CSCI 2244 – Homework 6

Out: Friday, October 11, 2019 Due: Friday, October 25, 2019, 11:59pm

This homework consists of **only written** exercises. You *must* type your solutions. See the "Assignments" section in the syllabus for advice about doing this. You should submit your homework via Canvas. In particular, you should upload a PDF file called:

FirstName_LastName_Homework6.pdf

Please use your full first name and last name, as they appear in official university records. The reason for doing so is that the TAs and I must match up these names with the entries in the gradebook.

1 Transforming Continuous Random Variables

Let X be a continuous random variable, and let $g : \mathbb{R} \to \mathbb{R}$ be a function. Set Y to be the random variable g(X). If X has a CDF F_X and density f_x , we might wonder what the CDF and density of Y are. Section 4.2.4 of the textbook describes how to find the density f_Y when X is a uniform [0, 1] random variable and g is a differentiable one-to-one function. Take a look at that.

What about when X is a general continuous random variable, not just a uniform one? In that case, we can work this out if g is a strictly increasing function with an inverse, g^{-1} . Then we have that:

$$F_Y(t) = P(Y \le t) \tag{1}$$

$$= P(g(X) \le t) \tag{2}$$

$$=P(X \le g^{-1}(t)) \tag{3}$$

$$=F_X(g^{-1}(t))\tag{4}$$

Differentiating F_Y , we get then that:

$$f_Y(t) = f_X(g^{-1}(t))\frac{d}{dt} \left(g^{-1}(t)\right)$$
(5)

Task 1.1 (12 pts). Let X be random variable with uniform distribution on the interval [0, 1]. Using the above facts or the result from the textbook, find the density and cumulative distribution of the following random variables:

- (a) Y = X + 2
- (b) $Z = X^3$
- (c) $R = \log(X+1)$

2 Expected Values and Variances of Continuous Random Variables

If X is a continuous random variable with density f_X , then the expected value of X can be found by:

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} t f_X(t) dt$$

If $g : \mathbb{R} \to \mathbb{R}$ is a continuous function, then we have:

$$\mathbb{E}[g(X)] = \int_{\infty}^{\infty} g(t) f_X(t) dt$$

Task 2.1 (12 pts). Let X be a random variable with density f_X . Assume that $f_X(t) = 0$ if t < -1 or t > 1. Calculate $\mathbb{E}[X]$ and $\mathsf{Var}[X]$ for each case below, assuming that f_X has the value stated for -1 < t < 1:

- (a) $f_X(t) = 1/2$
- (b) $f_X(t) = |t|$
- (c) $f_X(t) = \frac{3}{4} \left(1 t^2 \right)$

3 Convolution

Let X and Y be two independent continuous random variables with density functions f_X and f_Y respectively. Let Z = X + Y. Then Z has density f_Z given by the convolution of f_X and f_Y :

$$f_Z(t) = (f_X * f_Y)(t) = \int_{-\infty}^{\infty} f_X(t-y) f_Y(y) dy$$
$$= \int_{-\infty}^{\infty} f_Y(t-x) f_X(x) dx$$

Task 3.1 (12 pts). Let X and Y be independent, with densities f_X and f_Y . Let Z = X + Y. Find the density f_Z of Z when f_X and f_Y have the following values:

(a)
$$f_X(t) = f_Y(t) = \begin{cases} \frac{t}{2} & \text{if } 0 < t < 2\\ 0 & \text{otherwise} \end{cases}$$

(b) $f_X(t) = \begin{cases} \lambda e^{-\lambda t} & \text{if } t > 0\\ 0 & \text{otherwise} \end{cases}$ $f_Y(t) = \begin{cases} \mu e^{-\mu t} & \text{if } t > 0\\ 0 & \text{otherwise} \end{cases}$ where $\mu > 0, \lambda > 0$ and $\mu \neq \lambda$

2

4 Normal Approximation

Task 4.1 (6 pts). Let X_1, \ldots, X_n be independent Bernoulli(.5) random variables. Set $X = X_1 + \cdots + X_n$. By the Central Limit Theorem, we know that if n is large enough, then the distribution of X is approximately equal to a normal distribution with mean $\mathbb{E}[X]$ and standard deviation $\sqrt{\operatorname{Var}[X]}$. Consider the case when n = 100. Approximate $P(|X - 50| \ge z)$ for $z \in \{10, 20, 30, 40\}$ using this normal approximation. How do these values compare with the bounds we got from Chebyshev/Chernoff in homework 4?

In Python 3, you can compute the CDF of a normal distribution using norm.cdf from scipy.stats as in the example below:

```
>>> from scipy.stats import *
>>> # norm.cdf(t, mu, sigma) gives P(Y <= t) when Y has normal distribution
... # with mean mu and **standard deviation** sigma
...
>>> norm.cdf(0, 0, 1)
0.5
>>> norm.cdf(-1, 0, 1)
0.15865525393145707
>>> norm.cdf(2, 0, 1)
0.9772498680518208
>>>
```