter 2 provides the background for the rest of the thesis.

- Chapter 3 introduces multiple-source cross-validation, which gives an un-

biased estimator of the test error when the data set is composed of data

coming from multiple sources and the data at test time are coming from

a new unseen source. We also propose new estimators of variance of the

standard k-fold cross-validation and multiple-source cross-validation, which

have lower bias than previously known ones.

The content of this chapter was published as the following.

Krzysztof J. Geras and Charles Sutton. Multiple-source cross-validation.

In International Conference on Machine Learning, 2013

- Chapter 4 introduces scheduled denoising autoencoders, which learn a

more diverse set of features than the standard denoising autoencoder. This

is thanks to their training procedure, which starts with a high level of noise,

when the network is learning coarse features and then the noise is lowered

gradually, which allows the network to learn some more local features. A

connection between this training procedure and curriculum learning is also

drawn.

The content of this chapter was published as the following1.

Krzysztof J. Geras and Charles Sutton. Scheduled denoising autoencoders.

In International Conference on Learning Representations, 2015

- Chapter 5 develops ideas from Chapter 4 to explicitly incorporate the goal

of obtaining a diverse representation into the training objective. The pro-

posed model, the composite denoising autoencoder, learns multiple subsets

of features focused on modelling variations in the data set at different levels

of granularity.

1Minor typographical corrections were made to the original papers
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The content of this chapter was published as the following1.

Krzysztof J. Geras and Charles Sutton. Composite denoising autoencoders.

In European Conference on Machine Learning and Principles and Practice

of Knowledge Discovery in Databases, 2016

- Chapter 6 introduces the idea of model blending, a variant of model com-

pression, in which the two models, the teacher and the student, are both

strong models, but different in their inductive biases. As an example, we

train convolutional networks using the guidance of bidirectional LSTM net-

works. This allows to train the convolutional neural network to be more

accurate than the LSTM network at no extra cost at test time.

The content of this chapter was published as the following1.

Krzysztof J. Geras, Abdel-rahman Mohamed, Rich Caruana, Gregor Urban,

Shengjie Wang, Ozlem Aslan, Matthai Philipose, Matthew Richardson, and

Charles Sutton. Blending lstms into cnns. In International Conference on

Learning Representations (workshop track), 2016

- Chapter 7 summarises the thesis and suggests future research directions.



Chapter 2

Background

In this chapter we provide the background necessary for the rest of the thesis. We

introduce the topics in the order they appear in the machine learning pipeline. We

begin with motivation for learning representations with neural networks instead

of using hard-coded feature transformations (Section 2.1). Then we explain the

basics of classification and regression with neural networks and discuss different

neural network architectures (Section 2.2). In that context, we introduce the

idea of curriculum learning (Section 2.3). Finally, we give a short introduction to

evaluating machine learning models (Section 2.4).

2.1 Why learn representations

The main goal of representation learning is to find a vector space where semanti-

cally similar data are close to each other according to some natural metric, such

as L1 or L2, while dissimilar ones are far apart. To understand why this is im-

portant, consider the following example within the domain of computer vision. A

horizontal reflection of a natural image will yield an image which is semantically

very similar, yet very far from the original one according to the L2 distance. The

same applies to small translations or rotations of the image. Hence, the pixel

space is not a good representation for natural images. An accurate predictor

working directly in that space would have to simultaneously have an enormous

capacity to memorise all possible variations of training images and also be very

well regularised to be able to generalise accurately on test data. It is very hard

to imagine what ought to be the hard-coded internal transformations of the data

such a predictor would perform if they were supposed to be so general that they

7
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could be efficient independently of the data set and the exact task, even within

only one domain, such as computer vision. Similar difficulties arise for speech

recognition or natural language processing.

Despite the task being challenging, several attempts have been made in that

direction, especially in computer vision. Some notable examples include His-

tograms of Oriented Gradients [Dalal and Triggs, 2005] and Scale-Invariant Fea-

ture Transform [Lowe, 1999]. Until the methods for learning representations for

very large data sets were made practical, mostly thanks to the increase in compu-

tational power of modern computers, these approaches of creating hand-crafted

features were considered state-of-the-art for many years.

2.1.1 Unsupervised learning vs. supervised learning

For the purposes of this thesis we will consider unsupervised learning any learn-

ing procedure that does not make use of class labels. That definition includes

unsupervised learning methods using neural networks but also other methods

such as clustering or principal component analysis. The reason why unsuper-

vised learning is important is in wide availability of high quality unlabelled data

in comparison to labelled data. For example, while on average 300 million [fac]

images are uploaded to Facebook every day, the biggest available data set for

image classification, the ImageNet data set [Deng et al., 2009], contains only

14,197,122 labelled images1.

Another important motivation to study unsupervised learning is that it is

largely the way that humans learn. For example, the supervision we get for our

visual system throughout our lives is very sparse. We are capable of learning

new object classes from single examples due to the efficiency of representations in

our brain, which must be formed largely using a form of unsupervised learning.

Obviously, purely unsupervised learning is a very abstract problem. In practice,

we are always given some supervision and we only need to use unsupervised

learning as a means to an end, for example classification, rather than a goal on

its own. Therefore, learning paradigms between unsupervised and supervised

learning, such as semi-supervised learning (e.g. [Weston et al., 2008, Rasmus

et al., 2015, Kingma et al., 2014]) in which some small number of labelled data

are available, are more practically applicable.

1As of the 16th of May 2016.
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2.1.2 Shallow learning vs. deep learning

Another important distinction between machine learning methods is whether the

model used is “deep” or “shallow”. We will consider a model to be shallow if only

a few (typically not more than two) stages of non-linear data transformations

precede a classifier or a regressor. Some important examples of shallow learning

models are: linear regression, logistic regression, decision trees and SVMs. On the

other hand, we will consider models which involve multiple stages of non-linear

processing to be deep. The most important, and probably the only commonly

used currently, class of deep models are deep neural networks with deterministic

parameters trained with cross-entropy loss or square loss as an objective2.

2.2 Neural networks

In full generality, all neural networks are simply function approximators (with

learnable parameters) of functions from x to y of a very general form

y = s(h(x)),

where s is, typically, either a linear function of h(x) in the case of regression or

softmax function in the case of classification. The complexity and rich variety

of forms of neural networks is hidden in how the function h is defined. In the

simplest case, h can be a linear function of x followed by a non-linearity, such as a

sigmoid function, hyperbolic tangent or rectified linear function. Such a network

would be a shallow single-layer network. Alternatively, h can be a composition

of several nested non-linear functions of x. Typically, these linear functions are

simply of the form Wz+b, where z is a vector, which is an intermediate result of

the computation in the network, W is a dense matrix and b is a vector. We will

call a network of this structure a deep fully-connected network. More interest-

ing architectures can be defined within this framework by imposing constraints

on the network in the form of tying subsets of its parameters or by requiring

special sparsity structures of its parameters. Details of specific neural networks

architectures considered in this thesis are discussed in Section 2.2.1.

2Some interesting alternatives which might become more widely applied in the future in-

clude, for example, Variational Autoencoder [Kingma and Welling, 2014] and deep Gaussian

Processes [Damianou and Lawrence, 2013].
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As long as s and h are differentiable with respect to their parameters, neural

networks can be trained in an iterative manner simply updating their parameters

by taking a step in the direction opposite to the gradient of the loss between

the value computed by the network y and the true value in the training data

set y∗, denoted by L(y,y∗), averaged over the training data. An efficient way

of computing the gradient of the loss with respect to the parameters of a neural

network is known as backpropagation. In practice, averaging over the entire data

set is often too slow. An approximation to the gradient can then be computed

using only a random subset of the data. This method is known as stochastic

gradient descent (SGD).

It is important to note that even though neural networks are a very hot topic in

modern machine learning, ironically, most of the basic ideas used in modern neural

networks are very old3 and come from the period before decision trees, boosting,

kernel methods and Bayesian methods dominated machine learning for a few

decades. Just to name a few: convolutional neural networks (e.g. Fukushima

[1980], LeCun et al. [1989, 1998]), recurrent neural networks (e.g. Hochreiter and

Schmidhuber [1997]), auto-encoders (e.g. Ballard [1987], Bourlard and Kamp

[1988]), denoising auto-encoders (Seung [1998]), sparsity in neural networks (e.g.

LeCun et al. [1990], Zemel [1993]). Until recently, it was not possible to realise

the full potential of these ideas due to a lack of sufficiently large data sets and a

lack of sufficiently fast computers.

2.2.1 Neural network architectures

Autoencoders

Autoencoders are a broad class of neural network models, which serve the purpose

of unsupervised learning. In full generality, an autoencoder consists of two neural

networks tied together, an encoder network and a decoder network, in such a way

that the input of the encoder is also the output of the decoder.

More precisely, let x ∈ Rd be the input to the encoder. The output of the

encoder is a hidden representation y ∈ Rd′ . If the encoder is a single-layer network

it is simply computed as fθ(x) = s(Wx + b), where the matrix W ∈ Rd′×d

and the vector b ∈ Rd′ are the parameters of the network, and s is a typically

3For a very comprehensive review of the history of neural networks see the review by

Schmidhuber [2014] or the book by Goodfellow et al. [2016].
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nonlinear transfer function, such as a sigmoid. We write θ = (W,b). The

other half of an autoencoder, a decoder, “reconstructs” the input vector from the

hidden representation, which is used when training the network. The decoder

has a similar form to the encoder, namely, gθ′(y) = t(W′y + b′), except that

here W′ ∈ Rd×d′ and b′ ∈ Rd. It can be useful to allow the transfer function

t for the decoder to be different from that for the encoder. Typically, W and

W′ are constrained by W′ = WT by analogy to the interpretation of principal

components analysis as a linear encoder and decoder.

During training, our objective is to learn the encoder parameters W and b.

As a byproduct, we will need to learn the decoder parameters b′ as well. We

train the autoencoder weights to be able to reconstruct a random input from

the training distribution x by running the encoder and the decoder in sequence.

Formally, this process is described by the optimisation problem

θ∗, θ′
∗

= arg min
θ,θ′

Ex [L (x, gθ′(fθ(x)))] , (2.1)

where L is a loss function over the input space, such as squared error. Typically

we minimize this objective function using stochastic gradient descent with mini-

batches.

A classic result [Baldi and Hornik, 1989] states that when d′ < d, under

certain conditions, an autoencoder learns the same subspace as PCA. If the di-

mensionality of the hidden representation is too large, i.e., if d′ > d, then the

autoencoder can obtain zero reconstruction error simply by learning the iden-

tity map. To push the autoencoder to learn more interesting features capturing

important patterns in the data it is necessary to regularise it further. There

are multiple ways of implementing this regularisation by modifying the training

objective in Equation 2.1. The most common are the following.

- Adding a penalty enforcing sparsity of the activations in the hidden repre-

sentation. This is implemented simply by placing an L1 penalty on f(x),

that is, ‖f(x)‖1 =
∑

j |fj(x)|. Adding this penalty to the training objective

leads to what is known as sparse autoencoder (e.g. Ng [2011], Makhzani

and Frey [2015a], Zemel [1993]).

- Adding a penalty on the sensitivity of the function f mapping the input to

the hidden representation with respect to the input. This is implemented by

penalising the Frobenius norm of the Jacobian of f(x), that is, ‖Jf (x)‖2F =
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∑
i,j

(
∂fj(x)

∂xi

)2

. An autoencoder with that penalty added to the training

objective is known as the contractive autoencoder [Rifai et al., 2011].

- Adding noise to the input while still trying to reconstruct the uncorrupted

version of it. Such a model is known as denoising autoencoder [Vincent

et al., 2008, 2010] and will be the basis for the models developed in Chapter 4

and Chapter 5. The objective functions in Equation 2.1 is modified for the

denoising autoencoder to

θ∗, θ′
∗

= arg min
θ,θ′

Ex,x̃ [L (x, gθ′(fθ(x̃)))] , (2.2)

where x̃ is a corrupted version of x.

The denoising autoencoder (DA) is based on the same intuition as in the work

of Seung [1998] that a good representation should contain enough information to

reconstruct corrupted versions of an original input. In a denoising autoencoder

the noise forces the model to learn interesting structure even when there are a

large number of hidden units. Indeed, in practical denoising autoencoders, often

the best results are found with overcomplete representations for which d′ > d.

There are several hyperparameters that need to be decided, including the

noise distribution, the transformations s and t and the loss function L. For the

loss function L, for continuous x, squared error can be used. For binary x or

x ∈ [0, 1], it is common to use the cross entropy loss,

L(x, z) = −
D∑
i=1

(xi log zi + (1− xi) log (1− zi)) .

For the transfer functions, common choices include the sigmoid s(v) = 1
1+e−v

for both the encoder and decoder, or to use a rectifier s(v) = max(0, v) in the

encoder paired with the sigmoid decoder. Another important parameters in a

denoising autoencoder is the noise distribution p. For continuous x, Gaussian

noise p(x̃|x, ν) = N(x̃; x, ν) can be used. For binary x or x ∈ [0, 1], it is most

common to use masking noise, that is, for each i ∈ 1, 2, . . . d, we sample x̃i

independently as

p(x̃i|xi, ν) =

0 with probability ν,

xi otherwise.
(2.3)
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It is also possible to train multiple layers of representations with denoising

autoencoders by training a denoising autoencoder whose input is a representation

learnt by another denoising autoencoder. This model is known as the stacked

denoising autoencoder [Vincent et al., 2008, 2010].

Representations learnt in an unsupervised manner as explained above can

be used very effectively as initialisations for supervised neural networks [Erhan

et al., 2010]. It can be done simply by copying the parameters of the encoder, θ,

and adding a softmax regression layer. Using unsupervised layer-wise learning of

representations as a form of pre-training for classification purposes with various

building blocks appeared also, for example, in the work of Bengio et al. [2007]

and Hinton et al. [2006].

Convolutional networks

Convolutional networks are a class of neural networks with restricted connectivity

inspired by the animal visual cortex. Convolutional networks are very similar to

the standard fully-connected multi-layer neural networks except that some of the

layers are replaced with “convolutional layers” and “pooling layers”. The two

main principles behind the design of convolutional networks are the following.

- Weight sharing. Groups of hidden units in the convolutional layer share

parameters between themselves. This reduces the number of parameters.

- Local connectivity. Each hidden unit in the convolutional layer is only

connected to a small localised region of the input. That reduces both the

number of parameters and the amount of computation.

Thanks to these design principles convolutional networks can deal efficiently with

high-dimensional inputs of regular multi-dimensional topology, allowing them to

be partially invariant to translation and small rotations of the input.

An input to a convolutional layer is a multi-dimensional tensor. For exam-

ple, if the input to the first layer in a convolutional network is an image, we

will consider it a three-dimentional tensor, where the three dimensions represent

respectively, one of the RGB channels, position on the x-axis and position on

the y-axis. The output of a convolutional layer is also a multidimensional tensor,

composed of slices called “feature maps”. Mathematically, hkj , the j-th feature
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Figure 2.1: The operation of non-overlapping max pooling on one channel with 2× 2

pooling regions.

0.7 0.2 3.1 1.0

0.5 1.7 0.2 1.2

0.3 0.4 0.5 0.8

3.6 2.0 0.1 0.0

8.66 8.36

4.63 5.29

0.3 0.0 1.5

1.3 0.5 1.0

0.7 0.1 3.7* =

Figure 2.2: Convolution with a 3× 3 filter and a stride of one pixel. For example the

top left element of the matrix on the right-hand side is computed as 0.7 · 0.3 + 0.2 ·
0.0 + 3.1 · 1.5 + 0.5 · 1.3 + 1.7 · 0.5 + 0.2 · 1.0 + 0.3 · 0.7 + 0.4 · 0.1 + 0.5 · 3.7 = 8.66

map in the k-th hidden layer is computed as

hkj = f

(
bj +

(∑
i

hk−1
i ∗Wk

(i,j)

))
, (2.4)

where f is a nonlinear function, Wk
(i,j) are matrices of parameters (also called

“filters” in the context of convolutional networks) and ∗ is a discrete convolutional

operation4. The operation of convolution is illustrated in Figure 2.2. The number

4A discrete convolution operation is defined in the following manner. For a feature

map h and a filter W ∈ Rr,r, the (i, j) element of the matrix h ∗ W is computed as

(h ∗W)(i,j) =
∑
p,q h(i+p,j+q)W(r+p,r+q). Please also note that although this operation is
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of feature maps in a hidden layer is a design choice analogous to the number of

hidden units in a fully-connected layer.

The pooling layers act on each feature map independently. Mathematically,

an element (l,m) of the j-th channel in the k-th layer is computed by the pool-

ing layer as
(
hkj
)
(l,m)

= maxp,q

{(
hk−1
j

)
(l+p,m+q)

}
for max pooling, which retains

only the maximum value or
(
hkj
)
(l,m)

= 1
PQ

∑
p,q

(
hk−1
j

)
(l+p,m+q)

for average pool-

ing. Pooling regions may be overlapping. The pooling operation is illustrated

in Figure 2.1. Although the description of convolution and pooling above is

for two-dimensional inputs, convolutional layers and pooling layers can be easily

generalised to more dimensions.

Typically convolutional networks are built by interleaving convolutional lay-

ers and pooling layers with optional one or two fully-connected layers at the top

before a linear layer (in case of regression) or a softmax layer (in case of classifica-

tion. Designs of convolutional networks have evolved a lot over time with respect

to the size of convolutional filters, the size of pooling regions and the number of

hidden layers. For modern convolutional networks it is common to use very small

convolutional filters (3× 3) and very small pooling regions (2× 2) with a stride

of two pixels (cf. [Simonyan and Zisserman, 2014]). Most accurate models of this

kind used in computer vision use hundreds of hidden layers [He et al., 2015].

So far, convolutional neural networks had the greatest impact in computer vi-

sion. One of their first practical applications was in character recognition [LeCun

et al., 1998]. Later, scaling them to larger images and data sets became feasible

(e.g. Krizhevsky et al. [2012], Simonyan and Zisserman [2014]). They have also

been successfully applied to speech recognition (e.g. [Abdel-Hamid et al., 2012,

Sainath et al., 2013, Abdel-Hamid et al., 2014, Sainath et al., 2015, Geras et al.,

2016]) and natural language processing (e.g. Kalchbrenner et al. [2014], Zhang

et al. [2015]).

Recurrent networks

Recurrent neural networks (RNNs) are a family of networks specialised for pro-

cessing sequential data. Given a sequence of input vectors x = (x1, . . . , xT ), an

RNN computes the hidden vector sequence h = (h1, . . . , hT ) by iterating the

usually called “convolution” in the machine learning community, the correct term in signal

processing for this operation is “cross-correlation” (c.f. Smith [1997]).
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following from t = 1 to T :

ht = H (Wxhxt +Whhht−1 + bh) .

The output sequence is computed as y = (y1, . . . , yT ), where yt = Whyht+by. The

W terms denote weight matrices (e.g. Wxh is the input-hidden weight matrix),

the b terms denote bias vectors (e.g. bh is hidden bias vector) and H is the hidden

layer function.

While there are multiple possible choices for H, prior work [Graves, 2012,

Graves et al., 2013a, Sak et al., 2014] has shown that the LSTM architecture

[Hochreiter and Schmidhuber, 1997], which uses purpose-built memory cells to

store information, is better at finding and exploiting longer context. Figure 2.3

illustrates a single LSTM memory cell. Probably the most common version of the

LSTM cell [Gers et al., 2003] implements H as the following composite function,

which we will denote by HLSTM:

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) ,

ft = σ (Wxfxt +Whfht−1 +Wcfct−1 + bf ) ,

ct = ft � ct−1 + it � tanh (Wxcxt +Whcht−1 + bc) ,

ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) ,

ht = ot tanh(ct),

where � indicates element-wise multiplication, σ is the logistic sigmoid function,

and i, f , o and c are respectively the input gate, forget gate, output gate and cell

activation vectors, all of which are the same size as the hidden vector h. The

weight matrices from the cell to gate vectors (e.g. Wci) are diagonal, so element

m in each gate vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are only able to make use

of previous context. Bidirectional RNNs (BRNNs) [Schuster and Paliwal, 1997]

exploit past and future contexts by processing the data in both directions with

two separate hidden layers, which are then fed forwards to the same output layer.

As illustrated in Figure 2.3, a BRNN computes the forward hidden sequence
−→
h = (

−→
h 1, . . . ,

−→
h T ) and the backward hidden sequence

←−
h = (

←−
h 1, . . . ,

←−
h T ) by

iterating from t = 1 to T :

−→
h t = H

(
W
x
−→
h
xt +W−→

h
−→
h

−→
h t−1 + b−→

h

)
,

←−
h t = H

(
W
x
←−
h
xt +W←−

h
←−
h

←−
h t+1 + b←−

h

)
.
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t
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Figure 2.3: Left panel: the LSTM cell. Figure from Graves et al. [2013a]. Right

panel: bidirectional RNN with two layers.

The output is computed as y = (y1, . . . , yT ), where yt = W−→
h y

−→
h t +W←−

h y

←−
h t + by.

Combining BRNNs with LSTMs by setting H to HLSTM gives the bidirectional

LSTM, which can access the context in both directions.

Finally, deep RNNs can be created by stacking multiple RNN hidden layers

on top of each other, with the output sequence of one layer forming the input

sequence for the next. Assuming the same hidden layer function is used for all

N layers in the stack, the hidden vector sequences hn are iteratively computed

from n = 1 to N and t = 1 to T :

hnt = H (Whn−1hnh
n−1
t +Whnhnh

n
t−1 + bnh

)
,

where we define h0 = x. The network output sequence is computed as as y =

(y1, . . . , yT ), where yt = WhNyh
N
t + by.

Deep bidirectional RNNs can be implemented by replacing each hidden se-

quence hn with the forward and backward sequences
−→
h
n

and
←−
h
n
, and ensuring

that every hidden layer receives input from both the forward and backward layers

at the level below. If bidirectional LSTMs are used for the hidden layers we get

deep bidirectional LSTMs, the architecture we use as a teacher network in this

paper.

RNNs, especially LSTMs, exhibit great performance in a range of tasks, in-

cluding speech recognition (e.g. [Graves et al., 2013b]), handwriting recognition

and generation [Graves and Schmidhuber, 2009, Graves, 2014], machine transla-

tion (e.g. [Sutskever et al., 2014, Bahdanau et al., 2014]) and parsing [Vinyals
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et al., 2015].

2.3 Curriculum learning

The classical way of training machine learning models assumes that the same

training objective is optimised throughout the entire training procedure. Inspired

by research in optimisation [Allgower and Georg, 1980] and cognitive science

and psychology [Skinner, 1958, Krueger and Dayan, 2009], curriculum learning

[Bengio et al., 2009] is a technique that takes a different approach by training the

model to solve a sequence of problems of increasing difficulty. In this sequence,

a solution to the k-th optimisation problem is used as an initialisation for the

(k+1)-th optimisation problem. Such curricula can often be designed using prior

knowledge (e.g. Gulcehre and Bengio [2016]). Alternatively, they can be designed

artificially as we do in Chapter 4 and Chapter 5.

In the context of machine learning, curriculum learning is motivated as a

way to avoid local optima of the objective function by making the objective less

multimodal. An example of such a series of objectives is shown in Figure 2.4.

Figure 2.4: A series of objective functions with different degrees of smoothing applied.

The original objective at the top has many more local minima. The minimum of the

smoothest curve at the bottom is not the global minimum of the original objective at

the top, but when using this minimum as a starting point for the next optimisation

problem we can avoid getting stuck in a local minimum far from the global minimum.
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2.4 Evaluation of machine learning models

When evaluating machine learning models, it is important to distinguish between

evaluating performance of a specific model already trained with a particular data

set and evaluating performance of a learning algorithm producing a different

model depending on a training data set given. We will call the former the “pre-

diction error” and will call the latter the “expected prediction error”. Given a loss

function L(y, ŷ) and a learning algorithm A that maps a data set D = {(xi, yi)}Ni=1

to a predictor AD : x 7→ y, we define the prediction error as

PE(A) = E[L(AD(x), y)],

where the expectation is taken only over test instances (x, y). The expected

prediction error is defined as

µ = EPE(A) = E[L(AD(x), y)],

where the expectation is taken both over training sets D and test instances (x, y).

Obviously, in practice, we are never given infinite data sets to be able to compute

these quantities and we need to estimate them using finite data sets at hand.

If the size of the training data is small, the two might differ significantly. In

machine learning, we are usually interested in comparing learning algorithms,

so we will focus our discussion on estimating the expected prediction error. In

specific applications of machine learning estimating the prediction error is more

meaningful.

The most common way of evaluating learning algorithms is the k-fold cross-

validation5 [Stone, 1974]. We introduce some notation to compactly describe this

procedure. Partition the data as D = D1 ∪ . . . ∪ DK with |Dk| = M for all k.

This means that N = KM . Let HO(A,D1, D2) denote the holdout estimate, i.e.

an average loss incurred when training on set D1, and testing on set D2. In k-fold

cross-validation, we first compute the average loss,

HO(A,D\Dk, Dk) =
1

|Dk|
∑

(xi,yi)∈Dk

L(AD\Dk(xi), y), (2.5)

5Other closely related to k-fold cross-validation estimators are also possible. For a detailed

review of various cross-validation type procedures please see the survey by Arlot and Celisse

[2010].
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when training A on D\Dk and testing on Dk, for each k ∈ {1, . . . , K} and then

we average these to get the final error estimate

µ̂ = CV(A,D1:K) =
1

K

K∑
k=1

HO(A,D\Dk, Dk). (2.6)

Note that even though the holdout estimate requires k times less computation,

it is not necessarily a good estimator of µ since it ignores the variability of D,

which is important if the training data set is small. If we care about estimating

µ, the holdout estimator should be used only if cross-validation is too expensive

to be practical.

For the k-fold cross-validation as defined above, every instance in D is a test

instance exactly once. For (xm, ym) ∈ Dk, denote this test error by the random

variable ekm = L(ym, A
D\Dk(xm)). Using this notation, µ̂ = 1

KM

∑
k

∑
m ekm,

so the CV estimate is a mean of correlated random variables. If the training

data in D are iid the ekm’s have a special exchangeability6 structure: For each

k, the sequence ek = (ek1, . . . , ekM) is exchangeable, and the sequence of vectors

e = (e1, . . . , eK) is also exchangeable.

Although k-fold cross-validation provides an unbiased estimator of µ7 if test

data comes from the same distribution as training data, in practice, we only have

one data set D, so we would also like to estimate the variance θ = V[µ̂] of this

and related CV estimators. If the examples in D are iid, Bengio and Grandvalet

[2003] show that the variance θ can be decomposed into a sum of three terms.

The exchangeability structure of the ekm implies that there are only three distinct

entries in their covariance matrix: σ2, ω and γ, where

V [eki] = σ2, ∀i ∈ {1, . . . ,M},∀k ∈ {1, . . . , K},
Cov [eki, ekj] = ω, ∀i, j ∈ {1, . . . ,M}, i 6= j,∀k ∈ {1, . . . , K},
Cov [eki, e`j] = γ, ∀i, j ∈ {1, . . . ,M}, ∀k, ` ∈ {1, . . . , K}, k 6= `.

(2.7)

Applying the formula for the variance of the sum of correlated variables yields

θ = V[µ̂] =
1

KM
σ2 +

M − 1

KM
ω +

K − 1

K
γ. (2.8)

This decomposition can be used to show that an unbiased estimator of θ does

not exist. The reasoning behind this is the following. As θ has only second order

6We call a sequence of random variables X1, . . . , XK exchangeable if for any permutation σ

of indices 1, . . . ,K, the joint probability distribution of the permuted sequence Xσ(1), . . . , Xσ(K)

is the same as the joint probability of the original sequence (cf. Chow and Teicher [2012]).
7For a training data set of size K−1

K |D|
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terms in eki’s, so would an unbiased estimator. Thus, if there existed such an

estimator, it would be of the form θ̂ =
∑

k,`

∑
ij wk`ekie`j. Coefficients wk` would

be found by equating coefficients of σ2, ω and γ in E
[
θ̂
]

and in θ. Unfortunately,

the resulting system of equations has no solution, unless some assumptions about

σ2, ω or γ are made. In later work, Grandvalet and Bengio [2006] suggested sev-

eral biased estimators of θ based on this variance decomposition and simplifying

assumptions on σ2, ω and γ.

Cross-validation, as explained above, is relying on the assumption that train-

ing data and test data come from the same distribution. Although this is math-

ematically a very convenient assumption, it is not always true. One interesting

case of when the training and test distribution are different is when we know that

the training data are coming from multiple sources and we also know that it will

come from a new unseen source at test time. A cross-validation procedure we

suggest using in such scenarios, the multiple-source cross-validation, is the focus

of Chapter 3.



Chapter 3

Multiple-source cross-validation

3.1 Introduction to the paper

In some applications of machine learning, the training data set is composed of

data coming from multiple sources and the data at test time is coming from a

new unseen source. An example domain where this setting is common is senti-

ment classification of product reviews [Blitzer et al., 2007]. In this case, reviews

of products of various categories are considered different sources. In this setting

using the standard k-fold cross validation leads to a biased estimate of the test

error. We demonstrate how knowledge about the diversity structure of the train-

ing data can be used for unbiased estimation of the test error. We do this with

a new type of cross-validation procedure, called multiple-source cross-validation,

in which the data set is partitioned with respect to the sources from which the

data came instead of randomly.

Another contribution of this work is the characterisation of the form of the

bias in all estimators of the variance of the standard k-fold cross-validation and

multiple-source cross-validation. Based on that insight, we propose new estima-

tors of variance of cross-validation for both the standard k-fold cross-validation

and multiple-source cross-validation empirically yielding lower bias.
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Abstract

Cross-validation is an essential tool in ma-
chine learning and statistics. The typical pro-
cedure, in which data points are randomly
assigned to one of the test sets, makes an im-
plicit assumption that the data are exchange-
able. A common case in which this does not
hold is when the data come from multiple
sources, in the sense used in transfer learn-
ing. In this case it is common to arrange
the cross-validation procedure in a way that
takes the source structure into account. Al-
though common in practice, this procedure
does not appear to have been theoretically
analysed. We present new estimators of the
variance of the cross-validation, both in the
multiple-source setting and in the standard
iid setting. These new estimators allow for
much more accurate confidence intervals and
hypothesis tests to compare algorithms.

1. Introduction

Cross-validation is an essential tool in machine learn-
ing and statistics. The procedure estimates the ex-
pected error of a learning algorithm by running a train-
ing and testing procedure repeatedly on different par-
titions of the data. In the most common setting, data
items are assigned to a test partition uniformly at ran-
dom. This scheme is appropriate when the data are in-
dependent and identically distributed, but in modern
applications this iid assumption often does not hold.

One common situation is when the data arise from
multiple sources, each of which has a characteristic
generating process. For example, in document classifi-
cation, text that is produced by different authors, dif-
ferent organisations or of different genres will have dif-

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

ferent characteristics that affect classification (Blitzer
et al., 2007; Craven et al., 1998). As another exam-
ple, in biomedical data, such as EEG data (Mitchell
et al., 2004), data items are associated with particular
subjects, with large variation across subjects.

For data of this nature, a common procedure is to ar-
range the cross-validation procedure by source, rather
than assigning the data points to test blocks randomly.
The idea behind this procedure is to estimate the per-
formance of the learning algorithm when it is faced
with data that arise from a new source that has not
occurred in the training data. We call this procedure
multiple-source cross-validation. Although it is com-
monly used in applications, we are unaware of theo-
retical analysis of this cross-validation procedure.

This paper focuses on the estimate of the predic-
tion error that arises from the multiple-source cross-
validation procedure. We show that this procedure
provides an unbiased estimate of the performance of
the learning algorithm on a new source that was un-
seen in the training data, which is in contrast to the
standard cross-validation procedure. We also analyse
the variance of the estimate of the prediction error,
inspired by the work of Bengio & Grandvalet (2003).
Estimating the variance enables the construction of ap-
proximate confidence intervals on the prediction error,
and hypothesis tests to compare learning algorithms.

We find that estimators of the variance based on the
standard cross-validation setting (Grandvalet & Ben-
gio, 2006) perform extremely poorly in the multiple-
source setting, in some cases, even failing to be con-
sistent if allowed infinite data. Instead, we propose a
new family of estimators of the variance based on a
simple characterisation of the space of possible biases
that can be achieved by a class of reasonable estima-
tors. This viewpoint yields a new estimator not only
for the variance of the multiple-source cross-validation
but for that of standard cross-validation as well.

On a real-world text data set that is commonly used for
studies in domain adaptation (Blitzer et al., 2007), we
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demonstrate that the new estimators are much more
accurate than previous estimators.

2. Background

Cross-validation (CV) is a common means of assess-
ing the performance of learning algorithms (Stone,
1974). Given a loss function L(y, ŷ) and a learn-
ing algorithm A that maps a data set D to a pre-
dictor AD : x 7→ y, CV can be interpreted as a
procedure to estimate the expected prediction error
µ = EPE(A) = E[L(AD(x), y)]. The expectation is
taken over training sets D and test instances (x, y).

In this paper we focus on k-fold CV. We introduce
some notation to compactly describe the procedure.
Denote the training set by D = {(xi, yi)}Ni=1 and par-
tition the data as D = D1∪. . .∪DK with |Dk| = M for
all k. This means that N = KM . Let HO(A,D1, D2)
denote the average loss incurred when training on set
D1, and testing on set D2.

In k-fold cross-validation, we first compute the average
loss, HO(A,D\Dk, Dk), when trainingA onD\Dk and
testing on Dk, for each k ∈ {1, . . . ,K}. We average
these to get the final error estimate

µ̂ = CV(A,D1:K) =
1
K

K∑
k=1

HO(A,D\Dk, Dk). (1)

If (D1, . . . , DK) is a random partition of D, we will
refer to this procedure as random cross-validation
(CVR) to differentiate it from the multiple-source
cross-validation (CVS) that is the principal focus of
this paper.

Notice that every instance in D is a test instance ex-
actly once. For (xm, ym) ∈ Dk, denote this test er-
ror by the random variable ekm = L(ym, AD\Dk(xm)).
Using this notation, µ̂ = 1

KM

∑
k

∑
m ekm, so the CV

estimate is a mean of correlated random variables. For
CVR, the ekm’s have a special exchangeability struc-
ture: For each k, the sequence ek = (ek1, . . . , ekM )
is exchangeable, and the sequence of vectors e =
(e1, . . . , eK) is also exchangeable.

Our goal will be to estimate the variance θCVR =
V[µ̂CVR] of this and related CV estimators. If the ex-
amples in D are iid, Bengio & Grandvalet (2003) show
that the variance θCVR can be decomposed into a sum
of three terms. The exchangeability structure of the
ekm implies that there are only three distinct entries
in their covariance matrix: σ2, ω and γ, where

V [eki] = σ
2
, ∀i ∈ {1, . . . ,M}, ∀k ∈ {1, . . . , K},

Cov [eki, ekj ] = ω, ∀i, j ∈ {1, . . . ,M}, i 6= j, ∀k ∈ {1, . . . , K},
Cov [eki, e`j ] = γ, ∀i, j ∈ {1, . . . ,M}, ∀k, ` ∈ {1, . . . , K}, k 6= `.

Applying the formula for the variance of the sum of
correlated variables yields

θCVR = V[µ̂CVR] =
1

KM
σ2 +

M − 1
KM

ω+
K − 1
K

γ. (2)

This decomposition can be used to show that an unbi-
ased estimator of θCVR does not exist. The reasoning
behind this is the following. Because θCVR has only
second order terms in eki’s, so would an unbiased es-
timator. Thus, if there existed such an estimator, it
would be of the form θ̂ =

∑
k,`

∑
ij wk`ekie`j . Coeffi-

cients wk` would be found by equating coefficients of
σ2, ω and γ in E

[
θ̂
]

and in θCVR. Unfortunately, the
resulting system of equations has no solution, unless
some assumptions about σ2, ω or γ are made. In later
work, Grandvalet & Bengio (2006) suggested several
biased estimators of θCVR based on this variance de-
composition and simplifying assumptions on σ2, ω and
γ. These are described in Table 2.

3. Multiple-source cross-validation

In many practical problems, the data arise from a num-
ber of different sources that have different generating
processes. Examples of sources include different gen-
res in document classification, or different patients in a
biomedical domain. In these cases, often the primary
interest is in the performance of a classifier on a new
source, rather than over only the sources in the train-
ing data. This is essentially the same setting used in
domain adaptation and transfer learning, except that
we are interested in estimating the error of a predic-
tion procedure rather than in developing the prediction
procedure itself.

This situation can be modelled by a simple hierarchi-
cal generative process. We assume that each source
k ∈ {1, . . . ,K} has a set of parameters βk that de-
fine its generative process and that the parameters
β1, . . . , βK for each source are iid according to an un-
known distribution. We assume that the source of each
datum in the training set is known, i.e., each training
example is of the form (ym, xm, km), where km is the
index of the source of data item m. The data are then
modelled as arising from a distribution p(ym, xm|βkm)
that is different for each source.

The goal of cross-validation in this setting is to esti-
mate the out-of-source error, i.e., the error on data
that arises from a new source that does not occur in
the training data. This error is

OSE = E[L(AD(x), y)], (3)

where the expectation is taken with respect to training
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sets D and testing examples (y, x) that are drawn from
a new source, that is, p(y, x) =

∫
p(y, x|β)p(β)dβ.

In the multiple-source setting, it is intuitively obvi-
ous that the standard cross-validation estimator of (1)
is inappropriate. (We shall make this intuition pre-
cise in the next section.) Instead it is common prac-
tice to modify the CV procedure so that no source is
split across test blocks, a procedure that we will call
multiple-source cross-validation. Let Sk denote the set
of all training points that were sampled from source
k. Multiple-source cross-validation works exactly as
standard CV, except that we partition the data as
D = S1 ∪ . . . ∪ SK instead of assigning the training
instances to blocks randomly. The resulting estimate
of the error, which we denote by CVS, is

µ̂CVS = CVS(A,S1:K) =
1
K

K∑
k=1

HO(A,D\Sk, Sk).

The idea behind this procedure is that it accounts for
the fact that we expect to be surprised by the new
source in the test data, by using the information in the
training data to simulate the effect of predicting on an
unseen source. Although this estimator is commonly
used in practice, we are unaware of previous work con-
cerning its asymptotic or finite sample behaviour.

4. Analysis of multiple-source
cross-validation

We give the mean (Section 4.1) and variance (Sec-
tion 4.2) of the CVS estimator. The variance has an
analogous decomposition to the CVR estimator, but
the individual terms in the CVS variance behave dif-
ferently from those in CVR, in a way that has a large
impact on effective estimators of the variance. Finally,
we present novel estimators of the variance of the CVS
error estimate (Section 4.2).

4.1. Mean of the error estimate

First, we consider the expected value of both the CVS
and the CVR error estimates, in the case where the
data was in fact generated from the multiple-source
process described in the previous section. The idea is
to make clear what µ̂CVS is estimating, and to provide
a more careful justification for the common use of µ̂CVS

on multiple-source data.

Let D = S1 ∪ . . . ∪ SK . Then it is easy to show using
the exchangeability of S1, . . . , SK that the expected
value of the estimate µ̂CVS is

E [µ̂CVS] = E(S1:K)

[
HO(A,S1:(K−1), SK)

]
= E(S1:(K−1),X,Y )

[
L(AS1:(K−1)(X), Y )

]
, (4)

Figure 1. Diagram of the covariance matrix of the error
variables for CVS. Blocks of the same colour represent
blocks of variables with identical covariance.

where this notation indicates that the expectation is
taken over S1:(K−1), X and Y . This is the expected
error when the algorithm A is trained with data com-
ing from K − 1 sources and the test point is going to
come from a newly sampled source. This is the out-of-
source error (3), but on a slightly smaller training set
than D.

On the other hand, consider the CVR estimate on the
same data set D. Let D1 ∪ . . .∪DK = D be a random
partition of D with |Dk| = M for all k. The same
symmetry argument which was used in (4) yields

E [µ̂CVR] = E(D1:K)

[
HO(A,D1:(K−1), DK)

]
= E(D1:(K−1),X,Y )

[
L(AD1:(K−1)(X), Y )

]
, (5)

which is formally similar to the above, but has the
crucial difference that D1:(K−1), X, Y have a different
joint distribution. Here X and Y are drawn from
the same family of K sources as the training data
D1:(K−1). So E [µ̂CVR] is the expected error of an al-
gorithm trained with M(K − 1) data items from K
sources, when the test point arises from one of the
training sources.

Neither (4) or (5) is exactly the same as the out-of-
sample error (3) that we want to estimate. Looking at
the above, we see that µ̂CVS is biased for (3) because
µ̂CVS uses slightly fewer training sources than OSE.
On the other hand, µ̂CVR is biased for OSE because
the training sets are slightly smaller and also because
in µ̂CVR the training and test data are drawn from
the same set of sources. However, if it is important
to have a conservative estimate of the error, µ̂CVR has
the advantage that its bias will tend to be negative,
based on the expected effect of a smaller training set.
(We verify this intuition experimentally in Section 6.)

4.2. Variance of the error estimate

Now we consider the variance of µ̂CVS. The key dif-
ference between this case and the CVR case is that
error variables eki and e`j are no longer identically
distributed if k 6= `, as the corresponding data points
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arise from different sources. There is still a block struc-
ture to the covariance matrix of e, but it is more com-
plex. Namely, the error variables have identical co-
variance structure within each source but not across
sources. More formally,

V [eki] = σ2
k, ∀i ∈ {1, . . . ,M},

Cov [eki, ekj ] = ωk, ∀i, j ∈ {1, . . . ,M}, i 6= j,

Cov [eki, e`j ] = γk`, ∀i, j ∈ {1, . . . ,M}, k 6= `.

(6)

This covariance structure follows from the generating
process described in Section 3, and is depicted graphi-
cally in Figure 1. The means of the error variables have
an analogous structure, that is, E [eki] = E [ekj ] := µk,
which follows because the data points within each
source are exchangeable.

This allows us to obtain a decomposition of the vari-
ance θCVS = V[µ̂CVS] of the CVS error estimate. This
decomposition is

θCVS =
1

K2M

∑
k

σ2
k+

M − 1
K2M

∑
k

ωk+
1
K2

∑
k 6=l

γkl, (7)

which again follows because θCVS is the variance of a
sum of correlated random variables. Notice the differ-
ence to decomposition of θCVR in (2).

In the rest of this section we consider various estimates
of θCVS. As θCVS depends quadratically on the vari-
ables ekl, we will restrict our attention to estimators
of the form θ̂ =

∑
k,`

∑
i,j wk`ekie`j . That is, the

estimator is a quadratic function of the variables e,
and as the error variables ek within a single source
k are exchangeable, we require such variables to be
weighted equally. We refer to an estimator of this form
as quadratic.

Every quadratic estimator can be written as a function
of the empirical second moments of the error variables.
If θ̂ is quadratic,

θ̂ =
∑
k

aks
σ2

k +
∑
k

bks
ω
k +

∑
k 6=l

ckls
γ
kl,

where the sσ
2

k , sωk and sγkl, are empirical moments

sσ
2

k =
1
M

∑
i

e2ki, s
ω
k =

1
M(M − 1)

∑
i 6=j

ekiekj ,

sγkl =
1
M2

∑
i,j

ekielj .

4.2.1. No Unbiased Estimator

Using the decomposition (7), we can now follow the
same reasoning as Bengio & Grandvalet (2003) to show

that there is no unbiased estimator of θCVS. First, be-
cause θCVS = 1

(KM)2

∑
k,`

∑
i,j Cov [ekie`j ], an unbi-

ased estimator must also be quadratic. The expecta-
tion of a quadratic estimator has the form

E[θ̂] =
X
k

ak(σ2
k+µ2

k)+
X
k

bk(ωk+µ2
k)+

X
k 6=l

ckl(γkl+µkµl).

(8)

To get E[θ̂] = θCVS, we need to match the coefficients
in the equations (7) and (8), including the coefficients
of the µ2

k and µkµ` terms that need to equal zero, since
there clearly exist distributions such that µkµl > 0.
This yields the system of equations

ak =
1

K2M
, bk =

M − 1

K2M
, ak + bk = 0, ckl =

1

K2
, ckl = 0.

(9)
Clearly, these equations are unsatisfiable, so no unbi-
ased estimator of θCVS exists.

4.2.2. Naive Estimators

We can derive new estimators of the variance θCVS by
following the reasoning used in the standard CV set-
ting by Grandvalet & Bengio (2006). Unfortunately,
as we will see, the resulting estimators perform poorly.

The idea is rather than attempting to define an estima-
tor that is unbiased for all data distributions, instead
define an estimator that is unbiased for a restricted
class of data distributions, defined by assumptions on
µk, σ2

k, ωk and γkl.

First, we restrict our attention to cases in which the
mean prediction error across sources is the same, i.e.,
µk = µl := µ. A quadratic estimator which is unbi-
ased for this class of data distributions must satisfy
the equations

ak =
1

K2M
, bk =

M − 1
K2M

, ckl =
1
K2

,∑
k

ak +
∑
k

bk +
∑
k 6=l

ckl = 0.
(10)

These equations also have no solution. However, if we
further assume (following the reasoning of Grandvalet
& Bengio (2006), even though it is unlikely to be a
good assumption) that one of the sources k̃ has ωk̃ =
0, then we no longer have to match the value of the
coefficient bk̃, removing one of the constraints. Solving
the remaining equations yields

ak =
1

K2M
, ckl =

1
K2

,

bk̃ =
M − 1
K2M

− 1, bk =
M − 1
K2M

,∀k 6= k̃.

The corresponding estimator and its bias are shown in
the first line of Table 1. Similarly, instead of assuming
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ωk̃ = 0, we could restrict ourselves to have a single
γk̃l̃, or to have all of the ωk’s or γkl’s equal zero. This
yields the remaining estimators in Table 1.

These estimators are appealingly simple, but, unfor-
tunately, they have serious problems. The main prob-
lem is that their biases depend on the mean error µk
of the sources. This is often an order of magnitude
larger than the true variance θCVS that we are trying
to predict. In particular, θ̂γ , which is an analog of θ̂3,
the preferred estimator in the original CVR setting
in the work of Grandvalet & Bengio (2006), is poor
in this regard. Unlike the true variance, it does not
even converge to 0 as N → ∞, because the second
term 1

K2

(∑K
k=1 µ

2
k −

P
k 6=l µkµl
(K−1)

)
in its bias does not

converge to 0 in general.

The end result is that we can attempt to follow a simi-
lar strategy as in standard cross-validation to estimate
the error variance, but doing so leads to extremely
poor estimators. Instead, we will introduce new esti-
mators that are specific to the multiple-source cross-
validation setting.

4.2.3. Design of new estimators

Instead of the naive estimators from the previous sec-
tion, we can derive better estimators by taking a differ-
ent perspective. Instead of trying to design estimators
that are unbiased for a restrictive set of scenarios, we
consider the asymptotic behaviour of the bias decom-
position of the quadratic variance estimator.

In the last section we saw that every quadratic esti-
mator θ̂ has a bias of the form

E[θ̂ − θCVS] =
X
k

„
ak −

1

K2M

«
σ

2
k +

X
k

„
bk −

M − 1

K2M

«
ωk+

X
k 6=l

„
ckl −

1

K2

«
γkl +

X
k

(ak + bk)µ
2
k +

X
k 6=l

cklµkµl.

Choosing the coefficients ak, bk, ckl uniquely deter-
mines an estimator θ̂. Let us consider the relative
magnitude of the terms in the bias decomposition. The
error means µ2

k are usually a few of orders of magni-
tude larger than 1

K2M σ2
k, M−1

K2M ωk and 1
K2 γkl as long

as M is not too small. (We check this intuition exper-
imentally in Section 6.) Therefore it seems sensible to
require that all of the µk terms vanish. This implies
that ak + bk = 0 and ckl = 0 for all k, l.

Next, usually σ2
k is larger than ωk or γkl, which sug-

gests choosing ak = (K2M)−1 so that the σ2
k term

vanishes as well. This yields the estimator

θ̂A =
1

K2M

(∑
k

sσ
2

k −
∑
k

sωk

)
. (11)

The bias of this estimator is

E[θ̂A − θCVS] = − 1

K2

X
k

ωk − 1

K2

X
k 6=l

γkl.

However, we can do better than this. Instead of requir-
ing that the σ2

k term vanish, which is a very stringent
requirement, we could instead require its coefficient to
be (KN)−1 = (K2M)−1, so that it becomes negligi-
ble for large N . This amounts to the requirment that
ak = 2(K2M)−1, which results in the estimator

θ̂B =
2

K2M

(∑
k

sσ
2

k −
∑
k

sωk

)
. (12)

This estimator is especially appealing because of the
form of its bias, which is

E[θ̂B − θCVS] =
1

K2M

0@X
k

σ
2
k − (M + 1)

X
k

ωk −M
X
k 6=l

γkl

1A .

Now σ2
k’s and ωk’s are positive, and in practice γkl’s

are almost always positive if M is not small. So what is
appealing about this estimator is that the three terms
have differing signs. In many situations, the difference
between the first term and the second two will be of
smaller magnitude than either of the three terms alone,
causing θ̂B to be significantly less biased than the es-
timators in Table 1. We show this experimentally in
Section 6.

5. New estimators of θ for CVR

It is actually possible to apply the same viewpoint from
the previous section in order to provide new estima-
tors for the variance of the standard cross-validation
procedure. Previously known estimators of the vari-
ance θCVR (Table 2) were designed to be unbiased for
a subclass of generating processes. By considering the
bias decomposition directly, as in the previous section,
we can design better estimators.

First, we give a proposition that describes the space
of possible biases for quadratic estimators of θCVR.

Proposition 1. Let θ̂ =
∑
k,`

∑
ij wk`ekie`j be a

quadratic estimator. Then the bias E
[
θ̂ − θCVR

]
has

the form α1σ
2 +α2ω+α3γ+α4µ. Also α1 +α2 +α3−

α4 = −1. Conversely, for every α1, α2, α3, α4 such
that α1 + α2 + α3 − α4 = −1, there exists a quadratic
estimator θ̂ with bias

E
[
θ̂ − θCVR

]
= α1σ

2 + α2ω + α3γ + α4µ
2.

Proof. For a quadratic estimator θ̂, let a = M
∑
k wkk,

let b = M(M − 1)
∑
k wkk and c = M2

∑
k

∑
l 6=k wkl.
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Table 1. Naive estimators of θCVS coming from solutions of simplified system of equations (10).
Unbiased if Estimator Bias

ωk̃ = 0 θ̂ω
k̃

= 1
K2M

P
k s

σ2

k + M−1
K2M

P
k s

ω
k + 1

K2

P
k 6=l s

γ
kl − sωk̃ −ωk̃ + 1

K2

P
k,l µkµl − µ2

k̃

γk̃l̃ = 0 θ̂γ
k̃,l̃

= 1
K2M

P
k s

σ2

k + M−1
K2M

P
k s

ω
k + 1

K2

P
k 6=l s

γ
kl −

„
s
γ

k̃l̃
+s
γ

l̃k̃
2

«
−γk̃l̃ + 1

K2

P
k,l µkµl − µl̃µk̃

∀k ωk = 0 θ̂ω = 1
K2M

P
k s

σ2

k + M−1−KM
K2M

P
k s

ω
k + 1

K2

P
k 6=l s

γ
kl −

P
k ωk
K

+ 1−K
K2

“P
k µ

2
k −

P
k 6=l µkµl
(K−1)

”
∀k,l γkl = 0 θ̂γ = 1

K2M

P
k s

σ2

k + M−1
K2M

P
k s

ω
k − 1

K2(K−1)

P
k 6=l s

γ
kl −

P
k 6=l γkl

K(K−1)
+ 1

K2

“P
k µ

2
k −

P
k 6=l µkµl
(K−1)

”

Table 2. Estimators of θ for CVR suggested by Grandvalet & Bengio (2006).
Unbiased if Estimator Bias

µ = 0 θ̂1 = 1
N
s1 + M−1

N
s2 + N−M

N
s3 µ2

ω = 0 θ̂2 = 1
N
s1 − N+1−M

N
s2 + N−M

N
s3 −ω

γ = 0 θ̂3 = 1
N
s1 + M−1

N
s2 − M

N
s3 −γ

γ = − M
N−M ω θ̂4 = 1

N
s1 − 1

N
s2 −M

N
ω − N−M

N
γ

Taking expectations, we have

E
[
θ̂
]

= aσ2 + bω + cγ + (a+ b+ c)µ2.

Therefore the bias has the form

E
h
θ̂ − θCVR

i
=

„
a− 1

KM

«
σ2 +

„
b− M − 1

KM

«
ω+„

c− K − 1

K

«
γ + (a+ b+ c)µ2.

So the bias has the required form, with α1 +α2 +α3−
α4 = −1. Conversely, let α1+α2+α3−α4 = −1. Then
we can obtain an estimator θ̂ by setting a = α1 + 1

KM ,
b = α2 + M−1

KM , c = α3 + K−1
K , and d = a+b+c+1.

All of the existing estimators of θCVR (Table 2) have
similar biases in the sense that the coefficients α1, α2,
and α3 are non-positive. But from the previous propo-
sition, we know that there is a much larger set of co-
efficients available.

To design a new estimator, we observe that both in
the results of Grandvalet & Bengio (2006) and our own
results in Section 6, typically ω > γ and ω and γ are of
similar magnitude. Therefore an estimator with bias
of ω − 2γ will have smaller bias than the estimators
from Table 2. Applying the previous result, this bias
is achieved by the estimator

θ̂5 =
1
N
s1 +

N +M − 1
N

s2 − N +M

N
s3,

where s1, s2 and s3 are the empirical moments

s1 =
1

K

X
k

sσ
2

k , s2 =
1

K

X
k

sωk , s3 =
1

K(K − 1)

X
k 6=l

sγkl.

In the next section we show that its performance is
superior in practice to the best previous estimator θ̂3
given by Grandvalet & Bengio (2006).

6. Experiments

We evaluate the usefulness of µ̂CVR and µ̂CVS as es-
timators of out-of-source error and the estimators of
θCVR and θCVS on a data set of product reviews from
Amazon (Blitzer et al., 2007), which is frequently used
as a benchmark data set in domain adaptation. The
data contains reviews of products from 25 diverse do-
mains corresponding to high-level categories on Ama-
zon.com. The goal is to classify whether a review is
positive or negative based on the review text. We take
each product domain as being a separate source.

We experiment with the version of the data set which
contains ten domains, each with 1000 positive and
1000 negative examples. We will use CV to estimate
the prediction error of a simple naive Bayes classifier.
(We have replicated these results with an SVM with a
linear kernel.)

6.1. Bias and variance

First we measure the bias of µ̂CVR and µ̂CVS and com-
pare them to the out-of-source error. To estimate this,
we average over the set of training domains, the set of
training instances, the test domain and the test in-
stances. To get this, we first sample without replace-
ment a given number of domains, keeping all of them
but one as training domains and using the remain-
ing one as a test domain. Given this, we sample 100
pairs consisting of training and test data sets, sampling
data points from empirical distribution of the respec-
tive domains. Having these, we run CVR and CVS on
the training domains, comparing the cross-validation
estimate to the prediction on the out-of-source test
set. Figure 2 shows this comparison as a function of
the number of training sources K (left panel) and the
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Figure 2. Values of µ̂CVR and µ̂CVS averaged over draws of training
and test domains, compared to the true out-of-source error. Both
plots were generated drawing domains 200 times.
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Figure 3. Standard deviation of µ̂CVR and
µ̂CVS averaged draws of training and test
domains. Experiment was done drawing
domains 200 times.
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Figure 4. Decomposition of θCVR (right panel) and θCVS (left panel).
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Figure 6. Comparison of estimators of θCVR (right panel) and θCVS (left panel).
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number of points M per source (right panel). It can be
clearly seen that CVS yields a better estimate of the
out-of-source error than CVR. It is worth noting what
happens when the number of training domains or the
number of training data items gets larger. While CVS
converges to the true out-of-source error, CVR con-
verges to a different value. This confirms the analysis
from Section 4.1. From these results, we can see that
CVR yields an optimistic estimate of out-of-source er-
ror, even though the training set in each iteration of
CV is smaller than the full training set. This is in con-
trast to CVS, which yields a more desirable pessimistic
estimate.

Figure 3 shows the standard deviation of µ̂CVS and
µ̂CVR averaged over the choice of training domains.
To get this estimate, we have performed a similar pro-
cedure to Figure 2, i.e., for each draw of training do-
mains, we sample 100 data sets, sampling data points
from expirical distribution of the respective domains.
Although the CVS estimate has higher variance, the
variances are of the same order of magnitude and both
tend to 0 for large data sets.

6.2. Variance decompositions and estimators
of variance

In this section, we evaluate our new estimators of the
variances θCVR and θCVS. To obtain these results, we
used all domains as training domains. Estimating both
θCVR and θCVS unbiasedly requires more than one inde-
pendently sampled data set. To get them, we sample
1000 data sets, sampling from empirical distributions
of each domain.

In the first experiment we estimated components of
the decomposition of θCVR and θCVS (Figure 4). The
quantities 1

KM σ2, M−1
KM ω, K−1

K γ and corresponding to
them 1

K2M

∑
k σ

2
k, M−1

K2M

∑
k ωk, 1

K2

∑
k 6=l γkl have dif-

ferent magnitudes. Notice that M−1
KM ω is much larger

than M−1
K2M

∑
k ωk. It is not a surprise that CVS yields

a strong positive correlation between errors made on
points belonging to the same test block, which is not
observed in CVR, where the test blocks are chosen
randomly.

Secondly, we looked at V[e] to see how much ωk’s and
γkl’s vary (Figure 5). It can be seen that variation
within γkl’s diminishes when M gets larger but varia-
tion within ωk’s does not change much.

Finally, we have tested estimators of θCVR and θCVS,
which we have suggested in the earlier sections. The
results are in Figure 6. For CVS, we compare θ̂γ , θ̂A
and θ̂B . As expected, θ̂γ does not converge to 0 and
grossly overestimates θCVS for large values of M . The

new estimator θ̂A is closer to θCVS than θ̂γ for large
values of M but its bias is consistently optimistic. On
the other hand, for small M , θ̂B is not more optimistic
than θ̂γ and for large M , while θ̂γ becomes very pes-
simistic, θ̂B has a negligible bias. Similarly, for the
standard CVR setting, our new estimator θ̂5 has lower
bias than the previous estimators suggested by Grand-
valet & Bengio (2006), being almost unbiased even for
small M .

7. Related work

Various different versions of cross-validation have been
analysed previously (Bengio & Grandvalet, 2003; Ar-
lot & Celisse, 2010; Nadeau & Bengio, 2003; Marka-
tou et al., 2005), but to our knowledge multiple-source
cross-validation has not been previously analysed.

The idea of learning from a number of sources dates
back to Caruana (1997) and Thrun (1996). A related
issue in the context of covariate shift was suggested
by Sugiyama et al. (2007), however, the resulting im-
portance weights are difficult to estimate in practice
(but see Gretton et al. (2009) for some work in this
direction).

Rakotomalala et al. (2006) investigate the multiple-
source cross-validation procedure empirically, but they
do not perform theoretical analysis or present any es-
timators of θCVS. Work in domain adaptation also has
considered the problem of bounding the prediction er-
ror when the training and test distribution have a dif-
ferent source (Ben-David et al., 2010). Unfortunately,
the resulting bounds are too loose to be used for con-
fidence intervals.

8. Conclusions

We have considered a cross-validation procedure for
the multiple-source setting. We show that the bias
of this procedure is better suited to this setting. We
have presented several new estimates of the variance
of the error estimate, both for the multiple-source
cross-validation procedure and for the standard cross-
validations setting, which perform well empirically.
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3.2 Comments on the paper

In the paper, there were no assumptions on the learning algorithm, the loss and

the data, so our results are as general as possible. There are a number of realistic

assumptions that can be made. For example, we could assume that the loss is

between 0 and 1. Making such assumptions could allow to extend this work by

investigating what functions of hyperparameters of the CV procedure (the size of

the training data, the number of random partitions) the elements of the variance

decomposition are.

There are also a few general conjectures we have made on the elements of

the variance decomposition, which are likely to be true but were not yet proven.

If they are indeed provably true, they would be useful when deciding on which

estimator to use depending on the context. The most interesting for the standard

k-fold cross-validation are the following two (cf. Section 2 in the paper for defini-

tion of ω and γ), which characterise the behaviour of the elements of the variance

decomposition as the function of the number of data points in the training set.

- Conjecture 1. Denote ω for a training data set of size n by ω(n). The

value of ω is strictly monotonically decreasing with n, i.e. for every n,

ω(n) > ω(n+ 1).

- Conjecture 2. Denote γ for a training data set of size n by γ(n). The

absolute value of γ is strictly monotonically decreasing with n, i.e. for every

n, |γ(n)| > |γ(n+ 1)|

Another possibility to extend this line of research would be to directly inves-

tigate estimators of the elements of the variance decomposition. For example it

is possible to show that variance of γ̂
(
n
2

)
= 1

R

∑R
r=1 γ̂

r
(
n
2

)
, a trivial unbiased

estimator of γ
(
n
2

)
1, is strictly decreasing with the number of times we resam-

ple the training set, R. The proof is as follows. Denote Var
[
γ̂i
(
n
2

)]
by α and

Cov
[
γ̂i
(
n
2

)
, γ̂j
(
n
2

)]
for i 6= j by β. It is easy to verify that Var

[
γ̂
(

n
2

)]
= β+ α−β

R
.

From the Cauchy-Schwartz inequality it follows that α ≥ β, hence Var
[
γ̂
(

n
2

)]
is

decreasing in R.

1The estimator of γ
(
n
2

)
is defined as γ̂

(
n
2

)
= 1

n2( 1
4− 1

K )
∑K
k=1

∑K
l=1,l 6=k

∑
i∈Tk

∑
j∈Tl

γ̂ij ,

where K is the number of partitions of the data, Tk is the kth partition of the data and

γ̂ij =
∑2
c=1

(
(eci)(ecj)−

(
1
2

∑2
c=1 eci

)(
1
2

∑2
c=1 ecj

))
. The index c indicates which half of the

data set is used. Analogous estimators can be created dividing the data set into more than two

independent subsets.
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Although the above statements are for the standard k-fold cross-validation,

they can be easily translated to multiple-cross validation too.

Finally, studying properties of cross-validation for models whose predictions

have an analytic form, such as Gaussian Processes [Rasmussen and Williams,

2005], would be interesting.



Chapter 4

Scheduled denoising autoencoders

4.1 Introduction to the paper

In this work we introduce a new procedure for training a denoising autoencoder,

which is a commonly used model for unsupervised learning. Our method of

training allows to learn a more diverse set of features than the standard training

procedure. We call this model a scheduled denoising autoencoder (ScheDA),

because it is using a sequence of decreasing levels of corruption. The features

learnt by this model capture patterns of multiple scales, which improves accuracy

when using these features in a supervised learning task. To understand this

result, we first show that forming a representation by concatenating diverse sets

of features is better than concatenating similar sets of features, even if learnt

independently. Secondly, we verify that the representation we learnt is, indeed,

more diverse by comparing the features in it to the features learnt with various

levels of noise and find that elements of the representation learnt by ScheDA

resemble elements of representations learnt with a broad range of noise levels.

We also draw a connection between annealing the level of noise in the denoising

autoencoder and curriculum learning. This gives us another perspective on our

results and also can be generalised to a broad class of unsupervised learning neural

network models.
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ABSTRACT

We present a representation learning method that learns features at multiple dif-
ferent levels of scale. Working within the unsupervised framework of denoising
autoencoders, we observe that when the input is heavily corrupted during train-
ing, the network tends to learn coarse-grained features, whereas when the input
is only slightly corrupted, the network tends to learn fine-grained features. This
motivates the scheduled denoising autoencoder, which starts with a high level of
noise that lowers as training progresses. We find that the resulting representation
yields a significant boost on a later supervised task compared to the original in-
put, or to a standard denoising autoencoder trained at a single noise level. After
supervised fine-tuning our best model achieves the lowest ever reported error on
the CIFAR-10 data set among permutation-invariant methods.

1 INTRODUCTION

In most applications of representation learning, we wish to learn features at different levels of scale.
For example, in image data, some edges will span only a few pixels, whereas others, such as a
boundary between foreground and background, will span a large portion of the image. Similarly,
in text data, some features in the representation might model specialized topics that use only a few
words. For example a topic about electronics would often use words such as “big”, “screen” and
“tv”. Other features model more general topics that use many different words. Good representations
should model both of these phenomena, containing features at different levels of granularity.

Denoising autoencoders (Vincent et al., 2008; 2010; Glorot et al., 2011a) provide a particularly
natural framework in which to formalise this intuition. In a denoising autoencoder, the network is
trained so as to be able to reconstruct each data point from a corrupted version. The noise process
used to perform the corruption is chosen by the modeller, and is an important tuning parameter that
affects the final representation. On a digit recognition task, Vincent et al. (2010) noticed that using a
low level of noise leads to learning blob detectors, while increasing it results in obtaining detectors
of strokes or parts of digits. They also recognise that either too low or too high level of noise harms
the representation learnt. The relationship between the level of noise and spatial extent of the filters
was also noticed by Karklin and Simoncelli (2011) for a different feature learning model. Despite
impressive practical results with denoising autoencoders, e.g. Glorot et al. (2011b), Mesnil et al.
(2012), the choice of noise distribution is a tuning parameter whose effects are not fully understood.

In this paper, we introduce scheduled denoising autoencoders (ScheDA), which are based on the
intuition that by training the same network at multiple noise levels, we can encourage it to learn
features at different scales. The network is trained with a schedule of gradually decreasing noise
levels. At the initial, high noise levels, the training data is highly corrupted, which forces the network
to learn more global, coarse-grained features of the data. At low noise levels, the network is able
to learn features for reconstructing finer details of the training data. At the end of the schedule, the
network will include a combination of both coarse-grained and fine-grained features.

1
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This idea is reminiscent of continuation methods, which have also been applied to neural networks
(Bengio et al., 2009). The motivation of this work is significantly different though. Our goal is to
encourage the network to learn a more diverse set of features, some which are similar to features
learnt at the initial noise level, and others which are similar to features learnt at the final noise level.
In Section 4.1.3, we verify quantitatively that this happens.

Experimentally, we find on both image and text data that scheduled denoising autoencoders learn
better representations than standard denoising autoencoders, as measured by the features’ perfor-
mance on a supervised task. On both classification tasks, the representation from ScheDA yields
lower test error than that from a denoising autoencoder trained at the best single noise level. Af-
ter supervised fine-tuning our best ScheDA model achieves the lowest ever reported error on the
CIFAR-10 data set among permutation-invariant methods.

2 BACKGROUND

The core idea of learning a representation by learning to reconstruct artificially corrupted training
data dates back at least to the work of Seung (1998), who suggested using a recurrent neural net-
work for this purpose. Using unsupervised layer-wise learning of representations for classification
purposes appeared later in the work of Bengio et al. (2007) and Hinton et al. (2006).

The denoising autoencoder (DA) (Vincent et al., 2008) is based on the same intuition as the work
of Seung (1998) that that a good representation should contain enough information to reconstruct
corrupted versions of an original input. Let x ∈ Rd be the input to the network. The output of the
network is a hidden representation y ∈ Rd′ , which is simply computed as fθ(x) = s(Wx + b),
where the matrix W ∈ Rd′×d and the vector b ∈ Rd′ are the parameters of the network, and s is
a typically nonlinear transfer function, such as a sigmoid. We write θ = (W,b). The function f
is called an encoder because it maps the input to a hidden representation. In an autoencoder, we
have also a decoder that “reconstructs” the input vector from the hidden representation, which is
used when training the network. The decoder has a similar form to the encoder, namely, gθ′(y) =
t(W′y + b′), except that here W′ ∈ Rd×d′ and b′ ∈ Rd. It can be useful to allow the transfer
function t for the decoder to be different from that for the encoder. Typically, W and W′ are
constrained by W′ = WT by analogy to the interpretation of principal components analysis as a
linear encoder and decoder.

During training, our objective is to learn the encoder parameters W and b. As a byproduct, we
will need to learn the decoder parameters b′ as well. We do this by defining a noise distribution
p(x̃|x, ν). The amount of corruption is controlled by a parameter ν. We train the autoencoder
weights to be able to reconstruct a random input from the training distribution x from its corrupted
version x̃ by running the encoder and the decoder in sequence. Formally, this process is described
by the objective function

θ∗, θ′∗ = arg min
θ,θ′

E(X,X̃)

[
L
(
X, gθ′(fθ(X̃))

)]
, (1)

where L is a loss function over the input space, such as squared error. Typically we minimize this
objective function using stochastic gradient descent with mini-batches, where at each iteration we
sample new values for both the uncorrupted and corrupted inputs.

In the absence of noise, this model is known simply as an autoencoder or autoassociator. A classic
result (Baldi and Hornik, 1989) states that when d′ < d, then under certain conditions, an autoen-
coder learns the same subspace as PCA. If the dimensionality of the hidden representation is too
large, i.e., if d′ > d, then the autoencoder can obtain zero reconstruction error simply by learning
the identity map. In a denoising autoencoder, in contrast, the noise forces the model to learn inter-
esting structure even when there are a large number of hidden units. Indeed, in practical denoising
autoencoders, often the best results are found with overcomplete representations for which d′ > d.

There are several tuning parameters here, including the noise distribution, the transformations s and
t and the loss function L. For the loss function L, for continuous x, squared error can be used. For
binary x or x ∈ [0, 1], as we consider in this paper, it is common to use the cross entropy loss,

L(x, z) = −
D∑
i=1

(xi log zi + (1− xi) log (1− zi)) .

2
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For the transfer functions, common choices include the sigmoid s(v) = 1
1+e−v for both the encoder

and decoder, or to use a rectifier s(v) = max(0, v) in the encoder paired with sigmoid decoder.

One of the most important parameters in a denoising autoencoder is the noise distribution p. For
continuous x, Gaussian noise p(x̃|x, ν) = N(x̃; x, ν) can be used. For binary x or x ∈ [0, 1], it is
most common to use masking noise, that is, for each i ∈ 1, 2, . . . d, we sample x̃i independently as

p(x̃i|xi, ν) =
{

0 with probability ν,
xi otherwise.

(2)

In either case, the level of noise ν affects the degree of corruption of the input. If ν is high, the
inputs are more heavily corrupted during training. The noise level has a significant effect on the
representations learnt. For example, if the input data are images, masking only a few pixels will bias
the process of learning the representation to deal well with local corruptions. On the other hand,
masking very many pixels will push the algorithm to use information from more distant regions.

It is also possible to train multiple layers of representations with denoising autoencoders by training
a denoising autoencoder with data mapped to a representation learnt by another denoising autoen-
coder. This model is known as the stacked denoising autoencoder (Vincent et al., 2008; 2010).

3 SCHEDULED DENOISING AUTOENCODERS

Our goal is to learn a single representation that combines the best aspects of representations learnt at
different levels of noise. The scheduled denoising autoencoder (ScheDA) aims to do this by training
a single DA sequentially using a schedule of noise levels, such that ν0 > · · · > νT ≥ 0. The initial
noise level ν0 is chosen to be a high noise level that corrupts most of the input. The final noise level
νT is chosen to be lower than the optimal noise level for a standard DA, i.e., chosen via a held-out
validation set or by cross-validation. In pseudocode,

while θ not converged do
Take a stochastic gradient step on (1), using noise level ν0.

end while
for t in 1, . . . , T do
νt := νt−1 −∆ν
for K steps do

Take a stochastic gradient step on (1), using noise level νt.
end for

end for

This method is reminiscent of deterministic annealing (Rose, 1998), which has been applied to
clustering problems, in which a sequence of clustering problems are solved at a gradually lowered
noise level. However, the meaning of “noise level” is very different. In deterministic annealing, the
noise is added to the mapping between inputs and cluster labels. This is to encourage data points to
move between cluster centroids early in the optimization process.

ScheDA is also conceptually related to curriculum learning (Bengio et al., 2009) and continuation
methods more generally (Allgower and Georg, 1980). In curriculum learning, the network is trained
on a sequence of learning problems that have the property that the earlier tasks are “easier” than
later tasks. In ScheDA, it is less obvious that the earlier tasks are easier since the lowest achievable
reconstruction error is actually higher at the earlier high noise levels than at the later low noise levels.
We observe this in practice (cf. Figure 1). On the other hand, we found that, for a given learning
rate, the reconstruction error converges to a local minimum faster with large ν’s (cf. the right panel
of Figure 1). Thus, even though the problems that ScheDA starts with are harder in absolute terms,
finding the local minima for these problems is easier. This can be understood given the insight
provided by the work of Vincent (2011), who has shown that, for a DA trained with Gaussian noise
and squared error, minimising reconstruction error is equivalent to matching the score (with respect
to the input) of a nonparametric Parzen density estimator of the data, which depends on the level of
noise. An implication of this viewpoint is that if the density learnt by the Parzen density estimator
is harder to represent, it makes the DA learning problem harder too. Convolving the data with a
high level of noise transforms the data generating distribution into a much smoother one, which is
easier to capture. As the noise level is reduced, the density becomes more multimodal and harder to
represent.

3
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Table 1: Test errors on CIFAR-10 data set. Each ScheDA is characterised by the sequence of noise
levels it was trained with and the number of epochs for which it was trained at each level of noise
after the first noise level switch. Each row shows the best DA and the best ScheDA for a given
number of hidden units, choosing the learning rate, the number of training epochs and the noise
level using the error on the validation set.

hidden units best DA test error best ScheDA test error
1000 0.4 45.34% 0.4→0.3→0.2, K=50 43.01%
2000 0.3 41.95% 0.7→0.65→ . . .→0.2→0.15, K=100 40.1%
5000 0.1 38.64% 0.2→0.15→0.1→0.05, K=50 36.77%
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Figure 1: Experimental results with CIFAR-10 for 2000 hidden units. Test errors (left) and recon-
struction errors on training set (right) as a function of the number of epochs. Dashed lines indicate
a point when the level of noise was changed. Test errors were measured every 100 training epochs
initially (during the first 2000 epochs). After each change of the noise level, test error was measured
after the first, the third, the fifth epoch and then after every ten epochs. Reconstruction errors were
measured after each training epoch for data corrupted with the noise level used for training at that
epoch. For clarity, we do not show the results of DA (0.2), DA (0.4) and DA (0.6), which yield
higher test error than DA (0.3).

4 EXPERIMENTS

We evaluate ScheDA on two different data sets, an image classification data set (CIFAR-10), and a
text classification data set (Amazon product reviews, results in the supplementary material). We use
a procedure similar to one used, for example, by Coates et al. (2011)1. That is, in all experiments,
we first learn the representation in an unsupervised fashion and then use the learnt representation
within a linear classifier as a measure of its quality. In both experiments, in the unsupervised feature
learning stage, we use masking noise as the corruption process, a sigmoid encoder and decoder
and cross entropy loss (Equation 2)2 following Vincent et al. (2008; 2010). All experiments with
learning the representations were implemented using the Theano library (Bergstra et al., 2010). To
do optimisation, we use stochastic gradient descent with mini-batches. For the classification step,
we use L2-regularised logistic regression implemented in LIBLINEAR (Fan et al., 2008), with the
regularisation parameter chosen to minimise the validation error.

4.1 IMAGE RECOGNITION

We use the CIFAR-10 (Krizhevsky, 2009) data set for experiments with vision data. This data set
consists of 60000 colour images spread evenly between ten classes. There are 50000 training and
validation images and 10000 test images. Each image has a size of 32x32 pixels and each pixel
has three colour channels, which are represented with a number in {0, . . . , 255}. We divide the
training and validation set into 45000 training instances and 5000 validation instances. The only
preprocessing step we use is dividing the intensity of every pixel by 255 to get numbers in [0, 1].

1We do not use any form of pooling, keeping our setup invariant to the permutation of the features.
2We also tried a rectified linear encoder combined with sigmoid decoder on the Amazon data set. The

results were very similar, so we do not show them here.
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DA (0.7) ScheDA (0.7→0.6→0.5) ScheDA (0.7→0.6→...→0.3) ScheDA (0.7→0.6→...→0.1)

Figure 2: A sample of filters (rows of the matrix W) learnt from CIFAR-10 with DA (0.7) and
ScheDAs starting with ν0 = 0.7. All sets of filters are similar, but those that were post-trained with
low level of noise are sharper. With schedules that end at a lower level of noise, the filters become
more local but not as much as when only training with a low level of noise (cf. Figure 3).

To get the strongest possible DAs trained with a single noise level, we choose the noise level,
learning rate and number of training epochs in order to minimise classification error on the val-
idation set. We try all combinations of the following values of the parameters: noise level
∈ {0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05}, learning rate ∈ {0.002, 0.01, 0.05}, number of training
epochs ∈ {100, 200, . . . , 2000}. We choose these parameters separately for each size of the hidden
layer ∈ {1000, 2000, 5000}.
To train ScheDA models, we first pick the best DA for each level of noise we consider, optimising
the learning rate and the number of training epochs with respect to the validation error. Starting
from the best DA for given ν0, we continue the training, lowering the level of noise from νt−1 to
νt := νt−1 −∆ν and training the model for K epochs. We repeat this noise reduction T times. In
our experiments we consider ∆ν ∈ {0.05, 0.1} andK ∈ {50, 100}. We use the learning rate of 0.01
for this stage as it turned out to always be optimal or very close to optimal for the standard DA3. We
pick the combination of parameters (ν0,∆ν,K) and the number of noise reduction steps, T , using
the validation error of a classifier after the last training epoch at each level of noise νt. We denote a
DA trained with the level of noise ν by DA (ν) and ScheDA trained with a schedule of noise levels
ν0, ν1, ..., νT by ScheDA (ν0→ν1→...→νT ).

The error obtained by the classifier trained with raw pixel data equals 59.78%. A summary of the
performance of DAs and ScheDAs for each number of hidden units can be found in Table 1. For each
size of the hidden layer we tried, ScheDA easily outperforms DA, with a relative error reduction of
about 5%. Our best model achieves the error of 36.77%. Interestingly, our method is very robust
to the parameters (ν0,∆ν,K) of the schedule. See Section 4.1.1 for more details. Those results
do not use supervised fine-tuning. Supervised fine-tuning of our best model yielded the error of
35.7%, which, to our knowledge, is the lowest ever reported error for permutation invariant CIFAR-
10, outperforming Le et al. (2013) who achieved the error of 36.9% and Memisevic et al. (2014),
who achieved the error of 36.1%. We describe the details of our supervised fine-tuning procedure in
the supplementary material.

Figure 1 shows the test errors and reconstruction errors on the training data as a function of the
training epoch for selected DAs and ScheDAs with 2000 hidden units. It is worth noting that, even
though the schedules exhibiting the best performance go below the optimal ν for DA, training for
many iterations with a level of noise that is too low hurts performance (see the final parts of the
schedules shown in Figure 1). This may be due to the fact that structures learnt at low noise levels
are too local to help generalisation.

The performance of our method does not appear to be solely due to better optimisation of the training
objective. For example, DA (0.1) trained for 3000 epochs has a lower reconstruction error on the
training data than the ScheDA (0.7→0.6→...→0.1) shown in Figure 1, while the test error it yields
is higher by about 5%.

The features learnt with ScheDA are visibly noticeably different from those learnt with any single
level of noise as they contain a mixture of features that could be found for various values of ν.

3Note that tuning this parameter could only help ScheDAs and would not affect the baselines.
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DA (0.1) ScheDA (0.7→0.6→0.5→0.4→0.3→0.2→0.1)

Figure 3: Samples of filters (rows of the matrix W) learnt from CIFAR-10 with a low fixed noise
level (left) and filters learnt with an initially high level of noise and post-trained with a schedule
of lower levels of noise (right). These two sets of filters are visually very different. There are
fewer edge detector filters among these learnt only with a low level of noise and those that are edge
detectors are more local.
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∆ν = 0.1, K = 50
∆ν = 0.1, K = 100
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Figure 4: Comparison of different schedules for ScheDA. For each size of hidden layer, the vertical
line indicates the optimal level of noise for a DA, i.e., the level of noise which allowed to train
representation yielding the lowest error on the validation set, while the horizontal line indicates the
test error obtained with this representation.

Figure 2 and Figure 3 display visualisations of the filters learnt by a DA and ScheDA. It can be
seen in Figure 2 that when training ScheDA the features across the consecutive levels of noise
are similar, which indicates that it is the initial training with a higher level of noise that puts the
optimisation procedure in a basin of attraction of a different local minimum, which would not be
otherwise achievable. This is shown in Figure 3, which visualises features learnt by a DA trained
only with a low noise level, DA (0.1), and those learnt with ScheDA (0.7→0.6→...→0.1). The set of
features learnt by DA (0.1) contains more noisy features and very few edge detectors, which are all
very local. In contrast, features learnt with the schedule contain a more diverse set of edge detectors
which can be learnt with high noise level (Figure 2) as well as some blob detectors which can be
learnt with a low noise level (Figure 3).

4.1.1 ROBUSTNESS TO THE CHOICE OF SCHEDULE

Our method is very robust to the choice of the parameters of the schedule, ν0, ∆ν and K. Figure 4
shows the performance of ScheDA for different values of those parameters. For 1000 and 2000
hidden units for all schedules ScheDA performed better than the best DA, as long as the initial
level of noise ν0 was not lower than the level of noise yielding the best DA. For 5000 hidden units,
ScheDA also performed better than DA, except for the model trained with ν0 = 0.7. These results
suggest than ScheDA’s performance is superior to DA as long as the initial level of noise is not too
large and not below the optimal level of noise for DA.

6
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We also examined whether it is necessary for the schedule to be decreasing. To investigate this, we
trained ScheDAs using the same procedure as before, except that the levels of noise were increasing.
The networks had 2000 hidden units and they started with the best DA (over the learning rate and the
number of training epochs) for each ν0. We considered ν0 ∈ {0.1, 0.2, 0.3, 0.4},K ∈ {50, 100} and
∆ν ∈ {0.05, 0.1}. The largest possible final noise level νT was 0.7. To evaluate all combinations
of these hyperparameters (ν0, νT , ∆ν and K) we used the validation set. We set the learning rate to
0.01 as it worked optimally or very close to optimally in all previous experiments and we also used
this value in the experiments with decreasing schedules. The best model we obtained this way used
the schedule 0.3→0.35 and K = 100. Its test error was 41.97%, just a little worse than a DA trained
with ν = 0.3 (achieving the test error of 41.95%). For comparison, ScheDA (0.1→0.2→0.3) with
K = 100 yielded the test error of 44.99% and ScheDA (0.3→0.4→0.5→0.6→0.7) with K = 100
yielded the test error of 46.7%. These results provide some evidence that the initial noise levels puts
the optimisation procedure in a basin of attraction of a local minimum that can be favourable, as we
observe for ScheDA when starting training with higher noise levels, or detrimental, as we see here.

4.1.2 CONCATENATING SETS OF FEATURES LEARNT WITH DIFFERENT NOISE LEVELS

To explain the results above, we examine whether features learnt with different noise levels contain
different information about the data. To explore this, we trained two sets of representations with
2000 hidden units independently with a standard DA. DAs in the first set were initialised with a
randomly drawn set of parameters θ1 and DAs in the second set were initialised with a different ran-
domly drawn set of parameters θ2. Each set contained representations learnt with ν = 0.1, ν = 0.2,
..., ν = 0.7. Then we gathered all 49 possible pairs of representations between the two sets and con-
catenated representations within each pair, creating representations with 4000 features. The errors
yielded by classifiers using these representations can be found in Figure 5. The important obser-
vation here is that, even though concatenating two representations learnt with the same ν but with
different initialisations results in a better representation (cf. Figure 1), concatenating representations
with different ν’s yields even lower errors.
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Figure 5: Test errors yielded by representa-
tions constructed by concatenating representa-
tions learnt with various levels of noise. This
allows representations that are otherwise weak
separately to achieve low test errors, e.g. for
ν = 0.1 and ν = 0.5 (cf. Figure 1).

This is another piece of evidence strengthening
our hypothesis that having both local and global
features in the representation learnt with ScheDA
helps classification. Note, however, that even
though concatenating representations learnt with
different ν helps, ScheDA is clearly a better
model. For a fair comparison, we trained ScheDA
with 4000 units using, which matches the number
of hidden units in the concatenated architecture.
While the best concatenated DA achieved 39.33%
(cf. Figure 5), the best ScheDA achieved 37.77%.

4.1.3 COMPARING SETS OF FEATURES

Having confirmed that using both features learnt
with different levels of noise indeed helps classi-
fication, we experimentally verify the hypothesis
that the final representation trained with ScheDA
(0.7→0.6→...→0.1) contains both features similar
to those learnt with low levels of noise (local fea-
tures) and high levels of noise (global features).

Intuitively, two features are similar if they are active for the same set of inputs. We define the
activation vector ai for feature i as the vector containing the activation of the feature over all the
data points. More formally, if wi is the weight vector for feature i, bi is the bias for feature i and xn
is a data item, the activation vector is ai = [ai1, . . . , aiN ], where ain = sigmoid(wixn + bi). Here
N is the total number of data items, the total number of features is I .

We compute the activation vector for all features from eight different autoencoders: DA (0.1), DA
(0.2), ..., DA (0.7) and ScheDA (0.7→0.6→...→0.1). We denote the resulting activation vectors a0.1

i ,
..., a0.7

i and aSi , respectively. Now for each feature in ScheDA (0.7→0.6→...→0.1) we can find the
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Table 2: Comparison of features of ScheDA and DA. The first row shows how many ScheDA
(0.7→0.6→...→0.1) features, out of 2000 in total, were closest to a feature learnt by DA (0.1),
..., DA (0.7). It demonstrates that ScheDA combines information that would be learnt from DAs at
varying noise levels. The second and third row are baselines for comparison (see text for details).

DA (0.1) DA (0.2) DA (0.3) DA (0.4) DA (0.5) DA (0.6) DA (0.7)
ScheDA 374 550 444 299 169 92 72

DA* (0.1) 1247 465 167 54 21 12 7
DA* (0.7) 25 30 72 165 308 587 813

closest feature among those learnt with DA (0.1), DA (0.2), ..., DA (0.7). To do this, we compute
cosine similarities cos(aSi ,a

0.1
j ), cos(aSi ,a

0.2
j ), ..., cos(aSi ,a

0.7
j ) for all pairs (i, j). Finally, we

compute C0.1, the number of ScheDA features that are closest to a feature from DA (0.1) as C0.1 =∑I
i=1 1[maxjcos(aSi ,a

0.1
j ) > {maxjcos(aSi ,a

0.2
j ),maxjcos(aSi ,a

0.3
j ), ...,maxjcos(aSi ,a

0.7
j )}]

and similarly for C0.2, C0.3, ..., C0.7. To see how much ScheDA differs in that respect from the
standard DA trained only at the final level of noise for ScheDA, we also performed the same pro-
cedure as described above, but comparing to features learnt by DA* (0.1), which is the same as
DA (0.1) but starting from a different random initialisation. We found that ScheDA contains more
features similar to those learnt with higher noise levels than DA* (0.1) (see Table 2). This confirms
our expectation that the ScheDA representation retains a large number of more global features from
the earlier noise levels. We also put the same numbers for DA* (0.7) for comparison.

5 COMPOSITE DENOISING AUTOENCODER

The observation that more diverse representations lead to a better discriminative performance can be
exploited more explicitly than in ScheDA. Instead of training all of the hidden units with a sequence
of noise levels, we can partition the hidden units, training each subset of units with a different noise
level. This can be done by defining the hidden representation and the reconstruction to be

y = [f (x̃ν1W1 + b1) , . . . , f (x̃νS
WS + bS)] and

z = g
(∑S

s=1 f (x̃νs
Ws + bs) WT

s + b′
)

,
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Figure 6: Test errors for a composite de-
noising autoencoder using two levels of
noise, ν = 0.2 and ν = 0.4, and with 2000
hidden units divided equally between the
two levels of noise. Dashed lines indicate
the epochs when optimisation switched be-
tween updating different sets of parame-
ters.

where x̃νs
denotes an input x corrupted with the level

of noise νs. We call this a composite DA. Our pre-
liminary experiments show that, even when using only
two noise levels, it outperforms a standard DA and per-
forms on par with ScheDA. Successful learning of the
parameters is more complicated though. We found that
standard SGD (updating all parameters at each epoch)
performs much worse than a version of the SGD al-
ternating between updating parameters associated with
the two levels of noise. See Figure 6.

6 DISCUSSION

We have introduced a simple, yet powerful extension
of an important and commonly used model for learn-
ing representations and justified its superior perfor-
mance by its ability to learn a more diverse set of features than the standard denoising autoencoder.
Instead of learning a denoising autoencoder with just a single level of noise, we exploit the fact that
various levels of noise yield different features, which are more global for large values of ν. Start-
ing the training with a high level of noise enables the algorithm to learn these global features first,
which are partially retained when the level of noise is lower and the model is learning more local
dependencies.

Erhan et al. (2010) investigated why unsupervised pretraining helps learning a deep neural network
and found that the set of functions learnt by pretrained sigmoid neural networks is very different from
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the ones that are learnt without unsupervised pretraining. In fact, we have investigated a related
question, why does unsupervised pretraining help unsupervised pretraining? Or, more precisely,
since we are getting a large boost of performance even without supervised fine-tuning, why does
unsupervised pretraining help unsupervised training? One of their conclusions was that, when using
their architecture, unsupervised pretaining puts the optimisation procedure in a basin of attraction
of a local minimum that would not otherwise be found. This is very similar to what we observe in
our experiments. We often find that a DA trained with a given level of noise ν can have a lower
reconstruction error than ScheDA trained with the final level of noise ν, yet ScheDA is performing
better in terms of classification error. The filters at the minima for DA and ScheDA also look very
different (cf. Figure 3).

This way of training a denosing autoencoder is related to walkback training (Bengio et al., 2013) in
the sense that at the initial stages of training both methods attempt to correctly reconstruct corrupted
examples that lie further from the data manifold. It is different though as we do not require the loss
to be interpretable as log-likelihood and we do not perform any sampling from the denoising autoen-
coder. Additionally, Chandra and Sharma (2014) independently tried an idea similar to ScheDA, but
they were unable to show consistent improvement over the results of Vincent et al. (2010).

There is a number of ways this work can be extended. Primarily, ScheDA can be stacked, which
would likely improve our results. More generally, our results suggest that large improvements can
be achieved by combining diverse representations, which we aim to exploit in composite denoising
autoencoders.

Finally, we would like to point out that the main observation we make, namely, that it is beneficial
for the feature learning algorithm to learn more global features first and then to proceed to learning
more local ones, is very general and it is likely that scheduling is applicable to other approaches
to feature learning. Indeed, in the case of dropout (Hinton et al., 2014), Rennie et al. (2014) have,
independently from our work, explored the use of a schedule to decrease the dropout rate.
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SUPPLEMENTARY MATERIAL

SAMPLING THE LEVEL OF NOISE

As an alternative to a schedule, which sequentially changes the level of noise, we tried to sample
a different ν for each mini-batch. We tried two variants of this idea: sampling ν uniformly from a
continuous interval [0.1, 0.7], and sampling ν from a discrete distribution over the values in the set
{0.1, 0.2, . . . , 0.7}. Replicating the setup described in Section 4.1 for a DA with 2000 hidden units,
the first method obtained test error of 44.85% and the second one obtained the test error 46.83%.
Thus, both have performed much worse than DA (0.3). The result of this experiment provides
evidence that training a denoising autoencoder with a sequence of noise levels is important for the
success of our method.

SUPERVISED FINE-TUNING

For completeness, we also tried training a supervised single-layer neural network using param-
eters of the encoder as the initialisation of the parameters of the hidden layer of the network.
We did that for all models in Table 1. That is, for each size of the hidden layer, we take the
best DA and the best ScheDA trained in an unsupervised manner and perform supervised fine-
tuning of their parameters. The learning rate, the same for all parameters, was chosen from the set
{0.00125, 0.00125 ·2−1, . . . , 0.00125 ·2−4} and the maximum number of training epochs was 2000
(we computed the validation error after each epoch). We report the test error for the combination
of the learning rate and the number of epochs yielding the lowest validation error. The numbers are
shown in Table 3. Fine-tuning makes the performance of DA and ScheDA much more similar, but
the advantage of ScheDA is consistent and its magnitude grows with the size of the hidden layer.

Table 3: Test errors on CIFAR-10 data set for the best DA and ScheDA models trained without
supervised fine-tuning and their fine-tuned versions.

DA ScheDA
hidden units no fine-tuning fine-tuning no fine-tuning fine-tuning

1000 45.34% 39.55% 43.01% 39.44%
2000 41.95% 36.85% 40.1% 36.22%
5000 38.64% 36.47% 36.77% 35.7%

SENTIMENT CLASSIFICATION

We also evaluate our idea on a data set of product reviews from Amazon (Blitzer et al., 2007),
adapting the experimental setting used with the CIFAR-10 data set. The version of the data set we
are using contains reviews of products from six domains4 corresponding to high-level categories
on Amazon.com. The goal is to classify whether a review is positive or negative based on the
review text. For computational reasons, we keep only 3000 most popular words in the entire data
set, transforming each example into a binary vector indicating presence or absence of a word. We
divide the data set into a training set of 10000 labelled examples and 35000 unlabelled examples, a
validation set of 10000 labelled examples and a test set of 10000 labelled examples, each of them
consisting equal fractions of positive and negative labelled examples. The six domains are mixed
among training, validation and test examples. We set the number of hidden units to 2000.

The baseline, logistic regression trained with raw data obtains the test error of 14.79%, while the
best DA (0.6) yields 13.61% and the best ScheDA (0.7→0.6) yields 13.41% error. The relative error
reduction is smaller than on the image data, which is not surprising since the raw features are here a
much stronger baseline and the improvement obtained by the standard DA is relatively smaller too.
Smaller relative error reduction can be explained by the fact that the DA performance varies less
with the level of noise for this data set. While the test error for the best set of features learnt by DA
(0.6) was 13.61%, the worst, DA (0.1), yielded the error of 13.9%. This result suggests a simple
diagnostic for whether ScheDA is likely to be effective, namely, to check whether the DA validation
error is sensitive to the noise level.

4books, dvd, electronics, kitchen & housewares, music, video
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4.2 Comments on the paper

Retrospectively, we consider interpreting scheduling the noise as a way of doing

curriculum learning as one of the most interesting findings of this paper. After

this work was published other researchers had similar insights. Gulcehre et al.

[2016] found that adding noise to the activation functions in deep neural networks

and then annealing the level of noise improves empirical performance and also in-

terpreted annealing the level of noise as a curriculum learning method. Similarly,

Neelakantan et al. [2015] showed empirically on a range of tasks that adding noise

to the gradient of backpropagated error and annealing it improves performance

of deep neural networks. We expect similar observations to be made in many

other contexts in the future.

Another interesting practical observation from this work is that it appears that

training denoising autoencoders to the limits of their performance requires con-

siderably more training epochs than training supervised networks. Preliminary

experiments we performed with CIFAR-10 indicate that, for the best hyperpa-

rameters found, a performance of a single-layer fully-connected network does not

improve after less than a hundred epochs of training. On the other hand, as

shown in Figure 1 in the paper, the performance of the denoising autoencoder

keeps getting better for much longer. The reasons of this phenomenon remain to

be understood.

In addition to the work mentioned in the paper, a few others also considered

the problem of representation learning with models similar to the denoising au-

toencoder. Motivated by modelling learning of real neurons, Doi et al. [2006]

considered an autoencoder with a linear encoder and a linear decoder, with noise

added to the hidden representation. They showed that when the input has a di-

mensionality not greater than two the reconstruction error (mean squared error)

can be minimised analytically based only on the statistics of the data and the

noise. Doi and Lewicki [2014] extended that earlier model by adding deterministic

blur and stochastic noise to the input. Interestingly, they found that their model

fails to learn any interesting features without any additional penalty on the learnt

representation. However, when penalising sparsity of the weights, sparsity of the

hidden activations or spatial locality of the filters, the model managed to learn

a variety of edge and blob detectors. They also found that spatial extent of the

learnt filters grows with the amount of noise, which is consistent with our findings.
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Furthermore, Poole et al. [2014] showed that, when using mean squared error to

measure reconstruction error and a linear decoder, adding noise to the input, the

hidden representation before or after the activation function are approximately

equivalent.



Chapter 5

Composite denoising autoencoders

5.1 Introduction to the paper

The scheduled denoising autoencoder introduced in Chapter 4 learns a represen-

tation composed of features of multiple levels of granularity thanks to a sequence

of decreasing noise levels it is trained with. While this method yields very good

results and has an interesting connection to curriculum learning, it does not allow

us to specify what fraction of the features we would like to learn at a given scale.

This chapter extends the work in Chapter 4, introducing a different variant of the

standard denoising autoencoder, which we call the composite denoising autoen-

coder (CDA), which is similar in its goal to the scheduled denoising autoencoder,

but different in the way it achieves it. The main advantage of CDA over ScheDA

is that the CDA directly encourages the network to build representations with

features of multiple scales by having subsets of units which explicitly learn fea-

tures using different levels of noise. This is an improvement, because it allows

the experimenter to control the number of features of various scales explicitly.

It is worth noting that, the results achieved with the CIFAR-10 data set re-

ported in this paper are extremely strong. In fact, the only work, which surpasses

CDA on this data set without using convolutional networks is the paper by Urban

et al. [2016], however they use a more complicated setup, which involves tuning

a larger number of hyperparameters and they also use data augmentation.
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Abstract. In representation learning, it is often desirable to learn fea-
tures at different levels of scale. For example, in image data, some edges
will span only a few pixels, whereas others will span a large portion of
the image. We introduce an unsupervised representation learning method
called a composite denoising autoencoder (CDA) to address this. We ex-
ploit the observation from previous work that in a denoising autoencoder,
training with lower levels of noise results in more specific, fine-grained
features. In a CDA, different parts of the network are trained with dif-
ferent versions of the same input, corrupted at different noise levels. We
introduce a novel cascaded training procedure which is designed to avoid
types of bad solutions that are specific to CDAs. We show that CDAs
learn effective representations on two different image data sets.

Keywords: denoising autoencoders, unsupervised learning, neural net-
works.

1 Introduction

In most applications of representation learning, we wish to learn features at dif-
ferent levels of scale. For example, in image data, some edges will span only a
few pixels, whereas others, such as a boundary between foreground and back-
ground, will span a large portion of the image. Similarly, in speech data, different
phonemes and different words vary a lot in their duration. In text data, some
features in the representation might model specialized topics that use only a
few words. For example a topic about electronics would often use words such
as “big”, “screen” and “tv”. Other features model more general topics that use
many different words. Good representations should model both of these phenom-
ena, containing features at different levels of granularity.

Denoising autoencoders [28, 29, 12] provide a particularly natural framework
to formalise this intuition. In a denoising autoencoder, the network is trained
to be able to reconstruct each data point from a corrupted version. The noise
process used to perform the corruption is chosen by the modeller, and is an
important aspect of the learning process that affects the final representation.
On a digit recognition task, Vincent et al. [29] noticed that using a low level
of noise leads to learning blob detectors, while increasing it results in obtaining
detectors of strokes or parts of digits. They also recognise that either too low or
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too high level of noise harms the representation learnt. The relationship between
the level of noise and spatial extent of the filters was also noticed by Karklin
and Simoncelli [18] for a different feature learning model. Despite impressive
practical results with denoising autoencoders (e.g. [13, 23]), how to choose the
noise distribution is not fully understood.

In this paper, we introduce composite denoising autoencoders (CDA), in
which different parts of the network receive versions of the input that are cor-
rupted with different levels of noise. This encourages different hidden units of
the network to learn features at different scales. A key challenge is that finding
good parameters in a CDA requires some care, because naive training meth-
ods will cause the network to rely mostly on the low-noise corruptions, without
fully training the features for the high-noise corruptions, because after all the
low noise corruptions provide more information about the original input. We
introduce a training method specifically for CDA that sidesteps this problem.

On two different data sets of images, we show that CDAs learn significantly
better representations that standard DAs. In particular, we achieve to our knowl-
edge the best accuracy on the CIFAR-10 data set with a permutation invariant
model, outperforming scheduled denoising autoencoders [10].

2 Background

The core idea of learning a representation by learning to reconstruct artificially
corrupted training data dates back at least to the work of Seung [24], who
suggested using a recurrent neural network for this purpose. Using unsupervised
layer-wise learning of representations for classification purposes appeared later
in the work of Bengio et al. [3] and Hinton et al. [16].

The denoising autoencoder (DA) [28] is based on the same intuition as the
work of Seung [24] that a good representation should contain enough information
to reconstruct corrupted versions of an original input. In its simplest form, it
is a single-layer feed-forward neural network. Let x ∈ Rd be the input to the
network. The output of the network is a hidden representation y ∈ Rd′ , which is
simply computed as fθ(x) = h(Wx + b), where the matrix W ∈ Rd′×d and the
vector b ∈ Rd′ are the parameters of the network, and h is a typically nonlinear
transfer function, such as a sigmoid. We write θ = (W,b). The function f
is called an encoder because it maps the input to a hidden representation. In
an autoencoder, we have also a decoder that “reconstructs” the input vector
from the hidden representation. The decoder has a similar form to the encoder,
namely, gθ′(y) = h′(W′y + b′), except that here W′ ∈ Rd×d′ and b′ ∈ Rd. It
can be useful to allow the transfer function h′ for the decoder to be different
from that for the encoder. Typically, W and W′ are constrained by W′ = WT ,
which has been justified theoretically by Vincent [27].

During training, our objective is to learn the encoder parameters W and b.
As a byproduct, we will need to learn the decoder parameters b′ as well. We
do this by defining a noise distribution p(x̃|x, ν). The amount of corruption is
controlled by a parameter ν. We train the autoencoder weights to be able to
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reconstruct a random input from the training distribution x from its corrupted
version x̃ by running the encoder and the decoder in sequence. Formally, this
process is described by minimising the autoencoder reconstruction error with
respect to the parameters θ∗ and θ′∗, i.e.,

θ∗, θ′∗ = arg min
θ,θ′

E(X,X̃)

[
L
(
X, gθ′(fθ(X̃))

)]
, (1)

where L is a loss function over the input space, such as squared error. Typically
we minimize this objective function using SGD with mini-batches, where at each
iteration we sample new values for both the uncorrupted and corrupted inputs.

In the absence of noise, this model is known simply as an autoencoder or
autoassociator. A classic result [2] states that when d′ < d, then under certain
conditions, an autoencoder learns the same subspace as PCA. If the dimensional-
ity of the hidden representation is too large, i.e., if d′ > d, then the autoencoder
can obtain zero reconstruction error simply by learning the identity map. In a
denoising autoencoder, in contrast, the noise forces the model to learn interest-
ing structure even when there are a large number of hidden units. Indeed, in
practical denoising autoencoders, the best results are found with overcomplete
representations for which d′ > d.

There are several choices to be made here, including the noise distribution,
the transformations h and h′ and the loss function L. For the loss function L,
for continuous x, squared error can be used. For binary x or x ∈ [0, 1], as we
consider in this paper, it is common to use the cross entropy loss,

L(x, z) = −
D∑
i=1

(xi log zi + (1− xi) log (1− zi)) .

For the transfer functions, common choices include the sigmoid h(v) = 1
1+e−v

for both the encoder and decoder, or to use a rectifier h(v) = max(0, v) in the
encoder paired with sigmoid decoder.

One of the most important parameters in a denoising autoencoder is the
noise distribution p. For continuous x, Gaussian noise p(x̃|x, ν) = N(x̃; x, ν) can
be used. For binary x or x ∈ [0, 1], it is most common to use masking noise, that
is, for each i ∈ 1, 2, . . . d, we sample x̃i independently as

p(x̃i|xi, ν) =

{
0 with probability ν,
xi otherwise.

(2)

In either case, the level of noise ν affects the degree of corruption of the input. If
ν is high, the inputs are more heavily corrupted during training. The noise level
has a significant effect on the representations learnt. For example, if the input
data are images, masking only a few pixels will bias the process of learning the
representation to deal well with local corruptions. On the other hand, masking
many pixels will push the algorithm to use information from more distant regions.

It is possible to train multiple layers of representations with denoising autoen-
coders by training a denoising autoencoder with data mapped to a representation
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learnt by the encoder of another denoising autoencoder. This model is known as
the stacked denoising autoencoder [28, 29]. As an alternative to stacking, con-
structing deep autoencoders with denoising autoencoders was explored by Xie
et al. [30].

Although the standard denoising autoencoders are not, by construction, gen-
erative models, Bengio et al. [5] proved that, under mild regularity conditions,
denoising autoencoders can be used to sample from a distribution which consis-
tently estimates the data generating distribution. This method, which consists
of alternately adding noise to a sample and denoising it, yields competitive per-
formance in terms of estimated log-likelihood of the samples. An important con-
nection was also made by Vincent [27], who showed that optimising the training
objective of a denoising autoencoder is equivalent to performing score matching
[17] between the Parzen density estimator of the training data and a particular
energy-based model.

3 Composite denoising autoencoders

y1 y2

x̃ν1 x̃ν2

z

Fig. 1. A composite denoising autoencoder using two levels of noise.

Composite denoising autoencoders learn a diverse representation by leverag-
ing the observation that the types of features learnt by the standard denoising
autoencoders differ depending on the level of noise. Instead of training all of the
hidden units to extract features from data corrupted with the same level of noise,
we can partition the hidden units, training each subset of model’s parameters
with a different noise level.

More formally, let ν = (ν1, ν2, . . . , νS) denote the set of noise levels that is to
be used in the model. For each noise level νs the network includes a vector ys ∈
RDs of hidden units and a weight matrix Ws ∈ RDs×d. Note that different noise
levels may have different numbers of hidden units. We use D = (D1, D2, . . . DS)
to denote a vector containing the number of hidden units for each noise level.

When assigning a representation to a new input x, the CDA is very similar
to the DA. In particular, the hidden representation is computed as

ys = h(Ws x + bs) ∀s ∈ 1, . . . , S, (3)
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where as before h is a nonlinear transfer function such as the sigmoid. The full
representation y for x is constructed by concatenating the individual represen-
tations as y = (y1, . . . ,yS).

Where the CDA differs from the DA is in the training procedure. Given a
training input x, we corrupt it S times, once for each level of noise, yielding
corrupted vectors

x̃s ∼ p(x̃s|x, νs) ∀s. (4)

Then each of the corrupted vectors are fed into the corresponding encoders,
yielding the representation

ys = h(Ws x̃s + bs) ∀s ∈ 1, . . . , S. (5)

The reconstruction z is computed by taking all of the hidden layers as input

z = h′
(

S∑
s=1

W>
s ys + b′

)
, (6)

where as before h′ is a nonlinear transfer function, potentially different from
h. Finally given a loss function L, such as squared error, an update to the
parameters can be made by taking a gradient step on L(z,x).

This procedure can be seen as a stochastic gradient on an objective function
that takes the expectation over the corruptions:

E(X,X̃ν1 ,...,X̃νS )

"
L

 
X,h′

 
SX
s=1

W>
s h (Wsx̃νs + bs) + b′

!!#
, (7)

This architecture is illustrated in Figure 1 for two levels of noise, where we use
the different colours to indicate the weights in the network that are specific to a
single noise level.

3.1 Learning

A CDA could be trained by standard optimization methods, such as stochastic
gradient descent on the objective (7). As we will show, however, it is difficult to
achieve good performance with these methods (4.1). Instead, we propose a new
cascaded training procedure for CDAs, which we describe in this section.

Cascaded training is based on two ideas. First, previous work [10] found that
pretraining at high noise levels helps learning the parameters for the low noise
levels. Second, and more interesting, the problem with taking a joint gradient
step on (7) is that low noise levels provide more information about the original
input x than high noise levels, which can cause a training procedure to get stuck
in a local optimum in which it relies on the low noise features without using the
high noise features. Cascaded training first trains the weights that correspond
to high noise levels, and then freezes them before moving on to low noise levels.
This way the hidden units trained with lower levels of noise are trained to correct
what the hidden units associated with higher noise levels missed.
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y1 y2 y3

x̃ν1 x̃ν1 x̃ν1

z

(step 1)

y1 y2 y3

x̃ν1 x̃ν2 x̃ν2

z

(step 2)

y1 y2 y3

x̃ν1 x̃ν2 x̃ν3

z

(step 3)

Fig. 2. The cascaded training procedure for a composite denoising autoencoder with
three noise levels. We use the notation y1:3 = (y1,y2,y3). First all parameters are
trained using the level of noise ν1. In the second step, the blue parameters remain
frozen and the red parameters are trained using the noise ν2. Finally, in the third
step, only the green parameters are trained, using the noise ν3. This is more formally
described in Algorithm 1.
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Algorithm 1 Training the composite denoising autoencoder
for R in 1, . . . , S do

for KR steps do
Randomly choose a training input x
Sample x̃s ∼ p(·|x, νs) for s ∈ {1, 2, . . . , R− 1}
Sample x̃s ∼ p(·|x, νR) for s ∈ {R,R+ 1, . . . , S}
Compute ys for all s as in (5)
Compute reconstruction z as in (6)
Take a gradient step

Ws ←Ws − α∇WsL(z,x)

bs ← bs − α∇bsL(z,x)

b′ ← b′ − α∇b′L(z,x)

for s ∈ {R,R+ 1, . . . S}
end for

end for

Putting these ideas together, cascaded training works as follows. We assume
that the noise levels are ordered so that ν1 > ν2 > · · · > νS . Then the first step
is that we train all of the parameters W1 . . .WS ,b1, . . .bS ,b′, but using only
the noise level ν1 to corrupt all S copies x̃1 . . . x̃S of the input. Once this is done,
we freeze the weights W1,b1 and we do not alter them again during training.
Then we train the weights W2 . . .WS ,b2 . . .bS ,b′, where the corrupted input
x̃1 is as before corrupted with noise ν1, and the S− 1 corrupted copies x̃2 . . . x̃S
are all corrupted with noise ν2. We repeat this process until at the end we
are training the weights WS ,bS ,b′ using the noise level νS . This process is
illustrated graphically in Figure 2 and in pseudocode in Algorithm 1. To keep
the exposition simple, this algorithm assumes that we employ SGD with only
one training example per update, although in practice we use mini-batches.

The composite denoising autoencoder builds on several ideas and intuitions.
Firstly, our training procedure can be considered an application of the idea of
curriculum learning [4, 14]. That is, we start by training all units with high noise
level, which serves as a form of unsupervised pretraining for the units that will
be trained later with lower levels of noise, giving them a good starting point
for further optimisation. We experimentally show that the training of a denois-
ing autoencoder learning with data corrupted with high noise levels needs less
training epochs to converge, therefore, it can be considered an easier problem.
This is shown in Figure 3. Secondly, we are inspired by multi-column neural
networks (e.g. Ciresan et al. [7]), which achieve excellent performance for super-
vised problems. Finally, our work is similar in motivation to scheduled denoising
autoencoders [10], which learn a diverse set of features thanks to the training
procedure which involves using a sequence of levels of noise. Composite denoising
autoencoders achieve this goal more explicitly thanks to their training objective.
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Fig. 3. Classification results with the CIFAR-10 data set yielded by representations
learnt with standard denoising autoencoders and data corrupted with two different
noise levels. Dashed lines indicate the errors on the validation set. The stars indicate
the test errors for the epochs at which the validation errors had its lowest value. The
DA trained with high noise level learns faster at the beginning but stops to improve
earlier. See section 4 for the details of the experimental setup.

3.2 Recovering the standard denoising autoencoder

If, for every training example, the corrupted inputs x̃νi were always identical,
[W1, . . . ,WS ] were initialised randomly from the same distribution as W in
the standard denoising autoencoder, bi and b′ were initalised to 0 and Vi were
constrained to be Vi = WT

i , then this model is exactly equivalent to the stan-
dard denoising autoencoder described in section 2. Therefore, it is natural to
incrementally corrupt the training examples shown to the composite denoising
autoencoders in such a way that when all the noise levels are the same, this
equivalency holds. For example, when working with masking noise, consider two
noise levels νi and νj such that νi > νj . Denote the random variables indicat-
ing the presence of corruption of a pixel in a training datum by Cνi and Cνj .
Assuming Cνj ∼ Bernoulli(νj), we want Cνi ∼ Bernoulli(νi), such that when
Cνj = 1 then also Cνi = 1. It can be easily shown that this is satisfied when
Cνi = max(Cνj + Cνj→νi , 1), where Cνj→νi ∼ Bernoulli(νi−νj1−νj ). We use this
incremental noising procedure in all our experiments.

4 Experiments

We used two image recognition data sets to evaluate the CDA, the CIFAR-10
data set [19] and a variant of the NORB data set [21]. To evaluate the quality of
the learnt representations, we employ a procedure similar to that used by Coates
et al. [8] and by many other works1. That is, we first learn the representation in
1 We do not use any form of pooling, keeping our setup invariant to the permutation

of the features.
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an unsupervised fashion and then use the learnt representation within a linear
classifier as a measure of its quality. For both data sets, in the unsupervised
feature learning stage, we use masking noise as the corruption process, a sig-
moid encoder and decoder and cross entropy loss (Equation 2) following Vincent
et al. (2008, 2010). To do optimisation, we use stochastic gradient descent with
mini-batches. For the classification step, we use L2-regularised logistic regression
with the regularisation parameter chosen to minimise the validation error. Ad-
ditionally, with the CIFAR-10 data set, we also trained a single-layer supervised
neural network using the parameters of the encoder we learnt in the unsuper-
vised stage as an initialisation. When conducting our experiments, we first find
the best hyperparameters using the validation set, then merge it with the train-
ing set, retrain the model with the hyperparameters found in the previous step
and report the error achieved with this model.

We implemented all neural network models using Theano [6] and we used
logistic regression implemented by Fan et al. [9]. We followed the advice of Glorot
and Bengio [11] on random initialisation of the parameters of our networks.

4.1 CIFAR-10

This data set consists of 60000 colour images spread evenly between ten classes.
There are 50000 training and validation images and 10000 test images. Each
image has a size of 32 × 32 pixels and each pixel has three colour channels,
which are represented with a number in {0, . . . , 255}. We divide the training
and validation set into 40000 training instances and 10000 validation instances.
The only preprocessing step we use is dividing the intensity of every pixel by
255 to get numbers in [0, 1].

In our experiments with this data set we trained autoencoders with the total
number of 2000 hidden units (undercomplete representation) and 4000 hidden
units (overcomplete representation).

Fig. 4. Example filters (columns of the matrix W) learnt by standard denoising au-
toencoders with ν = 0.1 (left) and ν = 0.5 (right).
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Training the baselines The simplest possible baseline, logistic regression
trained with raw pixel values, achieved 59.4% test error. To get the best possible
baseline denoising autoencoder we explored combinations of different learning
rates, noise levels and numbers of training epochs. For 2000 hidden units we
considered ν ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} and for 4000 hidden units we also
additionally considered ν = 0.15. For both sizes of the hidden layers we tried
learning rates ∈ {0.01, 0.02, 0.04}. Each model was trained for up to 2000 training
epochs and we measured the validation error every 50 epochs. The best baselines
we got achieved the test errors of 40.71% (2000 hidden units) and 38.35% (4000
hidden units).

Concatenating representations learnt independently To demonstrate that
diversity in noise levels improves the representation, we evaluate representations
yielded by concatenating the representations from two different DAs, trained in-
dependently. We will combine DAs trained with noise levels ν ∈ {0.1, 0.2, . . . , 0.5}
for each noise level training three DAs with different random seeds. Denote pa-
rameters learnt by a DA with the noise level ν and using the random seed
R by

(
W(R,ν),b(R,ν),b

′(R,ν)
)

and denote by Eklij the classification error on
the test set yielded by the concatenating the representations of two indepen-
dently trained DAs, the first trained with random seed Rk and noise level νi,
and the second trained by random seed Rl and noise level νj . For each pair
of noise levels (νi, νj), we measure the average error across random seeds, that

is, Ēij = 1

2(K2 )

(∑
k 6=l E

kl
ij + Eklji

)
. The results of this experiment are shown in

Figure 5. For every ν we used, it was optimal to concatenate the representation
learnt with ν with a representation learnt with a different noise level. To under-
stand this intuition, we visually examine features from DAs with different noise
levels (Figure 4). From this figure it can be seen that features at higher noise
levels depend on larger regions of the image. This demonstrates the benefit of
using a more diverse representation for classification.

Comparison of CDA to DA The CDA offers freedom to choose the number
of noise levels, the value νs for each noise level, and the number Ds of hidden
units at each noise level.

For computational reasons, we limit the space of possible combinations of
hyperparameters in the following manner (of course, expanding the search space
would only make our results better). We considered models containing up to four
different noise levels. We first consider only the models with two noise levels and
hidden units divided equally between them. For 2000 total hidden units, we con-
sider all possible pairs of noise levels drawn from the set {0.5, 0.4, 0.3, 0.2, 0.1, 0.05}.
Once we have found the value of ν that minimizes that validation error for
D1 = D2, we try splitting hidden units such that the ratio D1 : D2 = 1 : 3
or D1 : D2 = 3 : 1. Similarly, for four noise levels, we consider the following
sets of noise levels ν ∈ {(0.5, 0.4, 0.3, 0.2), (0.4, 0.3, 0.2, 0.1), (0.3, 0.2, 0.1, 0.05)}.
We select the value of ν that has lowest validation error for an equal split
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Fig. 5. Classification errors for representations constructed by concatenating represen-
tations learnt independently.

D1 = · · · = D4, and then try splitting the hidden units with different ratios:
D1 : D2 : D3 : D4 = 3 : 1 : 1 : 1, D1 : D2 : D3 : D4 = 9 : 1 : 1 : 1 and the
permutations of these ratios. As for the learning rate, we train each of the cas-
caded DAs with the learning rate that had the best validation error for the first
noise level ν1. The models were trained for up to 500 epochs at each consecutive
noise level and we computed the validation error every 50 training epochs. Note
that when training with four noise levels, it is possible that the lowest validation
error occurs before the training procedure has moved on to the final noise level.
In this circumstance, it is possible that the final model will have only two or
three noise levels instead of four.

We trained the models with 4000 hidden units the same way, except that we
used different sets of noise levels for this higher number of hidden units. This is
because our experience with the baseline DAs was that units with 4000 hidden
units do better with lower noise levels. For the CDAs with four noise levels,
we compared three difference choices for ν: (0.4, 0.3, 0.2, 0.1), (0.3, 0.2, 0.1, 0.05),
and (0.2, 0.15, 0.1, 0.05). For the models with two noise levels the values were
drawn from {0.4, 0.3, 0.2, 0.15, 0.1, 0.05}.

For either number of hidden units, we find that CDAs perform better than
simple DAs. The best models with 2000 hidden units and 4000 hidden units we
found achieved the test errors of 38.86% and 37.53% respectively, thus yielding
a significant improvement over the representations trained with a standard DA.
These results are compared to the baselines in Table 1. It is also noteworthy
that a CDA performs better than concatenating two indepedently trained DAs
with different noise levels (cf. Figure 5).
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Table 1. Classification errors of standard denoising autoencoders and composite de-
noising autoencoders.

hidden units best DA test error best CDA test error
2000 ν = 0.2 40.71% ν = (0.3, 0.2, 0.1), D = (500, 500, 1000) 38.86%
4000 ν = 0.1 38.35% ν = (0.3, 0.05), D = (1000, 3000) 37.53%

Comparison of Optimization Methods One could consider several simpler
alternatives to the cascaded training procedure from Section 3.1. The simplest al-
ternative, which we call joint SGD, is to train all of the model parameters jointly,
at every iteration sampling each corrupted input x̃s using its corresponding noise
level νs. This is simply SGD on the objective (7). A second alternative, which
we call alternating SGD, is block coordinate descent on (7), where we assign
each weight matrix Ws to a separate block. In other words, at each iteration we
choose a different parameter block Ws, and take a gradient update only on Ws

(note that this requires computing a corrupted input x̃s for all noise levels νs).
Neither of these simpler methods try to prevent undertraining of the parameters
for the high noise levels in the way that cascaded training does.

Figure 6 shows a comparison of joint SGD, alternating SGD, and our cas-
caded SGD methods on a CDA with four noise levels ν = (0.4, 0.3, 0.2, 0.1)
and D = (500, 500, 500, 500). We ran both joint SGD and cascaded SGD until
they converged in validation error, and then we ran alternating SGD until it
had made the same number of parameter updates as joint SGD. This means
that alternating SGD was run for four times as many iterations as joint SGD,
because alternating SGD only updates one-quarter of the parameters at each
iteration. Cascaded SGD was stopped early when it converged according to vali-
dation error. The vertical dashed lines in the figure indicate the epochs at which
alternating SGD switched between parameter blocks.

From these results, it is clear that the cascaded training procedure is signif-
icantly more effective than either joint or alternating SGD. Joint SGD seems
to have converged to much worse parameters than cascaded SGD. We hypoth-
esize that this is because the parameters corresponding to the high noise levels
are undertrained. To verify this, in Figure 7 we show the features learned by a
composite CDA with joint training at two different noise levels. Note that at
the higher noise level (at right) there are many filters that are mostly noise; this
is not observed at the lower noise or to the same extent in an standard DA.
Alternating SGD seems to converge fairly slowly. It is possible that its error
would continue to decrease, but even after 8000 iterations its solution is still
much worse than that found by cascading SGD after only 3500 iterations.

We have made similar comparisons for other choices of ν and found a similar
difference in performance between joint, alternating, and cascaded SGD. One
exception to this is that alternating SGD seems to work much better on models
with only two noise levels (S = 2) than those with four noise levels. In those
situations, the performance of alternating SGD often equals, but usually does
not exceed, that of cascaded SGD.
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Fig. 6. Classification errors achieved by three different methods of optimising the ob-
jective in (7).

Fig. 7. Example filters (columns of the matrix W) learnt by composite denoising au-
toencoders with ν = 0.1 (left) and ν = 0.4 (right) when all the parameters were opti-
mise using joint SGD. While the filters associated with ν2 = 0.1 have managed to learn
interesting features, many of these associated with ν1 = 0.4 remained undertrained.
These hard to interpret filters are much more rare with cascaded SGD.

Fine-tuning We also trained a supervised single-layer neural network using pa-
rameters of the encoder as the initialisation of the parameters of the hidden layer
of the network. This procedure is known as fine-tuning. We did that for the best
standard DAs and CDAs with 4000 hidden units. The learning rate, the same for
all parameters, was chosen from the set {0.00125, 0.00125 ·2−1, . . . , 0.00125 ·2−4}
and the maximum number of training epochs was 2000 (we computed the val-
idation error after each epoch). We report the test error for the combination
of the learning rate and the number of epochs yielding the lowest validation
error. The results are shown in Table 3. Fine-tuning makes the performance of
DA and CDA much more similar, which is to be expected since the fine-tuning
procedure is identical for both models. However, note that the result achieved
with a standard denoising autoencoder and supervised fine-tuning we present
here is an extremely well tuned one. In fact, its error is lower than any previ-
ous result achieved by a permutation-invariant method on the CIFAR-10 data
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set. Our best model, yielding the error of 35.06% is, by a considerable margin,
more accurate than any previously considered permutation-invariant model for
this task, outperforming a variety of methods. A summary of the best results
reported in the literature is shown in Table 2.

Table 2. Summary of the results on CIFAR-10 among permutation-invariant methods.

Model Test error

Composite Denoising Autoencoder 35.06%
Scheduled Denoising Autoencoder [10] 35.7%

Zero-bias Autoencoder [22] 35.9%
Fastfood FFT [20] 36.9%

Nonparametrically Guided Autoencoder [25] 43.25%
Deep Sparse Rectifier Neural Network [12] 49.52%

Table 3. Test errors on CIFAR-10 data set for the best DA and CDA models trained
without supervised fine-tuning and their fine-tuned versions.

DA CDA
no fine-tuning fine-tuning no fine-tuning fine-tuning

38.35% 35.30% 37.53% 35.06%

4.2 NORB

To show that the advantage of our model is consistent across data sets, we
did the same experiment use a variant of the small NORB normalized-uniform
data set [21], which contains 24300 examples for training and validation and
24300 test examples. It contains images of 50 toys belonging to five generic
categories: animals, human figures, airplanes, trucks, and cars. The 50 toys are
evenly divided between the training and validation set and the test set. The
objects were photographed by two cameras under different lighting conditions,
elevations and azimuths. Every example consists of a stereo pair of grayscale
images, each of size 96× 96 pixels whose intensities are represented as a number
∈ {0, . . . , 255}. We transform the data set by taking the middle 64 × 64 pixels
from both images in a pair and dividing the intensity of every pixel by 255 to
get numbers in [0, 1]. The simplest baseline, logistic regression using raw pixels,
achieved the test error of 42.32%.

In the experiments with learning the representations with this data set we
used the hidden layer with 1000 hidden units and adapted the set up we used for
CIFAR-10. To find the best possible standard DA we considered all combinations
of the noise levels ∈ {0.1, 0.2, 0.3, 0.4} and the learning rates ∈ {0.005, 0.01, 0.02}.
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The representation learnt by the best denoising autoencoder yielded 18.75% test
error when used with logistic regression. By contrast, a composite denoising
autoencoder with ν = (0.4, 0.3, 0.2, 0.1) and D = (250, 250, 250, 250) results in a
representation that yields a test error of 17.03%.

5 Discussion

We introduced a new unsupervised representation learning method, called a com-
posite denoising autoencoder, by modifying the standard DA so that different
parts of the network were exposed to corruptions of the input at different noise
levels. Naive training procedures for the CDA can get stuck in bad local optima,
so we designed a cascaded training procedure to avoid this. We showed that
CDAs learned more effective representations than DAs on two different image
data sets.

A few pieces of prior work have considered related techniques. In the context
of RBMs, the benefits of learning a diverse representation was also noticed by
Tang and Mohamed [26], achieving diversity by manipulating the resolution of
the image. Also, ensembles of denoising autoencoders, where each member of
the ensemble is trained with a different level or different type of noise, have been
considered by Agostinelli et al. [1]. This work differs from ours because in their
method all DAs in the ensemble are trained independently, whereas we show
that training the different representations together is better than independent
training. The cascaded training procedure has some similarities in spirit to the
incremental training procedure of Zhou et al. [31], but that work considered
only DAs with one level of noise. Usefulness of varying the level of noise during
training of neural nets was also noticed by Gulcehre et al. [15], who add noise
to the activation functions. Our training procedure also resembles the walkback
training suggested by Bengio et al. [5], however, we do not require our training
loss to be interpretable as negative log-likelihood. Understanding the relative
merits of walkback training, scheduled denoising autoencoders and composite
denoising autoencoders would be an interesting future challenge.
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5.2 Comments on the paper

Jointly training all the parameters in the CDA leads to the optimisation focusing

on learning only the features associated with the lowest noise level. We were able

to prevent the features associated with high noise levels from undertraining thanks

to the cascaded SGD procedure we introduced in the paper. A possible alternative

to this method, which might be able to achieve the same goal without alternating

between optimising different subsets of parameters of the model, could work in

the following manner. We explain it for only two levels of noise for simplicity.

The parameters associated with noise level ν0 are W0 and b0 and the parameters

associated with noise level ν1 < ν0 are W1 and b1. The gradient with respect to

the parameters W0 and b0 would then be computed by minimising the training

objective

E(x,x̃ν0 ,x̃ν1 )

[
L
(
X, h′

(
W>

0 h (W0x̃ν0 + b0) + W>
1 h (W1x̃ν1 + b1) + b′

))]
and the gradient with respect to the parameters W1 and b1 would be computed

by minimising the objective

E(x,x̃′ν1 ,x̃ν1 )

[
L
(
X, h′

(
W>

0 h
(
W0x̃

′
ν1

+ b0

)
+ W>

1 h (W1x̃ν1 + b1) + b′
))]

.

The difference between the objective is highlighted in blue. The gradient with

respect to the bias in the decoder could be simply an average gradient computed

for the two objectives. The intuition behind this idea is that corrupting all the

copies of the input with low noise when optimising the subset of parameters of

the model associated with low noise, would aim to prevent the optimisation from

focusing too much on that subset of parameters.



Chapter 6

Blending LSTMs into CNNs

6.1 Introduction to the paper

In this chapter we show how two strong, yet different in their inductive biases,

neural network architectures, convolutional neural networks (CNNs) and long

short-term memory networks (LSTMs), can be combined to reach a superior per-

formance. We do this model combination with a method we propose which we

call model blending. We perform model blending through model compression,

which was previously shown to work in an asymmetric setting where the student

is much simpler than the teacher. In our work, we use the student and the teacher

of comparable capacities and use model blending to average their inductive biases,

which resembles the classic technique of ensembling. This allows us to create a

student model stronger than both baselines. Remarkably, this is achieved with no

extra cost at test time. We use CNNs of vision-inspired architecture, which are

more accurate than previous CNN architectures widely used for speech recogni-

tion and as accurate as LSTM networks, while being much less expensive to run

at test time than the LSTMs. These contributions are of considerable importance

for two reasons. Firstly, because of the improved accuracy they yield. Secondly,

because they question the common belief in the speech community about how

convolutional networks for speech recognition should be designed and what the

limits of their performance are in comparison to the LSTMs.

Furthermore, we demonstrate that less than 1% of targets are sufficient to

perform model compression. This sheds additional light on the “dark knowledge”

hypothesis, which states that a lot of the knowledge about the teacher model is

hidden in the low-probability predictions. Our results are especially useful in the

66
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settings when the output space is very large.
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ABSTRACT

We consider whether deep convolutional networks (CNNs) can represent deci-
sion functions with similar accuracy as recurrent networks such as LSTMs. First,
we show that a deep CNN with an architecture inspired by the models recently
introduced in image recognition can yield better accuracy than previous convolu-
tional and LSTM networks on the standard 309h Switchboard automatic speech
recognition task. Then we show that even more accurate CNNs can be trained
under the guidance of LSTMs using a variant of model compression, which we
call model blending because the teacher and student models are similar in com-
plexity but different in inductive bias. Blending further improves the accuracy of
our CNN, yielding a computationally efficient model of accuracy higher than any
of the other individual models. Examining the effect of “dark knowledge” in this
model compression task, we find that less than 1% of the highest probability labels
are needed for accurate model compression.

1 INTRODUCTION

There is evidence that feedforward neural networks trained with current training algorithms use their
large capacity inefficiently (Le Cun et al., 1990; Denil et al., 2013; Dauphin & Bengio, 2013; Ba
& Caruana, 2014; Hinton et al., 2015; Han et al., 2016). Although this excess capacity may be
necessary for accurate learning and generalization at training time, the function once learned often
can be represented much more compactly. As deep neural net models become larger, their accuracy
often increases, but the difficulty of deploying them also rises. Methods such as model compression
sometimes allow the accurate functions learned by large, complex models to be compressed into
smaller models that are computationally more efficient at runtime.

There are a number of different kinds of deep neural networks such as deep fully-connected neural
networks (DNNs), convolutional neural networks (CNNs) and recurrent neural networks (RNNs).
Different domains typically benefit from deep models of different types. For example, CNNs usually
yield highest accuracy in domains such as image recognition where the input forms a regular 1, 2, or
3-D image plane with structure that is partially invariant to shifts in position or scale. On the other
hand, recurrent network models such as LSTMs appear to be better suited to applications such as
speech recognition or language modeling where inputs form sequences of varying lengths with short
and long-range interactions of different scales.

The differences between these deep learning architectures raise interesting questions about what
is learnable by different kinds of deep models, and when it is possible for a deep model of one
kind to represent and learn the function learned by a different kind of deep model. The success of
model compression on feedforward networks raises the question of whether other neural network
architectures that embody different inductive biases can also be compressed. For example, can a
classification function learnt by an LSTM be represented by a CNN with a wide enough window to
span the important long-range interactions?

In this paper we demonstrate that, for a speech recognition task, it is possible to train very accurate
CNN models, outperforming LSTMs. This is thanks to CNN architectures inspired by recent devel-
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opments in computer vision (Simonyan & Zisserman, 2014), which were not previously considered
for speech recognition. Moreover, the experiments suggest that LSTMs and CNNs learn different
functions when trained on the same data. This difference creates an opportunity: by merging the
functions learned by CNNs and LSTMs into a single model we can obtain better accuracy than either
model class achieved independently. One way to perform this merge is through a variant of model
compression that we call model blending because the student and teacher models are of compara-
ble size and have complementary inductive biases. Although at this point model compression is a
well established technique for models of different capacity, the question of whether compression is
also effective for models of similar capacity has not been explored. For example, by blending an
LSTM teacher with a CNN student, we are able to train a CNN that is more accurate because it
benefits from what the LSTM learned and also computationally more efficient than an LSTM would
be at runtime. This blending process is somewhat analogous to forming an ensemble of LSTMs and
CNNs and then training a student CNN to mimic the ensemble, but in blending no explicit ensemble
of LSTMs and CNNs need be formed. The blended model is 6.8 times more efficient at testing time
than the analogous ensemble. Blending further improves the accuracy of our convolutional model,
yielding a computationally efficient model of accuracy higher than any of the other individual mod-
els. Examining the effect of “dark knowledge” (Hinton et al., 2015) in this model compression task,
we find that only 0.3% of the highest probability labels are needed during the model compression
procedure. Intriguingly, we also find that model blending is even effective in the self-teacheing
setting when the student and the teacher are of the same architecture. We show results of an experi-
ment in which we use a CNN to teach another CNN of the same architecture. Such a student CNN
is weaker than a CNN student of the LSTMs but still significantly stronger than a baseline trained
only with the hard labels in the data set.

2 BACKGROUND

In model compression (Bucila et al., 2006), one model (a student) is trained to mimic another model
(a teacher). Typically, the student model is small and the teacher is a larger, more powerful model,
which has high accuracy but is computationally too expensive to use at test time. For classification,
this mimicry can be performed in two ways. One way is to train the student model to match logits
(i.e. the values zi in the output layer of the network, before applying the softmax to compute the
output class probabilities pi = ezi/

∑
j e

zj ) predicted by the teacher on the training data, penalising
the difference between logits of the two models with a squared loss. Alternatively, compression
can be done by training the student model to match class probabilities predicted by the teacher, by
penalising cross-entropy between predictions p of the teacher and predictions q of the student, i.e.
by minimising -

∑
i pi(x) log qi(x) averaged over training examples. We will refer to predictions

made the teacher as soft labels. In the context of deep neural networks, this approach to model
compression is also known as knowledge distillation (Hinton et al., 2015). Additionally, the training
loss can also include the loss on the original 0-1 hard labels.

The main advantage of training the student using model compression is that a student trained with
knowledge provided by the teacher gets a richer supervision signal than just the hard 0-1 labels in
the training data, i.e. for each training example, it gets the information not only about the correct
class but also about uncertainty, i.e., how similar the current training example is to those of other
classes. Model compression can be viewed as a way to transfer inductive biases between models.
For example, in the case of compressing deep models into shallow ones (Ba & Caruana, 2014; Urban
et al., 2016), the student is benefiting from the hierarchical representation learned in the deep model,
despite not being able to learn it on its own from hard labels.

While model compression can be applied to arbitrary classifiers producing probabilistic predictions,
with the recent success of deep neural networks, work on model compression focused on com-
pressing large deep neural networks or ensembles thereof into smaller ones, i.e., with less layers,
less hidden units or less parameters. Pursuing that direction, Ba & Caruana (2014) showed that an
ensemble of deep neural networks with few convolutional layers can be compressed into a single
layer network as accurate as a deep one. In a complementary work, Hinton et al. (2015) focused on
compressing ensembles of deep networks into deep networks of the same architecture. They also ex-
perimented with softening predictions of the teacher by dividing the logits by a constant greater than
one called temperature. Using the techniques developed in prior work and adding an extra mimic
layer in the middle of the student network, Romero et al. (2014) demonstrated that a moderately

2



Workshop track - ICLR 2016

deep and wide convolutional network can be compressed into a deeper and narrower convolutional
network with much fewer parameters than the teacher network while also increasing accuracy.

2.1 LSTM

One example of a very powerful neural network architecture yielding state-of-the-art performance
on a range of tasks, yet expensive to run at test time, is the long short-term memory network (LSTM)
(Hochreiter & Schmidhuber, 1997; Graves & Schmidhuber, 2005; Graves et al., 2013), which is a
type of recurrent neural network (RNN). The focus of this work is to use this model as a teacher for
model compression.

LSTMs exhibit superior performance not only in speech, but also in handwriting recognition and
generation (Graves & Schmidhuber, 2009; Graves, 2014), machine translation (Sutskever et al.,
2014) and parsing (Vinyals et al., 2015), thanks to their ability to learn longer-range interactions.
For acoustic modeling though, the difference between a non-recurrent network and an LSTM using
full-length sequences is two fold: the use of longer context while deciding on the current frame
label, and the type of processing in each cell (the LSTM cell compared to a sigmoid or ReLU). The
LSTM network used in our paper uses a fixed-size input sequence and only predicts the output for
the middle item of the input sequence. In this respect, we follow the design proposed in the speech
literature by Mohamed et al. (2015). We use acoustic models that use the same context window as
a non-recurrent network (limited to about 0.5 s) while using the LSTM cells for processing each
frame. The LSTM cells process frames in the same bidirectional manner that any other bidirectional
LSTM would do, but they are limited by the size of the contextual window. Details of the LSTM
used in this work can be found in the supplementary material. This style of modelling has important
benefits. One motivation to use such an architecture is that acoustic modeling labels (i.e. target
states) are local in nature with an average duration of about 450 ms. Therefore, the amount of
information about the class label decays rapidly as we move away from the target. Long-term
relations between labels, on the other hand, are handled using a language model (during testing) or
a lattice of competing hypotheses in case of lattice training (Veselý et al., 2013; Kingsbury, 2009).
Another motivation to prefer models that utilise limited input windows is faster convergence due to
the ability to randomise samples on the frame level rather than on the utterance level. A practical
benefit of using a fixed-length window is that using bidirectional architectures becomes possible in
real time setups when the delay in response cannot be long.

3 VISION-STYLE CNNS FOR SPEECH RECOGNITION

Convolutional neural networks (LeCun et al., 1998) were considered for speech for many years (Le-
Cun & Bengio, 1998; Lee et al., 2009), though only recently have become very successful (Abdel-
Hamid et al., 2012; Sainath et al., 2013; Abdel-Hamid et al., 2014; Sainath et al., 2015). These
CNN architectures are quite different from those used in computer vision. They use only two or
three convolutional layers with large filters followed by more fully connected layers. They also
only use convolution or pooling over one dimension, either time or frequency. When looking at a
spectrogram in Figure 3, it is obvious that, like what we observe in vision, similar patterns re-occur
both across different points in time and across different frequencies. Using convolution or pooling
across only one of these dimensions seems suboptimal. One of the reasons for the success of CNNs
is their invariance to small translations and scaling. Intuitively, small translations (corresponding to
the pitch of voice) or scaling (corresponding to speaking slowly or quickly) should not change the
class assigned to a window of speech. We hypothesise that classification of windows of speech with
CNNs can be done more effectively with architectures similar to ones used in object recognition.

Looking at this problem through the lens of computer vision, we use a convolutional network ar-
chitecture inspired by the work of Simonyan & Zisserman (2014). We only use small convolutional
filters of size 3×3, non-overlapping 2×2 pooling regions and our network also has more layers than
networks previously considered for the purpose of speech recognition. The same architecture is
shared between both baseline and student networks (described in detail in Figure 1, contrasted to a
widely applied architecture proposed by Sainath et al. (2013)).
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Figure 1: Left panel: configuration of the
vision-style convolutional network used
in our experiments. We used the stride of
two pixels for max-pooling layers and one
pixel for convolutional layers. We used no
zero-padding in the first two convolutional
layers and one pixel zero-padding for all
remaining convolutional layers. Right
panel: configuration of the CNN very
closely resembling the one in the work of
Sainath et al. (2013), adjusted to match the
number of parameters in our network.

4 COMBINING BIDIRECTIONAL LSTMS WITH VISION-STYLE CNNS

Both LSTMs and CNNs are powerful models, but the mechanisms that guide their learning are
quite different. That creates an opportunity to combine their predictions, implicitly averaging their
inductive biases. A classic way to perform this is ensembling, that is, to mix posterior predictions of
the two models in the following manner:

p(y|xi) = γpLSTM(y|xi) + (1− γ)pCNN(y|xi),

where γ ∈ [0, 1]. The notation pLSTM(y|xi) and pCNN(y|xi) denotes probabilities of class y given a
feature vector xi, respectively for the LSTM and the baseline CNN. It is interesting to combinte these
two types of models because they seem to meet the conditions of Dietterich (2000): “a necessary
and sufficient condition for an ensemble of classifiers to be more accurate than any of its individual
members is if the classifiers are accurate and diverse". Although ensembling is known to be very
successful, it comes at the cost of executing all models at test time.

We propose an alternative which is to use model compression. Because capacity of the two models
is similar we call it “model blending” rather than “model compression”. To combine the inductive
biases of both the LSTM and the CNN, we can use a training objective that combines the loss
function on the hard labels from the training data with a loss function which penalises deviation
from predictions of the LSTM teacher. That is, we optimise

L(λ) = λ

[
−
∑

i

∑
c

pLSTM(c|xi) log qCNN(c|xi)

]
+ (1− λ)

[
−
∑

i

log qCNN(yi|xi)

]
, (1)

where pLSTM(c|xi) is the probability of class c for training example xi estimated by the teacher,
qCNN(c|xi) is the probability of class c assigned to training example xi by the student and yi is the
correct class for xi. The coefficient λ ∈ [0, 1] controls the weight of the errors on soft and hard
labels in the objective. When λ = 0 the network is only learning using the hard labels, ignoring the
teacher, while λ = 1 means that the networks is only learning from the soft labels provided by the
teacher, ignoring the hard labels. When λ ∈ (0, 1) optimising the objective in Equation 1 yields a
form of hybrid model which is learning using the guidance of the teacher, although not depending
on it alone. With a symmetric objective, we could train an LSTM using the guidance of the CNN.
Instead, we blend into the CNN for efficency at test time.

We motivate the choice of working directly with probabilities instead of logits (cf. section 2) in
two ways. First, it is more direct to interpret retaining a subset of predictions of a network when
considering probabilities (cf. Equation 2). We can simply look at the fraction of probability mass
a subset of outputs covers. This will be necessary in our work (see section 5). Secondly, when
using both soft and hard targets, it is easier to find an appropriate λ and learning rate, when the two
objectives we are weighting together are of similar magnitudes and optimisation landscapes.

5 EXPERIMENTS

In our experiments we use the Switchboard data set (Godfrey et al., 1992), which consists of 309
hours of transcribed speech. We used 308 hours as training set and kept one hour as a validation
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Figure 2: Left: distribution of the lengths (numbers of frames) of utterances in the training data.
Center: fraction of class probability in the data covered as a function of the number of most likely
classes included. Dashed line indicates what the curve would look like if the labels had a uniform
distribution. The distribution is very non-uniform. Right: average fraction of probability mass of the
teacher LSTM predictions covered as a function of the number of most probable classes retained.
Dashed lines indicate the number of classes necessary to cover 99%, 99.5% and 99.9% of probability
mass. Clearly, only very few top classes in the total of 9000 are necessary to cover a large majority
of probability mass.

set. The data set is segmented into 248k utterances, i.e. continuous pieces of speech beginning
and ending with a clear pause. Each utterance consists of a number of frames, i.e. 25 ms intervals
of speech, with a constant shift of 10 ms. For every frame, the extracted features are 31-channel
Mel-filterbank parameters passed through a 10-th root nonlinearity. Features for one utterance are
visualised in Figure 3. To form our training and validation sets we extract windows of 41 frames,
that is, the frame whose label we want to predict, 20 frames before it and 20 frames after it. As
shown in Figure 2, distribution of the lengths of utterances is highly non-uniform, therefore to keep
the sampling unbiased, we sample training examples by first sampling an utterance proportionally
to its length and then sampling a window within that utterance uniformly. To form the validation
set we simply extract all possible windows. In both cases, we pad each utterance with zeros at the
beginning and at the end so that every frame in each utterance can be drawn as a middle frame.
Every frame in the training and validation set has a label. The 9000 output classes represent tied
tri-phone states that are generated by an HMM/GMM system (Young et al., 1994). Forced alignment
is used to map each input frame to one output state using a baseline DNN model. The distribution
of classes in the training data is visualised in Figure 2. We call the frame classification error on the
validation set frame error rate (FER).

The test set is a part of the standard Switchboard benchmark (Hub5’00 SW). It was sampled from the
same distribution as the training set and consists of 1831 utterances. There are no frame-level labels
in the test set and the final evaluation is based on the ability to predict words in the test utterances. To
obtain the words predicted by the model, frame label posteriors generated from the neural network
are first divided by their prior probabilities then passed to a finite state transducer-based decoder to be
combined with 3-gram language model probabilities to generate the most probable word sequences.
Hypothesized word sequences are aligned to the human reference transcription to count the number
of word insertions (I), deletions (D), and substitutions (S). Word error rate (WER) is defined as
WER = S+D+I

N × 100, where N is the total number of words in the reference transcription.

0 100 200 300 400 500 600

Figure 3: Example utterance from Switchboard. The x-axis indicates time and the y-axis frequency.

Since the teacher model is very slow at prediction time, it is impractical to run a large number of
experiments if the teacher must repeatedly be executed to train each student. Unfortunately, running
the teacher once and saving its predictions to disk is also problematic — because the output space
is large (9000 classes), storing the soft labels for all classes would require a large amount of space
(≈ 3.6 TB). Moreover, to sample each minibatch in an unbiased manner, we would need constant
random access to disk, which again would make training very slow. To deal with that problem
we save predictions only for the small subset of classes with the highest predicted probabilities. To
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determine whether this is a viable solution, we checked what percentage of the total probability mass,
averaged over the examples in the training set, is covered by the C most likely classes according to
the teacher model. We denote that set TOPC(x). That is, we compute

M(C) =
1
|{xi}|

∑
xi

∑
y∈TOPC(xi)

p(y|xi), (2)

where p(y|x) denotes the posterior probability of class y given a feature vector xi. This relationship
for one of our LSTM models is shown in Figure 2. We found that, with very few exceptions,
posteriors over classes are concentrated on very few values. Therefore, we decided to continue
our experiments retaining top classes covering not more than 90 classes for each training example,
cutting off after covering 99% of the probability mass. This allows us to store soft labels for the
entire data set in the RAM, making unbiased sampling of training data efficient.

5.1 BASELINE NETWORKS

We used Lasagne, which is based on Theano (Bergstra et al., 2010), for implementing CNNs. We
used the architecture described in Figure 1. For training of the CNN baseline we used mini-batches
of size 256. Each epoch consisted of 2000 mini-batches. Hyper-parameters of the baseline networks
were: initial learning rate (1.7×10−2), momentum coefficient (0.9, we used Nesterov’s momentum)
and a learning rate decay coefficient (0.7). Because the data set we used is very large (309 hours, 18
GB), the only form of regularisation we used was early stopping in the following form. After every
epoch we measured the loss on the validation set. If the loss did not improve for five epochs, we
multiplied the learning rate by a learning rate decay coefficient. We stopped the training after the
learning rate was smaller than 5 × 10−5. It took about 200 epochs to finish. We repeated training
with three different random seeds. For comparison, we also trained a CNN very similar to the one
proposed by Sainath et al. (2013), adjusted to match the number of parameters in our network. We
used the same training procedure and hyperparameters.

The bidirectional LSTM teacher networks we used are very similar to the one in the work of Mo-
hamed et al. (2015). We trained three models, all with four hidden layers, two with 512 hidden
units for each direction and one with 800 hidden units for each direction. The training starts with
the learning rate equal to 0.05 for one of the smaller models and 0.08 for the other ones. We used
the standard momentum with the coefficient of 0.9. After three epochs of no improvement of frame
error rate on the validation set, the learning rate was multiplied by 2

3 and training process was rolled
back to the last epoch which improved validation error. Training stopped when learning rate was
smaller than 10−5. It took about 75 epochs (2000 minibatches of 256 samples) to finish the training.

The results for these models are shown in Table 1. Our vision-style CNN achieved 14.1 WER (aver-
aged over three random seeds), the larger LSTM achieved 14.4 WER, and a CNN of an architecture
proposed by Sainath et al. (2013) achieved 15.5 WER. Interestingly, although our LSTM teachers
outperform our vision-style CNN trained with hard labels in terms of FER, the results in WER,
which is the metric of primary interest, are the opposite. This discrepancy between FER and WER
has been observed in the speech community before, for example by Sak et al. (2014) for LSTMs
and DNNs. FER and WER are not always perfectly correlated because FER is conditioned on a
model that generated the frame alignment in the first place (which might not be correct for all the
cases). FER also penalizes misclassifications of boundary frames which might not be of importance
as long as the correct target state is recognized. On the other hand, WER is calculated taking into
account information about neighbouring frames (i.e. smoothness) as well as external knowledge
(e.g. a language model) which corrects many of the misclassifications made locally.

5.2 ENSEMBLES OF NETWORKS

The first approach we use to combine the two types of models is to create ensembles. The results
in Figure 4 and Figure 5 indicate that for the problem we consider it is beneficial to combine neural
networks from different families, which have different inductive biases. Even though CNNs are
much weaker in FER, combining an LSTM with a vision-style CNN achieves the same FER as
an ensemble of two LSTMs (both of which are more accurate than the CNN), and actually yields
better WER than ensembles of two CNNs or two (superior) LSTMs. Interestingly, ensembling two
CNNs yields almost no benefit in WER. To complete the picture we tried ensembles with more than
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Table 1: FER and WER for our models. The numbers for the vision-style CNNs and LSTM→CNN
blending are averages over three random seeds. The numbers for smaller LSTM are given for a
better of the two on FER, the other one achieved 34.71% FER and the same WER.

FER WER model size execution time
Sainath et al. (2013)-style CNN 37.93% 15.5 ≈ 75M × 0.75
vision-style CNN 35.51% 14.1 ≈ 75M × 1.0
smaller LSTM 34.27% 14.8 ≈ 30M × 3.3
bigger LSTM 34.15% 14.4 ≈ 65M × 5.8
LSTM + CNN ensemble (γ = 0.5) 32.4% 13.4 ≈ 130M × 6.8
LSTM→ CNN blending (λ = 0.75) 34.11% 13.83 ≈ 75M × 1.0
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Figure 4: FER of ensembles as a function of γ.
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Figure 5: WER of ensembles as a function of γ.

two models. An ensemble of three LSTMs achieved 31.98% FER and 13.7 WER, an ensemble of
three CNNs achieved 33.31% FER and 13.9 WER, thus, in both cases, yielding very little gain over
ensembles of two models of these types. On the other hand adding a CNN to the ensemble of two
LSTMs yielded 31.57% FER and 13.2 WER. The benefits of adding more models to the ensemble
appear to be negligible if the ensemble contained at least one model of each type already. Although
the ensembles we trained are very effective in terms of WER, it comes at the cost of a large increase
of computation at test time compared to the baseline CNN. Because of the cost of the LSTMs, our
best two-model ensemble is about 7 times slower than our vision-style CNN (cf. Table 1).

We also compared the errors made by CNNs and LSTMs to see if the models are qualitatively
different. We observe that a CNN tends to make similar errors as other CNNs, an LSTM tends to
make similar errors as other LSTMs, but CNNs and LSTMs tend to make errors that are less similar
to each other than the CNN-CNN and LSTM-LSTM comparisons. Overall, we conclude that the
inductive biases of LSTM and CNN are complementary.

5.3 NETWORKS TRAINED WITH MODEL BLENDING VIA MODEL COMPRESSION

The next question we tackle is whether it is possible to achieve an effect similar to creating an en-
semble without having to execute all models at prediction time. We attack this with model blending
via model compression. To do this, we took predictions of the two best performing LSTMs in Ta-
ble 1 and averaged their predictions to form a teacher model. Such a teacher model achieves 32.4%
FER and 13.4 WER. As we mentioned earlier, it is infeasible to use all predictions during training.
Therefore we only store a subset of classes predicted by the teacher for each frame. Table 2 shows
what fraction of probability mass is covered when storing different maximum number of predictions
(C). It is particularly interesting to understand how many predictions of the teacher model are suffi-
cient to achieve good performance to test the dark knowledge hypothesis (Hinton et al., 2015) which
states that information about classes predicted with low probability is important to the success of

Table 2: Average fraction of probability mass covered and average number of classes retained after
truncating predictions of an ensemble of two LSTMs to fit them in the memory.

maximum number of classes retained 1 3 10 30 90
average fraction of probability mass covered 73.20% 91.19% 96.68% 98.38% 99.03%
average number of classes retained 1.0 2.89 6.79 13.33 23.96
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Figure 6: FER of the CNN student as a function
of λ as C, the maximum of number of teacher
outputs retained, varies from 1 to 90. Dashed
line indicates performance of a baseline CNN.
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Figure 7: WER of the CNN student as a function
of λ as C, the maximum of number of teacher
outputs retained, varies from 1 to 90. Dashed
line indicates performance of a baseline CNN.

model compression. We use C ∈ {90, 30, 10, 3, 1}. We also vary the parameter λ which controls
how much the student is learning from the teacher and how much it is learning from hard labels.
The architecture and training procedure for the students is the same as for the baseline. For every
combination of C and λ we report an average over three random seeds.

The results are shown in Figure 6 and Figure 7. The best model achieved lower FER (34.11%)
and lower WER (13.83) than any of the individual models. Furthermore, the blended model has
fewer parameters and is 6.8 times faster at test time than the ensemble of the LSTM and the CNN.
For all numbers of teacher predictions retained (C) the best performance was achieved for λ ∈
{0.25, 0.5, 0.75}. That highlights the importance of blending the knowledge extracted from the
teacher model with learning from hard labels within the architecture of the student.

Our experiments show that, at least for this task, it is not critical to use the teacher predictions for
all classes. Just the 30 most likely predictions ( 1

300 of all classes!) is enough. Bringing the number
up to 90 classes did not improve the student WER performance. However, performance deteriorates
dramatically when too few predictions are used, suggesting that some dark knowledge is needed.

Finally, we experimented with using a CNN as a teacher for a CNN of the same architecture, i.e.
we took predictions of a baseline vision-style CNN and used its predictions to train another CNN
of the same architecture (with λ = 0.5 and C = 90). Such a student achieves on average (over
3 random trials) 34.61% FER and 14.1 WER, which is, as we expected, worse than a student of
the LSTMs since the two models are more similar, but still significantly better than the baseline in
terms of FER. These results are consistent with the results for ensembles (cf. Figure 4 and Figure 5).
Clearly, blending dissimilar models like CNNs and LSTMs is stronger.

6 RELATED WORK

A few papers have applied model compression in speech recognition settings. The most similar is by
Chan et al. (2015) who compressed LSTMs into small DNNs without convolutional layers. Using
the soft labels from an LSTM, they were able to show an improvement in WER over the baseline
trained with hard labels. The main difference between this work and ours is that their students are
non-convolutional and tiny. While this allows for a decent improvement over the baseline, since the
student network is much smaller, its performance is still much weaker than performance of a single
model of the same type as the teacher. Hence, this work addresses a different question than we do,
i.e. whether a network without recurrent structure can perform as well or better as an LSTM when
using soft labels provided by the LSTM. Model compression was also successfully applied to speech
recognition by Li et al. (2014) who used DNNs without convolutional layers both as a teacher and a
student. The architecture of the two networks was the same except that the student had less hidden
units in each layer. Finally, work in the opposite direction was done by Wang et al. (2015) and Tang
et al. (2015). They demonstrated that when using a small data set for which an LSTM is overfitting,
a deep non-convolutional network can provide useful guidance for the LSTM. It can come either in
the form of pre-training the LSTM with soft labels from a DNN or training the LSTM optimising a
loss mixing hard labels with soft labels from a DNN. We are not aware of previous work on model
compression in the setting, in which the student and the teacher are of similar capacity.
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7 DISCUSSION

The main contribution of this paper is introducing the use of model compression in an unexplored
setting where both the teacher and student architectures are powerful ones, yet with different induc-
tive biases. Thus, rather than calling it model compression we use the term “model blending”. We
showed that the LSTM and the CNN learn different kinds of knowledge from the data which can be
leveraged through simple ensembling or model blending via model compression. We provided ex-
perimental evidence that CNNs of appropriate vision-style architecture have the necessary capacity
to learn accurate predictors on large speech data sets and gave a simple, practical recipe for improv-
ing the performance of CNN-based speech recognition models even further at no cost during test
time. We hypothesise that the very recent advances in training even deeper convolutional networks
for computer vision (Srivastava et al., 2015; He et al., 2015) will yield improved performance in
speech recognition and would further improve our results. Finally, by using a CNN to teach a CNN,
we have shown a very easy way of improving a neural network without training networks of more
than one architecture or even forming ensembles.
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SUPPLEMENTARY MATERIAL

DETAILS OF THE LSTM

Given a sequence of input vectors x = (x1, . . . , xT ), an RNN computes the hidden vector sequence
h = (h1, . . . , hT ) by iterating the following from t = 1 to T :

ht = H (Wxhxt +Whhht−1 + bh) .

The W terms denote weight matrices (e.g. Wxh is the input-hidden weight matrix), the b terms
denote bias vectors (e.g. bh is hidden bias vector) andH is the hidden layer function.

While there are multiple possible choices forH, prior work (Graves, 2012; Graves et al., 2013; Sak
et al., 2014) has shown that the LSTM architecture, which uses purpose-built memory cells to store
information, is better at finding and exploiting longer context. The left panel of Figure 8 illustrates
a single LSTM memory cell. For the version of the LSTM cell used in this paper (Gers et al., 2003)
H is implemented by the following composite function:

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) ,
ft = σ (Wxfxt +Whfht−1 +Wcfct−1 + bf ) ,
ct = ftct−1 + it tanh (Wxcxt +Whcht−1 + bc) ,
ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) ,
ht = ot tanh(ct),

where σ is the logistic sigmoid function, and i, f , o and c are respectively the input gate, forget
gate, output gate and cell activation vectors, all of which are the same size as the hidden vector h.
The weight matrices from the cell to gate vectors (e.g. Wci) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

yt∗
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Figure 8: Left panel: the LSTM cell. Figure from Graves et al. (2013). Right panel: two-layer
bidirectional RNN with one output.

One shortcoming of conventional RNNs is that they are only able to make use of previous context.
Bidirectional RNNs (BRNNs) (Schuster & Paliwal, 1997) exploit past and future context by pro-
cessing the data in both directions with two separate hidden layers, which are then fed forwards to
the same output layer. A BRNN computes the forward hidden sequence

−→
h = (

−→
h 1, . . . ,

−→
h T ) and

the backward hidden sequence
←−
h = (

←−
h 1, . . . ,

←−
h T ) by iterating from t = 1 to T :

−→
h t = H

(
W

x
−→
h
xt +W−→

h
−→
h

−→
h t−1 + b−→

h

)
,

←−
h t = H

(
W

x
←−
h
xt +W←−

h
←−
h

←−
h t+1 + b←−

h

)
.

Combining BRNNs with LSTMs gives the bidirectional LSTM, which can access the context in both
directions.
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Finally, deep RNNs can be created by stacking multiple RNN hidden layers on top of each other,
with the output sequence of one layer forming the input sequence for the next. Assuming the same
hidden layer function is used for all N layers in the stack, the hidden vector sequences hn are
iteratively computed from n = 1 to N and t = 1 to T :

hn
t = H (Whn−1hnhn−1

t +Whnhnhn
t−1 + bnh

)
,

where we define h0 = x.

Deep bidirectional RNNs can be implemented by replacing each hidden sequence hn with the for-
ward and backward sequences

−→
hn and

←−
hn, and ensuring that every hidden layer receives input from

both the forward and backward layers at the level below. If bidirectional LSTMs are used for the
hidden layers we get deep bidirectional LSTMs, the architecture we use as a teacher network in this
paper.

In this work, following Mohamed et al. (2015), we only predict the label of the middle frame, hence
the network output is computed as yt∗ = WhN yh

N
t∗ + by . This also implies that in the last hidden

layer the forward sequence runs only from 1 to t∗ and the backward sequence runs only from T to
t∗. This is illustrated in the right panel of Figure 8.
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6.2 Comments on the paper

In one of the experiments in this paper we have showed that blending a CNN

into another CNN of the same architecture improves FER but, unfortunately,

does not improve the WER. Although this is not very practical result for speech

recognition as in that domain the objective is WER and not FER, it is interesting

if transferable to other domains, for example to computer vision.

An obvious question to ask in this context is whether the same trick would

work more than once. Can we use the CNN which was a student in this experi-

ment as a teacher for another CNN to form a chain of such models? We performed

an experiment to verify the answer to this question. In order to do that, we took

the best (in terms of FER) of the three CNNs students of the CNN in our paper

and used this model as a teacher. FER of this model was 34.43%. We trained

three new students with λ = 0.5 and C = 90 using three different random seeds.

These models achieved 34.56% FER on average, not improving over their teacher,

which seems to indicate that a single blending procedure is enough.



Chapter 7

Conclusions

7.1 Summary

In this thesis we demonstrate how to exploit the concept of diversity for effi-

cient machine learning in a number of contexts. First, in Chapter 3 we show

how knowledge of diversity in the structure of the training data set can be ex-

ploited to achieve a better estimate of the test error. Secondly, in Chapter 4 and

Chapter 5 we demonstrate in the context of unsupervised learning how diver-

sity in the representation learnt can be enforced. Then, finally, in Chapter 6 we

show that difference in the inductive biases of a neural network architectures can

be exploited to achieve higher accuracy in a supervised task by model blending

through model compression.

7.2 Future directions

One of the limitations of the models we considered in Chapter 4 and Chapter 5 is

that we are using only single-layer fully-connected networks. While experiments

with such networks are sufficient to demonstrate the usefulness of our ideas,

modern computer vision tasks require being able to handle much larger inputs,

which is not feasible using only fully-connected layers. To do that we would

need to use convolutional autoencoders (e.g. Masci et al. [2011], Makhzani and

Frey [2015b]) instead. To achieve results competitive with the state-of-the art we

should also use deeper networks.

In Chapter 6 we showed that neural network architectures which work very

well in computer vision tasks are also very effective for speech recognition and
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the two domains are quite similar. This suggests that the type of neural network

architectures used is not an isolated property transferable between these two

modalities. More elements of computer vision are likely to be found useful in

the speech community. One particular example of such technique we hypothesise

which might have a bigger impact on speech recognition is data augmentation.

Another one might be using even deeper convolutional networks [He et al., 2015,

Srivastava et al., 2015].

Blending of the LSTM into the CNN we performed in Chapter 6 is not the

only possibility. CNN could also be blended into an LSTM. We do not do that

because the CNNs are a lot faster at prediction time. One more interesting

direction, which was not yet explored, would be to try to use an LSTM as a

teacher of a simpler recurrent neural network. This experiment could bring some

insight into how critical it is to use an LSTM cells in the recurrent network.

Finally, we hypothesize that soft labels provided by the teacher model can

be used not only for model compression or model blending but also to assess

difficulties of different training samples. Possible ways of quantifying a difficulty

of an example include predicted probability of the correct class, entropy of the

predictions or the combination of both. These estimates could be used to create

a series of learning problems, starting from easy ones and getting progressively

harder. Using this sequence of tasks would be a type of curriculum learning

procedure similar to what we proposed in Chapter 4.
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