
1

1

Application Servers
G22.3033-011

Session 2 – Sub-Topic 2
Enterprise Architecture Frameworks (EAFs)

&
Pattern Driven EAFs

Dr. Jean-Claude Franchitti

New York University
Computer Science Department

Courant Institute of Mathematical Sciences

2

Definition: Software Architecture

Software Architecture
A set of artifacts (that is: principles, guidelines, policies, models,
standards, and processes) and the relationships between these
artifacts, that guide the selection, creation, and implementation of
solutions aligned with business goals
Software architecture is the structure of structures of an
information system consisting of entities and their externally
visible properties, and the relationships among them
A software architecture is a description of the subsystems and
components of a software system and the relationships between
them

Subsystems and components are typically specified in different
views to show the relevant functional and non-functional properties
of a software system
The software system is an artifact. It is the result of the software
design activity

2

3

Definition: Component

Component
A component is an encapsulated part of a software
system
A component has an interface
Components serve as the building blocks for the
structure of a system
At a programming-language level, components may be
represented as modules, classes, objects or as a set of
related functions

4

Definition: Subsystem

Subsystem
A subsystem is a set of collaborating
components performing a given task
A subsystem is considered a separate entity
within a software architecture

It performs its designated task by interacting with
other subsystems and components…

3

5

Definition: Architectural Style

Architectural Style
An architectural style is a description of component types and
their topology
It also includes a description of the pattern of data and control
interaction among the components and an informal description of
the benefits and drawbacks of using that style

Architectural styles are important engineering artifacts because they
define classes of designs along with their associated known
properties
They offer experience-based evidence of how each class has been
used historically, along with qualitative reasoning to explain why
each class has its specific properties

"An architectural style is a coordinated set of architectural
constraints that restricts the roles/features of architectural
elements and the allowed relationships among those elements
within any architecture that conforms to that style."

6

Definition: Framework

Framework
A set of assumptions, concepts, values, and practices
that constitutes a way of viewing the current
environment
A software framework is a partially complete software
(sub-) system that is intended to be instantiated

It defines the architecture for a family of (sub-) systems and
provides the basic building blocks to create them
It also defines the places where adaptations for specific
functionality should be made

4

7

Definition: ABASs

ABASs: Attribute Based Architectural Styles
ABASs build on architectural styles to provide a
foundation for more precise reasoning about
architectural design by explicitly associating a
reasoning framework (whether qualitative or
quantitative) with an architectural style
These reasoning frameworks are based on quality
attribute-specific models, which exist in the various
quality attribute communities (such as the performance
and reliability communities).

8

Definition: Architectural Pattern

Architectural Pattern
An architectural Pattern expresses a fundamental
structural organization schema for software systems
It provides a set of predefined subsystems, their
responsibilities, and includes rules and guidelines for
organizing the relationships between them

5

9

Definition: Design Pattern

Design Pattern
A design pattern provides a scheme for refining the
subsystems or components of a software system, or the
relation ships between them
It describes a commonly-recurring structure of
communicating components that solves a general
design problem within a particular context.

10

Definition: Idioms

Idioms
An Idiom is a low-level pattern specific to a
programming language
An idiom describes how to implement particular
aspects of components or the relationships between
them using the features of the given language

6

11

Enterprise Reference Architectures

Enterprise Reference Architectures (ERAs) are “self-contained” Architectural
Styles that provide all the ingredients required to define or support a business
purpose in the Enterprise

ERAs are either generic to support custom development or domain/context
specific

Sample Horizontal ERAs
Service Management Architecture (SMA)

SMA is a reference architecture that encapsulates the SOA, STA, SOI, SOP, and SOM architectural styles
Object Management Architecture (OMA)

Enterprise Reference Architecture defined by the Object Management Group in the mid-90s
http://www.omg.org/gettingstarted/specintro.htm#OMA

Sample Vertical/Domain ERAs
Enterprise Content Management (ECM)
Customer Relationship Management (CRM)
Business Intelligence (BI)
Business Process Management (BPM)
Enterprise Resource Planning (ERP)
Groupware/Collaboration

12

Enterprise Reference Elements
Reference elements correspond to building blocks (a.k.a., prime citizens) in a given
reference architecture

For example, application components are building blocks in component-based architectures
developed with modern application servers based on the OMA ERA

The following patterns are part of the SMA Enterprise Reference Elements family:
Component Services

7

13

Sample Architectural Styles

Service Oriented Architecture (SOA)
SOA, at a basic level, is an architectural style made up of a collection of
loosely coupled services regardless of whether they have a technical or a
business focus
More generally, SOA is a software architecture of services, policies,
practices and frameworks in which components can be reused and
repurposed rapidly in order to achieve shared and new functionality

This enables rapid and economical implementation in response to new
requirements thus ensuring that services respond to perceived user needs

At the Enterprise level, SOA is typically used to implement business
functionality as a set of shared reusable business services

In this context, technical services such as underlying heterogeneous systems
are exposed purely as business services

SOA uses the object-oriented principle of encapsulation in which entities
are accessible only through interfaces and where those entities are
connected by well-defined interface agreements or contracts

14

Sample Architectural Styles (cont.)

Service Trader Architecture (STA)
The part of SMA that enables finding and binding to loosely coupled services in
an implementation independent way

Service Oriented Integration (SOI)
SOI is an SMA infrastructure component that enables the integration of loosely
coupled services

Service Oriented Process
In a Service Oriented Process (SOP), a process consists of an orchestrated flow of
services, and the process itself is exposed as a service
In this manner, the actual details of the process are abstracted from the client
application that consumes these services
Another benefit of a SOP is that it doesn't specify any particular user interface -
the process may be consumed automatically as part of a behind-the-scenes
integration activity, or it may be exposed to the user via a portal as part of an
interactive, workflow activity

Service Oriented Management (SOM)
SOM is an SMA infrastructure component that facilitates the use of business-
neutral services for monitoring, auditing, logging, notification, and security
purpose
SOM is an essential prerequisite for SMA as it enables loose coupling and coarse
granularity, enforces the Quality of Service (QoS) of SOI, and enables SOP by
managing business services and the processes that link them

8

15

Sample Architectural Styles (cont.)

N-Tier
EAI (Enterprise Application Integration)
MOM (Message Oriented Middleware)
POP (Presentation Oriented Publishing)
Data Warehouse
Portal-Centric Architecture
Pipe and Filters
Distributed Component
Product Line
Product
Enterprise Application
Stand Alone Architecture
Client Server Architecture
Message Bus
REST (Representational State Transfer)
RPC (Remote Procedure Call)
etc.

16

Service Management Architecture

9

17

Service Management Architecture

STA Support: Layers 1-3 (SMA.STA)
SOP Support: Layer 4 (SMA.SOMA.SOP)
SOI Support: Layer 6 (SMA.SOMA.SOI)
SOM Support: Layer 7 (SMA.SOMA.SOM)
SOM STA Service Group Support: Layer ->STAS Support: Layer 5
(SMA.SOMA.SOM->STAS)

18

Popular EAFs

Gartner's EAF
MetaGroup’s EPAS and AIS Programs

Zachman’s EAF
http://www.zifa.com/

Open Group’s TOGAF
http://www.opengroup.org/architecture/togaf8/index8.htm

Treasury Enterprise Application Framework (TEAF)
http://www.software.org/pub/architecture/teaf.asp

Feature Oriented Domain Analysis (FODA)
http://www.sei.cmu.edu/domain-engineering/FODA.html

Pattern Driven EAF …

10

19

Enterprise Perspective-View Grid

Business Information Application Technology

Enterprise Perspectives

20

Filling up the Business Grid

M
od

el
Pr

od
uc

t
Im

pl
.

D
ep

lo
ym

en
tA

rc
hi

te
ct

ur
al

 V
ie

w
s

11

21

Sample CBA Diagram
ud Partial Current CBA

AIMNew Business System

AFLAC Head Quarters

Associate Employer

Policy Holder

Markets
Products

Sells
Product

Send Sold
Product

Information

Accept Sold
Product

Information

Process Group
Information

Get Group
Information

Set Group
Infomation

Create New
Group Number

Setup New
Account

Manage Group
Information

New Account Setup
Team

New Account Contact
Team

Place
Welcome Call

Accept
Inv alid/Unset

Group

Process Policy
Information

Jet Issue Policy
Correct Policy

Information

New Business Team

1

1..*

«include»

«include»

«include»«include»

«include»

«include»
«include»

«include»

«include»

22

Identifying Possible Reference Architectures

12

23

Business Model Terminology

Business Process
A long running set of actions or activities performed
with specific business goals in mind

Business processes typically encompass multiple service
invocations
Examples of business processes are: Initiate New Employee,
Sell Products or Services, and Fulfill Order

In SOA terms, a business process consists of a series of
operations which are executed in an ordered sequence
according to a set of business rules

The sequencing, selection, and execution of operations is
termed service or process choreography
Typically, choreographed services are invoked in order to
respond to business events.

24

Business Model Terminology
(continued)

Choreography
A choreography is the observed sequence of message exchanged
by peer services when performing a unit of work
Services do not need to be orchestrated to perform a unit of work
(this is a concept that emerged and should have stayed in the last
century)

This is a very common misconception, actually most units of work
are accomplished by a series of "orchestrated services" performing a
choreography
There are several industry efforts in the area of choreography
languages, such as BPML (defined by BPMI.org), BPSS (defined by
ebXML), IBM's WSFL, Microsoft's XLANG, and
IBM/Microsoft/BEA's BPEL4WS and their companion
specifications WS-Coordination and WS-Transaction, etc.

13

25

Business Model Terminology
(continued)

Orchestration
An orchestration is a generalization of composition
that sequence services and provide additional logic to
process data that does not include data presentation
The same language can be used to perform a complex
unit of work achieved by invoking a series of service
operations
Any given orchestration is not forced to expose a
service interface

If it does, it is a composition
An orchestration is executed by an orchestration
engine

BPEL is an orchestration programming language

26

Business Model Catalog

cd Catalog Relationships

Business Model
Catalog

Business
Reference

Architecture

Business
Reference

Architecture
Document

Business
Reference

Architecture
Model Matrix

1 1..*

1
1

1
1

14

27

Business Reference Architecture Model Matrix

28

Various Types of Model Matrices

Catalog shows all applicable styles and patterns
for a reference architecture
Standard model matrix instance shows only the
patterns that apply to the ideal solution of a
problem
Domain Specific Model Matrix instance shows
only the patterns that apply to a solution imposed
by the problem constraints and restrictions

15

29

Capability and Requirements Matrix

30

Adding a New Reference Architecture

16

31

Sample Non-Functional Capabilities
Project-Based NFCs

Accuracy
Availability
Efficiency
Extensibility - Upgradeability – Modifiability – Adaptability- Flexibility
Interoperability
Portability
Recoverability
Reliability – Dependability
Reusability
Scalability – Capacity
Security – Accessibility – Anonymity- Vulnerability
Usability – Operability

Organizational NFCs
Readability – Simplicity – Understandability
Maintainability
Testability – Verifiability
Traceability

External NFCs
Ethical
Legislative (Privacy – Safety)
Planning (Cost, development time)

32

Sample Functional Capabilities
OMA Specific Services

Concurrency Service (http://www.omg.org/docs/formal/00-06-14.pdf)
Externalization Service (http://www.omg.org/docs/formal/00-06-16.pdf)
Event Service
Interface Invocation Service
Life Cycle Service
Naming and Directory Services (http://www.omg.org/docs/formal/04-10-
03.pdf)
Notification Service
Persistence State Service
Security Service
Trading Object Service
Transaction Service

OMA Specific Facilities
OMA Application Objects

17

33

Application Perspective Viewpoints

Moved to Infrastructure Mappingn/aInfrastructure

Moved to Deployment Mappingn/aDeployment

Point of AccessPoint of Access

IntegrationIntegration

ApplicationApplicationApplication

DataDataDatabase

PDA
EAF
Viewpoints

Gartner’s
Expanded Architecture
Framework’s
Viewpoints

Microsoft’s
Enterprise Solution Patterns’
Viewpoints

34

Filling up the Application Grid

18

35

Using a PDA EAF
Gather problem definition – Business Requirements
Create Conceptual Business Architecture Diagrams
Create Business Catalogs

Business model matrix (BMM) captures reusable business reference
architectures, architectural styles and patterns
Business implementation matrix (BIM) captures reusable reference
implementations, styles and implementation patterns
The implementation view is prescriptive and the model view is descriptive

Run Through Decomposition Process
Populate Standard and Domain Specific Business Model Matrices

36

Using a PDA EAF (continued)
Populate Capabilities and Requirements Matrix (CR-Matrix)

Before the architects start creating instances of CR-Matrices several questions
must be answered:

What is the primary viewpoint for this business problem?
Which patterns are related to each other across viewpoints?
Which patterns or styles do not contribute to a technology solution pattern?
Let us assume that the answers to the above questions are:

The primary viewpoint is Process.
The related patterns across viewpoints are EBP.Producer.LowVolume and
C2B.RequestResponse.FastAccess.
The GroupsOfIndividuals and Centralized styles do not contribute to the business problem
solution .

Then
Create one CR-Matrix instance for each pattern in the primary viewpoint.
Create one CR-Matrix instance for each set of related patterns across viewpoints, and do not
include non-contributing patterns.
As follows:

EBP.Producer.LowVolume – C2B.RequestResponse.FastAccess
EBP.Transformer.HighVolume.

Policies are entered into the CR-Matrix

19

37

Using a PDA EAF (continued)

Using a CR-Matrix
Generation of the Conceptual Technology Architecture Diagram
Identification and Confirmation of Appropriate Reference Architecture(s)

Generation of a Logical Architecture Analysis Diagram
Generation of the Analysis Model
Identification of Applicable Pattern(s)
Generation of a Logical Architecture Design Diagram
Generation of the Design Model

Identification of Applicable Reference Implementation(s)
Identification of Applicable Implementation Pattern(s)
Refinement of the Logical Architecture Design Diagram
Refinement of the Design Model

Product Mapping
Deployment
Working with Developer
Deployment Mapping

38

Sample CTA Diagram

20

39

Identifying/Confirming RA
ad Identification and Confirmation of Reference Architecture

Business Perspective Iteration Completed

Compare CR-Matrix
functional capabilities to
each available ref. arch.

capability matrix

Select the most
appropriate ref. arch.
based on comparison

results

Does
Business
Analysis
imply a Ref.
Arch.?

Compare CR-Matrix
functional capabilities

with the capability matrix
of the implied ref. arch.

Does implied ref.
arch. capabilities
match with the CR-
Matrix functional
capabil ities?

Set implied ref. arch. as
appropriate ref. arch.

Ref. Arch. identified and confirmed

Yes

No

Yes

No

40

Application Model Catalog Relationships

cd Catalog Relationships

Application Model
Catalog

Reference
Architecture

Reference
Architecture

Capability Matrix

Reference
Architecture
Model Matrix

Reference
Architecture

Document

1

1..*

11

11

1
1

21

41

Working with Application Model Catalogs
The application model catalog contains a list of the reference architectures
For each reference architecture in the application model catalog there is a:

Document which explains the reference architecture in detail. The document may
contain many links to more detailed explanations, graphics and tables
Model matrix which identifies the related patterns for that reference architecture
Capability matrix which lists the functional capabilities of the given reference
architecture
A capability matrix for a reference architecture (Application Server) looks like
the following:

42

Sample Logical Architecture
Analysis Diagram

22

43

Identification of Applicable Patterns

NF policies identified in the CR-Matrices are used to determine
appropriate styles and patterns for the solution

Not all non-functional capabilities lead to software design patterns
Some non-functional capabilities such as reliability, availability,
recoverability and dependability (and possibly others) require hardware
deployment patterns along with organizational behavior changes towards
quality

There is no (bullet-proof) defined process that would help an
architect to identify appropriate patterns

A pattern can be applicable to a certain problem but it may not be
appropriate
The identification of the applicable and appropriate pattern requires
immense working pattern knowledge which is not only knowing and
understanding what patterns are but also recognizing when and when not
to use certain patterns
NFR Framework Based Approach is suggested

44

Sample Guidelines

23

45

Sample Design Considerations

Sample Steps: Generation of a new
group number
Steps are:

Read the last used group number from
the persistence store
Calculate the next group number based
on an algorithm
Validate the calculated group number

Check that it does not include offensive
words
Check that it has never been used before

If the newly calculated group number is
not valid go to step 2. Otherwise,
update the last used group number
persistence store with the newly
calculated group number
Return the newly calculated group
number to the client

46

Sample Design Considerations (cont.)
Improvement on Efficiency.Time

New Group
Number

Offensive ?

Offensive Words List =
read Offensive Words List from data store

No

Yes

Offensive Word =
next word in the list

Contains = new Group number
contains offensive word

Contains ?Yes

No

More words in the
list ?

No

Yes

I/O operation

CPU operation

Repeated as many times as
the number of words in the list.
The longer the list the more
time consuming is the
process

24

47

Sample Design Considerations (cont.)
Suggested Synchronous Layer

48

Sample Design Considerations (cont.)
Suggested Asynchronous Layer

25

49

Sample Design Considerations (cont.)
Standard Application Model Matrix

50

Sample Design Model

ud AIM System Partial Use Cases

AIM System Boundary

AIM Team Member New Account Setup
Team Member

Setup New
Account

Get New Group
Number

«include»

26

51

Sample Design Model (cont.)
ad Get Group Number Activ ity

Get Group Number Request Received

Get Group Number from the Cache

groupNumber

read unreserved group number
from cache table

groupNumber

update read group number
record as reserv ed with a

timestamp

groupNumber

put read flag message into MoM

Group Number returnedUpdate Group Numbers Cache

get completeTo count

completeTo

completeTo <= 0

stop update cache flow

load OffensiveWordsList
(Lazy Load in Singleton)

insert completeTo new
numbers into cache

eliminate used reserved
numbers from cache

cache updated

No Yes

ad get completeTo count

get count of unreserv ed group numbers

unreserved count

load cache update properties (Lazy Load in Singleton)

unreserved threshold unreserved full count

difference > 0

threshold - count

unreserved threshold unreserved count

difference

completeTo = 0

completeTo = full count - threshold + difference

No

Yes

ad insert completeTo new numbers into cache

read Last Used Group Number

last Group Number

get completeTo New Group Numbers

completeTo
last Group Number

New Group Numbers List

update Last Used Group Number with Last Group Number in the List

Last Group Number in the List

insert New Group Number into Cache

New Group Numbers List

52

Identification of Ref. Implementation

cd Catalog Relationships

Application Implementation
Catalog

Reference
Implementation

Reference
Implementation
Capability Matrix

Reference
Implementation
Implementation

Matrix

Reference
Implementation

Document

1

1..* 1
1

1 1

1
1

cd Catalog Relationships

Application Model
Catalog

Reference
Architecture

Reference
Architecture

Capability Matrix

Reference
Architecture
Model Matrix

Application Implementation
Catalog

Reference
Implementation

Reference
Implementation
Capability Matrix

Reference
Implementation
Implementation

Matrix

Reference
Architecture

Document

Reference
Implementation

Document

1

1..*

11

11

1

1..* 1
1

1 1

1 1..*

1
1

1
1

27

53

Product Mapping
ad Application Perspectiv e Matrix Population Process

Business Perspective Iteration Completed

Identify New Reference
Architecture Populate Model Matrix

Any
Architectural
constraints or
restrictions

