CSCI 2244 – Homework 9

Out: Saturday, November 16, 2019 Due: Saturday, November 23, 2019, 11:59pm

This homework consists of written exercises. You *must* type your solutions. See the "Assignments" section in the syllabus for advice about doing this. You should submit your homework via Canvas. In particular, you should upload a pdf file called:

FirstName_LastName_Homework9.pdf

Please use your full first name and last name, as they appear in official university records. The reason for doing so is that the TAs and I must match up these names with the entries in the gradebook.

1 Martingales

Task 1.1 (10 pts). You flip a fair coin repeatedly until the sequence TTHT occurs. Let N be the total number of coin flips you make. Find $\mathbb{E}[N]$ by **two methods**: first using Markov chain techniques, and then by constructing an appropriate martingale and using the stopping theorem.

Task 1.2 (5 pts). You roll a fair 6-sided die. Let N be the value shown. You then flip N fair coins. Let H be the number of heads you obtain. What is $\mathbb{E}[H]$?

Task 1.3 (10 pts). You repeatedly roll a fair 6-sided die until you roll three 1s in a row. Let X be the sum of all your die roll values. (For example, if your sequence of rolls was 2, 6, 1, 1, 1, then X would be 11). What is $\mathbb{E}[X]$?

Task 1.4 (5 pts). Let X_1, X_2, \ldots be a sequence of independent and identically distributed random variables. Let $\mathbb{E}[X_1] = 0$ and $\mathsf{Var}[X_1] = \sigma^2$. Set

$$Z_n = \left(\sum_{i=1}^n X_i\right)^2 - n\sigma^2$$

Show that Z_1, Z_2, \ldots is a martingale.