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What is the class about?

» Course description and syllabus:
» http://www.nyu.edu/classes/jcf/g22.3033-002/
» http://www.cs.nyu.edu/courses/spring10/G22.3033-002/index.html

= Textbooks:

» Data Mining: Concepts and Techniques (2" Edition)
Jiawei Han, Micheline Kamber
Morgan Kaufmann
ISBN-10: 1-55860-901-6, ISBN-13: 978-1-55860-901-3, (2006)
» Microsoft SQL Server 2008 Analysis Services Step by Step
Scott Cameron
Microsoft Press
ISBN-10: 0-73562-620-0, ISBN-13: 978-0-73562-620-31 1st Edition (04/15/09)

Session Agenda

= What is classification? What is prediction?

= |ssues regarding classification and prediction
= Classification by decision tree induction

= Bayesian classification

= Rule-based classification

= Classification by back propagation

= Support Vector Machines (SVM)

= Lazy learners (or learning from your neighbors)
= Frequent-pattern-based classification

= Other classification methods

= Prediction

= Accuracy and error measures

= Ensemble methods

= Model selection

= Summary
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Classification and Prediction — Sub-Topics

_; . What is classification? What is prediction?
. Issues regarding classification and prediction
Ll Classification by decision tree induction
. Bayesian classification
. Rule-based classification
=  Classification by back propagation
= Support Vector Machines (SVM)
. Lazy learners (or learning from your neighbors)
. Frequent-pattern-based classification
= Other classification methods
. Prediction
= Accuracy and error measures
=  Ensemble methods

] Model selection

Supervised vs. Unsupervised Learning

= Supervised learning (classification)

» Supervision: The training data (observations,
measurements, etc.) are accompanied by labels
indicating the class of the observations

» New data is classified based on the training set

» Unsupervised learning (clustering)
» The class labels of training data is unknown

» Given a set of measurements, observations, etc.
with the aim of establishing the existence of classes
or clusters in the data




Classification vs. Numeric Prediction

= Classification
» predicts categorical class labels (discrete or nominal)

» classifies data (constructs a model) based on the training set
and the values (class labels) in a classifying attribute and uses
it in classifying new data

= Numeric Prediction

» models continuous-valued functions, i.e., predicts unknown or
missing values

= Typical applications

Credit/loan approval:

Medical diagnosis: if a tumor is cancerous or benign
Fraud detection: if a transaction is fraudulent

» Web page categorization: which category it is

v ¥V ¥

Classification—A Two-Step Process

= Model construction: describing a set of predetermined
classes

» Each tuple/sample is assumed to belong to a predefined class,
as determined by the class label attribute

» The set of tuples used for model construction is training set
» The model is represented as classification rules, decision trees,
or mathematical formulae
= Model usage: for classifying future or unknown objects
» Estimate accuracy of the model

* The known label of test sample is compared with the
classified result from the model

» Accuracy rate is the percentage of test set samples that are
correctly classified by the model

» Test set is independent of training set (otherwise overfitting)

» If the accuracy is acceptable, use the model to classify data
tuples whose class labels are not known




Process (1): Model Construction ]

Classification

/ Algorithms

NAMERANK [veARS[TENURED| (Tl

Training
Data

Mike |Assistant Prof 3 (Model)
Mary |Assistant Prof 7 yes
Bill Professor 2 yes
Jim ASSF)CIate Prof 7 yes IF rank = ‘professor’
Dave |Assistant Prof 6 no
Anne |Associate Prof 3 no O e > €
THEN tenured = ‘yes’

Process (2): Using the Model in Prediction ]

e

Unseen Data

AN

/ (Jeft, Professor, 4)

_ Tenured? [

Assistant Prof 2
Merllsa Associate Prof 7 no |
George |Professor 5 yes Y(arls]
Joseph |Assistant Prof 7 yes 99




Classification and Prediction — Sub-Topics

=  What is classification? What is prediction?
_2 . Issues regarding classification and prediction

= Classification by decision tree induction

. Bayesian classification

*  Rule-based classification

=  Classification by back propagation

= Support Vector Machines (SVM)

=  Lazy learners (or learning from your neighbors)

] Frequent-pattern-based classification

= Other classification methods

=  Prediction

= Accuracy and error measures

. Ensemble methods

. Model selection

Issues: Data Preparation

= Data cleaning

» Preprocess data in order to reduce noise and
handle missing values

» Relevance analysis (feature selection)

» Remove the irrelevant or redundant attributes
» Data transformation

» Generalize and/or normalize data




Issues: Evaluating Classification Methods

Accuracy
» classifier accuracy: predicting class label
» predictor accuracy: guessing value of predicted attributes
= Speed
» time to construct the model (training time)
» time to use the model (classification/prediction time)
= Robustness: handling noise and missing values
= Scalability: efficiency in disk-resident databases
= |nterpretability
» understanding and insight provided by the model

= Other measures, e.g., goodness of rules, such as
decision tree size or compactness of classification rules
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_g = Classification by decision tree induction

. Bayesian classification

] Rule-based classification

=  Classification by back propagation

= Support Vector Machines (SVM)
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Decision Tree Induction: Training Dataset

This follows
an example
of Quinlan’s
ID3 (Playing
Tennis)

Output: A Decision Tree for “buys_computer”

<=30 31.40 >40

|
* - credit rating?

no yes excellent fair

V4 /
no - no




Algorithm for Decision Tree Induction

= Basic algorithm (a greedy algorithm)
» Tree is constructed in a top-down recursive divide-and-conquer
manner
» At start, all the training examples are at the root

» Attributes are categorical (if continuous-valued, they are
discretized in advance)

» Examples are partitioned recursively based on selected attributes
» Test attributes are selected on the basis of a heuristic or statistical
measure (e.g., information gain)
» Conditions for stopping partitioning
» All samples for a given node belong to the same class

» There are no remaining attributes for further partitioning — majority
voting is employed for classifying the leaf

» There are no samples left

Attribute Selection Measure: Information Gain (ID3/C4.5)

Select the attribute with the highest information gain

Let p, be the probability that an arbitrary tuple in D
belongs to class C, estimated by |C, 5|/|D|

Expected information (entropy) needed to classify a tuple
in D: "
Info(D) = _Z pi logZ(pi)

i=1
Information needed (after using A to split D into v
artitions) to classify D: L[ D; |
P ) fy Info, (D)= —LxI(D))
Jj=l

| D
Information gained by branching on attribute A

Gain(A)= Info(D)- Info (D)

20




Attribute Selection: Information Gain ? )

B Class P: buys_computer = “yes”
B Class N: buys_computer = “no”

Info (D)= i1(2,3) + 4

1(4,0
e 14 g 140

Ea
14

Info(D)=1(9,5)=— logz(%)—%logz(%) =0.940 + %](3,2) =0.694

Pi i i 11(2,3) means “age <=30" has 5
out of 14 samples, with 2 yes’es
and 3 no’s. Hence

age | income |student]_oredit_rating | buys_computer] Gain(age) = Info(D)— Info,,, (D) = 0.246

Similarly,
Gain(income) = 0.029

Gain(student) =0.151
Gain(credit _rating) = 0.048

Computing Information-Gain for Continuous-Value Attributes

= | et attribute A be a continuous-valued attribute

= Must determine the best split point for A
» Sort the value A in increasing order

» Typically, the midpoint between each pair of adjacent
values is considered as a possible split point

* (a+a;4)/2 is the midpoint between the values of a, and a,,,

» The point with the minimum expected information
requirement for A is selected as the split-point for A

= Split:

» D1 is the set of tuples in D satisfying A < split-point, and
D2 is the set of tuples in D satisfying A > split-point

22




Gain Ratio for Attribute Selection (C4.5)

» Information gain measure is biased towards attributes
with a large number of values

= (C4.5 (a successor of ID3) uses gain ratio to overcome
the problem (normalization to information gain)

v | D, D
1, 10g2(| ’|)

Splitinfo,(D) = — x
! = | D | D|

» GainRatio(A) = Gain(A)/Splitinfo(A)
4 4.6 6. 4 4
n it D)=—-—xl] —)——xlI —)——xlI —)=0.92
Ex. Splitnfo ,(D) 7 Ogz(14) 7 ng(14) 75 0g2(14) 0.926
» gain_ratio(income) = 0.029/0.926 = 0.031

= The attribute with the maximum gain ratio is selected as
the splitting attribute
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Gini index (CART, IBM IntelligentMiner)

» |f a data set D contains examples from n classes, gini

index, gini(D) is defined as
n
gini (D)=1- '3 p3
where P is the relative frequenC)/o:fchass jinD
If a data set D is split on A into two subsets D, and D,, the
gini index gini(D) is defined as
.. D, .. D, ..
gini (D)=Ll gini (p)+ P2l gini (p )
|D| D
Reduction in Impurity:
Agini( A)=gini(D)—gini (D)
The attribute provides the smallest ginisp,,-t(D)?or the largest
reduction in impurity) is chosen to split the node (need to
enumerate all the possible splitting points for each
attribute) e




Gini index (CART, IBM IntelligentMiner)

= Ex. D has 9 tuples in buys_computer = “yes” and 5 in “no”

. L 2 2_ i 2:
giniD)=1 [14) [14) 0.459

= Suppose the attribute income partitions D into 10 in D,:
{low, medium} and 4 in D,
giniirwomee{Iow,madium}(D) = (g\)Gan(Dl) +(%lenl(Dl)

_ 10 7£27i2 4_7127%2
=t (P @Y+ - PG
= 0.450
= Giniiyome e {,’ugh}(D)
but gini;egium nighy 1S 0-30 and thus the best since it is the lowest
= All attributes are assumed continuous-valued

= May need other tools, e.g., clustering, to get the possible
split values

= Can be modified for categorical attributes

25

Comparing Attribute Selection Measures

» The three measures, in general, return good
results but
» Information gain:
* biased towards multivalued attributes
» Gain ratio:

« tends to prefer unbalanced splits in which one
partition is much smaller than the others

» Gini index:
* biased to multivalued attributes
+ has difficulty when # of classes is large

» tends to favor tests that result in equal-sized
partitions and purity in both partitions

26




Other Attribute Selection Measures

= CHAID: a popular decision tree algorithm, measure based on x? test
for independence

= C-SEP: performs better than info. gain and gini index in certain cases
= G-statistic: has a close approximation to x2 distribution

= MDL (Minimal Description Length) principle (i.e., the simplest solution
is preferred):

» The best tree as the one that requires the fewest # of bits to both (1)
encode the tree, and (2) encode the exceptions to the tree

= Multivariate splits (partition based on multiple variable combinations)
» CART: finds multivariate splits based on a linear comb. of attrs.

= Which attribute selection measure is the best?
» Most give good results, none is significantly superior than others

27

(3
Overfitting and Tree Pruning i

= Qverfitting: An induced tree may overfit the

training data
» Too many branches, some may reflect anomalies due to noise or
outliers

» Poor accuracy for unseen samples

» Two approaches to avoid overfitting
» Prepruning: Halt tree construction early-do not split a node if this
would result in the goodness measure falling below a threshold
« Difficult to choose an appropriate threshold

» Postpruning: Remove branches from a “fully grown” tree—get a
sequence of progressively pruned trees

» Use a set of data different from the training data to decide

which is the “best pruned tree”
28




Enhancements to Basic Decision Tree Induction

= Allow for continuous-valued attributes

» Dynamically define new discrete-valued attributes that
partition the continuous attribute value into a discrete
set of intervals

» Handle missing attribute values
» Assign the most common value of the attribute
» Assign probability to each of the possible values
= Attribute construction

» Create new attributes based on existing ones that are
sparsely represented

» This reduces fragmentation, repetition, and replication

29

Classification in Large Databases i

= (Classification—a classical problem extensively studied by
statisticians and machine learning researchers

= Scalability: Classifying data sets with millions of examples
and hundreds of attributes with reasonable speed

= Why decision tree induction in data mining?

relatively faster learning speed (than other classification methods)
> convertible to simple and easy to understand classification rules
» can use SQL queries for accessing databases

» comparable classification accuracy with other methods

v

VA
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Scalable Decision Tree Induction Methods

SLIQ (EDBT’96 — Mehta et al.)

» Builds an index for each attribute and only class list and the current
attribute list reside in memory

SPRINT (VLDB’96 — J. Shafer et al.)
» Constructs an attribute list data structure
PUBLIC (VLDB’98 — Rastogi & Shim)

» Integrates tree splitting and tree pruning: stop growing the tree
earlier

RainForest (VLDB’98 — Gehrke, Ramakrishnan & Ganti)

» Builds an AVC-list (attribute, value, class label)

BOAT (PODS’99 — Gehrke, Ganti, Ramakrishnan & Loh)
» Uses bootstrapping to create several small samples

31

Scalability Framework for RainForest

Separates the scalability aspects from the criteria
that determine the quality of the tree

Builds an AVC-list: AVC (Attribute, Value,
Class_label)

AVC-set (of an attribute X)

» Projection of training dataset onto the attribute X and

class label where counts of individual class label are
aggregated

AVC-group (of anode n)

» Set of AVC-sets of all predictor attributes at the node n

32




Rainforest: Training Set and Its AVC Sets

AVC-set on Age AVC-set on jncome

H%Y A B i Buy_C t
Tra|n|ng Examples ge uy_Computer income uy_Computer
income |studentjredit_ratind comj yes | no yes no
<=30 3 2 high 2 2
31.4 medium | 4 2
0 4 0
>40 3 2 low 3 1

AVC-set on Student AVC-set on
credit_rating

student Buy_Computer
. Buy_Computer
ves no Cre_dlt
rating yes no
yes 6 L fair 6 2
no 3 4 excellent 3 3
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Data Cube-Based Decision-Tree Induction

» Integration of generalization with decision-tree
induction (Kamber et al.’97)

» Classification at primitive concept levels
» E.g., precise temperature, humidity, outlook, etc.

» Low-level concepts, scattered classes, bushy
classification-trees

» Semantic interpretation problems
» Cube-based multi-level classification
» Relevance analysis at multi-levels

» Information-gain analysis with dimension + level

34




BOAT (Bootstrapped Optimistic Algorithm for Tree Construction) &

= Use a statistical technique called bootstrapping to
create several smaller samples (subsets), each fits in
memory

= Each subset is used to create a tree, resulting in
several trees

» These trees are examined and used to construct a new
tree T’

» It turns out that T’ is very close to the tree that would be
generated using the whole data set together

= Adv: requires only two scans of DB, an incremental alg.

35

Presentation of Classification Results
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Visualization of a Decision Tree in SGI/MineSet 3.0
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Classification and Prediction — Sub-Topics

. What is classification? What is prediction?
. Issues regarding classification and prediction
= Classification by decision tree induction
—;’ . Bayesian classification
] Rule-based classification
=  Classification by back propagation
= Support Vector Machines (SVM)
= Lazy learners (or learning from your neighbors)
. Frequent-pattern-based classification
] Other classification methods
= Prediction
= Accuracy and error measures
. Ensemble methods

] Model selection
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Bayesian Classification: Why?

= A statistical classifier: performs probabilistic prediction,
i.e., predicts class membership probabilities

= Foundation: Based on Bayes’ Theorem.

= Performance: A simple Bayesian classifier, naive
Bayesian classifier, has comparable performance with
decision tree and selected neural network classifiers

» Incremental: Each training example can incrementally
increase/decrease the probability that a hypothesis is
correct — prior knowledge can be combined with
observed data

» Standard: Even when Bayesian methods are
computationally intractable, they can provide a standard of
optimal decision making against which other methods can
be measured

40




Bayesian Theorem: Basics

» Let X be a data sample (“evidence”): class label is unknown

= Let H be a hypothesis that X belongs to class C

= Classification is to determine P(H|X), (posteriori probability),
the probability that the hypothesis holds given the observed
data sample X

= P(H) (prior probability), the initial probability

» E.g., X will buy computer, regardless of age, income, ...

= P(X): probability that sample data is observed

= P(X|H) (likelyhood), the probability of observing the sample
X, given that the hypothesis holds

» E.g., Given that X will buy computer, the prob. that X is 31..40,
medium income

41

eu
Bayesian Theorem :

= Given training data X, posteriori probability of a
hypothesis H, P(H|X), follows the Bayes theorem

P(X|H)P(H)
P(X)
= Informally, this can be written as
posteriori = likelihood x prior/evidence
» Predicts X belongs to C, iff the probability P(C;|X) is the
highest among all the P(C,|X) for all the k classes

P(H|X)=

= Practical difficulty: require initial knowledge of many
probabilities, significant computational cost

42




Towards Naive Bayesian Classifier

= Let D be a training set of tuples and their associated
class labels, and each tuple is represented by an n-D
attribute vector X = (x4, X5, ..., X,)

= Suppose there are mclasses C,, C,, ..., C,..

= Classification is to derive the maximum posteriori, i.e.,
the maximal P(C;|X)

= This can be derived from Bayes’ theorem
PCIX)= P(X|C)P(C))
¢ P(X)
= Since P(X) is constant for all classes, only
P(Cl. 1X)=P(X] Cl.)P(Cl.)
needs to be maximized

43

Derivation of Naive Bayes Classifier

= A simplified assumption: attributes are conditionally
independent (i.e., no dependence relation between

attributes): n
P(X|Ci)=kH Plx [C)=Plx |C)*xPlx,[C)x..xP(x |C))
=1
= This greatly reduces the computation cost: Only counts
the class distribution

= If A, is categorical, P(x,|C,) is the # of tuples in C; having
value x, for A, divided by |C; | (# of tuples of C; in D)

= |f A, is continous-valued, P(x,|C,) is usually computed
based on Gaussian distribution with a mean p and
standard deviation o

_G=p)?
2062

e

1
g(x,,u,O') =T
A2
and P(x|C)) is i

44




Naive Bayesian Classifier: Training Dataset

income |studentredit_ratind comj

Class:
Cl:buys_computer = ‘yes’
C2:buys_computer = ‘no’

Data sample

X = (age <=30,
Income = medium,
Student = yes
Credit_rating = Fair)

45
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Naive Bayesian Classifier: An Example

= P(C,): P(buys_computer = “yes”) = 9/14 = 0.643
P(buys_computer = “no”) = 5/14= 0.357

= Compute P(X|C;) for each class
P(age = “<=30" | buys_computer = “yes”) = 2/9 = (0.222
P(age = “<= 30" | buys_computer = “no”) = 3/5 = 0.6
P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
P(income = “medium” | buys_computer = “n0”) = 2/5 = 0.4
P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
P(student = “yes” | buys_computer = “no”) = 1/5=0.2
P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

= X =(age <= 30, income = medium, student = yes, credit_rating = fair)

P(X|C,) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044
P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
P(X|C,)*P(C;) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028
P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007

Therefore, X belongs to class (“buys_computer = yes”) ”




Avoiding the 0-Probability Problem

= Naive Bayesian prediction requires each conditional
prob. be non-zero. Otherwise, the predicted prob. will

be zero n
P(X|c;) = TlPxilcy)
k=1

» Ex. Suppose a dataset with 1000 tuples, income=Ilow
(0), income= medium (990), and income = high (10),
= Use Laplacian correction (or Laplacian estimator)
» Adding 1 to each case
Prob(income = low) = 1/1003
Prob(income = medium) = 991/1003
Prob(income = high) = 11/1003

» The “corrected” prob. estimates are close to their “uncorrected”
counterparts

47

Naive Bayesian Classifier: Comments i

» Advantages
» Easy to implement
» Good results obtained in most of the cases

» Disadvantages
» Assumption: class conditional independence, therefore
loss of accuracy
» Practically, dependencies exist among variables
» E.g., hospitals: patients: Profile: age, family history, etc.
Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.

» Dependencies among these cannot be modeled by Naive
Bayesian Classifier

= How to deal with these dependencies?
» Bayesian Belief Networks

48




Bayesian Belief Networks

= Bayesian belief network allows a subset of the
variables conditionally independent

= A graphical model of causal relationships

» Represents dependency among the variables

» Gives a specification of joint probability distribution
O Nodes: random variables

\ Q Links: dependency
0 o O Xand Y are the parents of Z, and Y is
the parent of P
9 0 O No dependency between Z and P

O Has no loops or cycles

49

Bayesian Belief Network: An Example " '

The conditional probability table
(CPT) for variable LungCancer:

CPT shows the conditional probability for
each possible combination of its parents

Derivation of the probability of a
particular combination of values of X,

from CPT:

Bayesian Belief Networks (., ., ,_

i

P (x| Parents (Y ;))
1

=]

50




Training Bayesian Networks

= Several scenarios:

» Given both the network structure and all variables
observable: learn only the CPTs

» Network structure known, some hidden variables:
gradient descent (greedy hill-climbing) method,
analogous to neural network learning

» Network structure unknown, all variables observable:
search through the model space to reconstruct
network topology

» Unknown structure, all hidden variables: No good
algorithms known for this purpose
» Ref. D. Heckerman: Bayesian networks for data
mining

51

Classification and Prediction — Sub-Topics

Ll What is classification? What is prediction?
. Issues regarding classification and prediction
Ll Classification by decision tree induction
. Bayesian classification
_g . Rule-based classification
=  Classification by back propagation
. Support Vector Machines (SVM)
. Lazy learners (or learning from your neighbors)
. Frequent-pattern-based classification
= Other classification methods
. Prediction
= Accuracy and error measures
] Ensemble methods

. Model selection
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Using IF-THEN Rules for Classification

= Represent the knowledge in the form of IF-THEN rules

R: IF age = youth AND student = yes THEN buys_computer = yes
» Rule antecedent/precondition vs. rule consequent

= Assessment of a rule: coverage and accuracy
» Ngovers = # Of tuples covered by R

» n = # of tuples correctly classified by R

/ID| [/* D: training data set */

correct

coverage(R) =n

covers

/n

accuracy(R) = ncorrect covers

= If more than one rule are triggered, need conflict resolution

» Size ordering: assign the highest priority to the triggering rules that has the
“toughest” requirement (i.e., with the most attribute test)

» Class-based ordering: decreasing order of prevalence or misclassification
cost per class

» Rule-based ordering (decision list): rules are organized into one long
priority list, according to some measure of rule quality or by experts

53

Rule Extraction from a Decision Tree

<=30  31.40 >40

i I
Rules are easier to understand than large trees =] @
/ N\

One rule is created for each path from theroot /

no yes excellent fair

to a leaf n; - - -

Each attribute-value pair along a path forms a
conjunction: the leaf holds the class prediction

Rules are mutually exclusive and exhaustive

= Example: Rule extraction from our buys_computer decision-tree

IF age = young AND student = no THEN buys_computer = no
IF age = young AND student = yes THEN buys _computer = yes
IF age = mid-age THEN buys_computer = yes

IF age = old AND credit_rating = excellent THEN buys_computer = yes
IF age = young AND credit_rating = fair THEN buys_computer = no

54




Rule Induction: Sequential Covering Method

= Sequential covering algorithm: Extracts rules directly from training data
= Typical sequential covering algorithms: FOIL, AQ, CN2, RIPPER
= Rules are learned sequentially, each for a given class C; will cover many
tuples of C,but none (or few) of the tuples of other classes
= Steps:
» Rules are learned one at a time
» Each time a rule is learned, the tuples covered by the rules are removed

» The process repeats on the remaining tuples unless termination condition,
e.g., when no more training examples or when the quality of a rule returned
is below a user-specified threshold

= Comp. w. decision-tree induction: learning a set of rules simultaneously

55

ou
Sequential Covering Algorithm :

while (enough target tuples left)
generate a rule
remove positive target tuples satisfying this rule

Examples covered
by Rule 2

Examples covered
by Rule 1

s covered

56




How to Learn-One-Rule?

Start with the most general rule possible: condition = empty

Adding new attributes by adopting a greedy depth-first strategy

» Picks the one that most improves the rule quality

Rule-Quality measures: consider both coverage and accuracy
» Foil-gain (in FOIL & RIPPER): assesses info_gain by extending condition

pos pos

FOIL Gain=posx(log, —log, )
pos+neg pos+neg

It favors rules that have high accuracy and cover many positive tuples

Rule pruning based on an independent set of test tuples

FOIL PrundR)=22""¢
pos+neg

Pos/neg are # of positive/negative tuples covered by R.
If FOIL_Prune is higher for the pruned version of R, prune R

57

ou
Rule Generation ;

» To generate a rule
while(true)
find the best predicate p
if foil-gain(p) > threshold then add p to current rule
else break

A3=1&8&A
&8A8-

Positive Negative
examples examples
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Classification and Prediction — Sub-Topics

Ll What is classification? What is prediction?
. Issues regarding classification and prediction
Ll Classification by decision tree induction
. Bayesian classification
. Rule-based classification
_2 =  Classification by back propagation
. Support Vector Machines (SVM)
. Lazy learners (or learning from your neighbors)
. Frequent-pattern-based classification
= Other classification methods
. Prediction
= Accuracy and error measures
] Ensemble methods

. Model selection
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Classification: A Mathematical Mapping

= Classification:
» predicts categorical class labels

» E.g., Personal homepage classification
» X = (X4, X9, X3, -..), ¥; = +1 or —1
» X4 - # of word “homepage”
» X, . # of word “welcome”

= Mathematically
»XeX=R"yeY={+1,-1}
» We want a functionf: X 2> Y
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Linear Classification

Binary Classification
problem

The data above the
red line belongs to
class ‘X’

The data below red
line belongs to class

o)
Examples: SVM,
Perceptron,
Probabilistic
Classifiers

A\ |
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Discriminative Classifiers

» Advantages

» prediction accuracy is generally high

» robust, works when training examples contain errors
» fast evaluation of the learned target function

= Criticism
» long training time

» difficult to understand the learned function (weights)

» not easy to incorporate domain knowledge
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A=)
Perceptron & Winnow :

e Vector: x, w
e Scalar: x, y, w
Input:  {(xq, Yy), -}
Output: classification function f(x)
f(x) > 0fory, = +1
f(x) <0fory, =-1
f(x)=> wx+b=0

or WX, +W,X,+b =0

e Perceptron: update W
additively

e Winnow: update W
> multiplicatively
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Classification by Backpropagation

= Backpropagation: A neural network learning algorithm

= Started by psychologists and neurobiologists to develop
and test computational analogues of neurons

= A neural network: A set of connected input/output units
where each connection has a weight associated with it

= During the learning phase, the network learns by
adjusting the weights so as to be able to predict the
correct class label of the input tuples

= Also referred to as connectionist learning due to the
connections between units
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Neural Network as a Classifier

= Weakness
» Long training time
» Require a number of parameters typically best determined
empirically, e.g., the network topology or “structure.”

» Poor interpretability: Difficult to interpret the symbolic meaning
behind the learned weights and of “hidden units” in the network

= Strength

» High tolerance to noisy data

Ability to classify untrained patterns

Well-suited for continuous-valued inputs and outputs
> Successful on a wide array of real-world data

> Algorithms are inherently parallel

> Techniques have recently been developed for the extraction of
rules from trained neural networks

v

Y

N\

N\

A
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A Neuron (= a perceptron)

M

X z | f

output y

For Example
Input  weight  weighted Activa.tion y= sign(i wx - 1)
vector X vector W sum function i=0

= The n-dimensional input vector x is mapped into
variable y by means of the scalar product and a
nonlinear function mapping
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A Multi-Layer Feed-Forward Neural Network

Output vector

(k+1) _ . (k) A (k)
Wj _Wj +ﬂ’(yi_yi )xij

Output layer

Hidden layer ‘

\

Input vector: X | |

Input layer
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How A Multi-Layer Neural Network Works?

= The inputs to the network correspond to the attributes measured for
each training tuple

= |nputs are fed simultaneously into the units making up the input
layer

= They are then weighted and fed simultaneously to a hidden layer

= The number of hidden layers is arbitrary, although usually only one

= The weighted outputs of the last hidden layer are input to units
making up the output layer, which emits the network's prediction

= The network is feed-forward in that none of the weights cycles back
to an input unit or to an output unit of a previous layer

= From a statistical point of view, networks perform nonlinear
regression: Given enough hidden units and enough training
samples, they can closely approximate any function
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Defining a Network Topology

» First decide the network topology: # of units in the input
layer, # of hidden layers (if > 1), # of units in each hidden
layer, and # of units in the output layer

» Normalizing the input values for each attribute measured in
the training tuples to [0.0—1.0]

= One input unit per domain value, each initialized to 0

= Output, if for classification and more than two classes, one
output unit per class is used

= Once a network has been trained and its accuracy is

unacceptable, repeat the training process with a different
network topology or a different set of initial weights
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Backpropagation i

= lteratively process a set of training tuples & compare the
network's prediction with the actual known target value

= For each training tuple, the weights are modified to
minimize the mean squared error between the network's
prediction and the actual target value

» Modifications are made in the “backwards” direction: from
the output layer, through each hidden layer down to the
first hidden layer, hence “backpropagation”

= Steps

> Initialize weights (to small random #s) and biases in the network

» Propagate the inputs forward (by applying activation function)

» Backpropagate the error (by updating weights and biases)
» Terminating condition (when error is very small, etc.)

VA
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Backpropagation and Interpretability

= Efficiency of backpropagation: Each epoch (one interation
through the training set) takes O(|D| * w), with |D| tuples
and w weights, but # of epochs can be exponential to n,
the number of inputs, in the worst case

» Rule extraction from networks: network pruning

» Simplify the network structure by removing weighted links that have
the least effect on the trained network

» Then perform link, unit, or activation value clustering
» The set of input and activation values are studied to derive rules
describing the relationship between the input and hidden unit layers
= Sensitivity analysis: assess the impact that a given input
variable has on a network output. The knowledge gained
from this analysis can be represented in rules
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Classification and Prediction — Sub-Topics

Ll What is classification? What is prediction?
. Issues regarding classification and prediction
Ll Classification by decision tree induction
. Bayesian classification
. Rule-based classification
=  Classification by back propagation
_’g . Support Vector Machines (SVM)
. Lazy learners (or learning from your neighbors)
. Frequent-pattern-based classification
= Other classification methods
. Prediction
= Accuracy and error measures
] Ensemble methods

. Model selection
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SVM—Support Vector Machines

= A new classification method for both linear and nonlinear
data

= |t uses a nonlinear mapping to transform the original
training data into a higher dimension

= With the new dimension, it searches for the linear optimal
separating hyperplane (i.e., “decision boundary”)

= With an appropriate nonlinear mapping to a sufficiently
high dimension, data from two classes can always be
separated by a hyperplane

= SVM finds this hyperplane using support vectors
(“essential” training tuples) and margins (defined by the
support vectors)

A\ ]
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SVM—History and Applications

= Vapnik and colleagues (1992)—groundwork from Vapnik
& Chervonenkis’ statistical learning theory in 1960s

» Features: training can be slow but accuracy is high owing
to their ability to model complex nonlinear decision
boundaries (margin maximization)

= Used both for classification and prediction

= Applications:

» handwritten digit recognition, object recognition, speaker
identification, benchmarking time-series prediction tests

{
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SVM—General Philosophy

A\ |
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SVM—Margins and Support Vectors
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SVM—When Data Is Linearly Separable

Ll
| i
0 .
' [ |
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0 0 | iy 0 1
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Let data D be (X;, Y;), --., (X, Y|p), Where X; is the set of training tuples
associated with the class labels y,

There are infinite lines (hyperplanes) separating the two classes but we want to
find the best one (the one that minimizes classification error on unseen data)

SVM searches for the hyperplane with the largest margin, i.e., maximum
marginal hyperplane (MMH)

A\ |
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SVM—Linearly Separable

A separating hyperplane can be written as
WeX+b=0
where W={w,, w,, ..., w,} is a weight vector and b a scalar (bias)
For 2-D it can be written as
Wy + Wy X; + W, X, =0
The hyperplane defining the sides of the margin:
Hi:wg+w; X, +w,x, 21 fory,= +1, and
Hy:wy + Wy Xy +w, X, <—1fory,=-1
Any training tuples that fall on hyperplanes H, or H, (i.e., the
sides defining the margin) are support vectors

This becomes a constrained (convex) quadratic optimization
problem: Quadratic objective function and linear constraints >
Quadratic Programming (QP) - Lagrangian multipliers

==
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Why Is SVM Effective on High Dimensional Data?

The complexity of trained classifier is characterized by the # of
support vectors rather than the dimensionality of the data

The support vectors are the essential or critical training examples —
they lie closest to the decision boundary (MMH)

If all other training examples are removed and the training is
repeated, the same separating hyperplane would be found

The number of support vectors found can be used to compute an
(upper) bound on the expected error rate of the SVM classifier, which
is independent of the data dimensionality

Thus, an SVM with a small nhumber of support vectors can have good
generalization, even when the dimensionality of the data is high
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SVM—Linearly Inseparable

Transform the original input data into a higher
dimensional space

Example 6.8 Nonlinear transformation of original mput data into a higher dimensional space.  Con-
sider the following example. A 3D input vector X = (x1, 29, 23) is mapped into a 6D space Z using the mappings
61(X) = 21,00(X) = 29,85(X) =23, 04(X) = (212, d5( X ) = 2129, and (X)) = 2123 A decision hyperplane
in the new space is d(Z)= WZ + b, where W and Z are vectors. This is linear. We solve for W and b and then
substitute back so that we see that the linear decision hyperplane in the new (Z) space corresponds to a nonlinear
second order polynomial in the original 3-D input space,

2
diZ) =wiz; +wpzy + wary +wyl2y)” + ws2i2y + Weri23 +0
= w2y + Wozy + Wy + wyzg + Wiz + wgzg +0

Search for a linear separating hyperplane in the new space
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SVM—Kernel functions :

Instead of computing the dot product on the transformed data tuples,
it is mathematically equivalent to instead applying a kernel function
K(X;, X;) to the original data, i.e., K(X;, X;) = ®(X;) O(X;)

Typical Kernel Functions

Polynomial kernel of degree h: K{X;, X;)= (X; X;+ 1)k
Gaussian radial basis function kernel : K{X;, X;)= e~ (X=X 17207
Sigmoid kernel : K{X;, X;) = tanh(xX,; - X;—4)

SVM can also be used for classifying multiple (> 2) classes and for
regression analysis (with additional user parameters)
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Scaling SVM by Hierarchical Micro-Clustering

= SVM is not scalable to the number of data objects in
terms of training time and memory usage

» “Classifying Large Datasets Using SVMs with
Hierarchical Clusters Problem” by Hwanjo Yu, Jiong
Yang, Jiawei Han, KDD’03

= CB-SVM (Clustering-Based SVM)

» Given limited amount of system resources (e.g., memory),
maximize the SVM performance in terms of accuracy and the
training speed

» Use micro-clustering to effectively reduce the number of points
to be considered

» At deriving support vectors, de-cluster micro-clusters near

“candidate vector” to ensure high classification accuracy
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CB-SVM: Clustering-Based SVM

given a limited amount of memory

farther from the boundary

= Training data sets may not even fit in memory

= Read the data set once (minimizing disk access)

= The summary plays a role in indexing SVMs

» Use micro-cluster hierarchical indexing structure

» Selective de-clustering to ensure high accuracy

» Construct a statistical summary of the data (i.e., hierarchical clusters)

» The statistical summary maximizes the benefit of learning SVM

= Essence of Micro-clustering (Hierarchical indexing structure)

+ provide finer samples closer to the boundary and coarser samples
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CF-Tree: Hierarchical Micro-cluster

INegative clusters Positive clusters

]

Nonleal node

Leal nodes
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CB-SVM Algorithm: Outline

= Construct two CF-trees from positive and
negative data sets independently
» Need one scan of the data set

» Train an SVM from the centroids of the root
entries

» De-cluster the entries near the boundary into the
next level
» The children entries de-clustered from the parent
entries are accumulated into the training set with the
non-declustered parent entries
» Train an SVM again from the centroids of the
entries in the training set

» Repeat until nothing is accumulated
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Selective Declustering :

= CF tree is a suitable base structure for selective declustering

= De-cluster only the cluster E; such that

» D;—R; < D, where D, is the distance from the boundary to the
center point of E; and R; is the radius of E;

» Decluster only the cluster whose subclusters have possibilities to
be the support cluster of the boundary

» “Support cluster”: The cluster whose centroid is a support

vector
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Experiment on Synthetic Dataset

(b) 0.5% randomly sampled data (c) data distribution at the Jast iteration in

N =603) CB-SVM (N =597)

(a)original data set (N = 113601)

Figure 6: Synthetic data set in a two-dimensional space. |': positive data; ‘=" negative data
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Experiment on a Large Data Set

[ S-Rate | #ofdata | # oferrors | T-Time | S-Time |

0.0001% 23 6423 0.000114 | R22.97
0.001%% 226 2413 0.000072 | _R2540
0.01% 2333 1132 0.03 82861

0.1% 23273 012 6.087 R35.87
1% 230350 015 192,793 | R38.02
5% 1151714 1020 207054 | 84202

[ AsvM [ 307 [ 865 | S4R72.213 |

[CB-SVM | 2893 | 876 | 1.639 [ 2528213 |

Table 4: Performance results on the very large data set (# of
training data = 23066169, # of testing data = 233890). S-Rate:
sampling rate; T-Time: traming time; S-Time: sampling time;
ASVM: selective sampling
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SVM vs. Neural Network

= SVM = Neural Network
» Relatively new concept » Relatively old
» Deterministic algorithm 7 Nond_etermlnlstlc
_ e algorithm
» Nice Generalization » Generalizes well but
properties doesn’t have strong
> Hard to learn — learned mathematical foundation
in batch mode using » Can easily be learned in
quadratic programming incremental fashion
techniques » To learn complex
9 functions—use multilayer
» Using kernels can learn perceptron (not that
very complex functions trivial)
®
SVM Related Links

= SVM Website

» http://www.kernel-machines.org/

» Representative implementations

» LIBSVM: an efficient implementation of SVM, multi-class
classifications, nu-SVM, one-class SVM, including also various
interfaces with java, python, etc.

» SVM-light: simpler but performance is not better than LIBSVM,
support only binary classification and only C language

» SVM-torch: another recent implementation also written in C.
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Notes about SVM - Introductory Literature

= “Statistical Learning Theory” by Vapnik: difficult to understand,
containing many errors.

= C.J.C. Burges. A Tutorial on Support Vector Machines for Pattern
Recognition. Knowledge Discovery and Data Mining, 2(2), 1998.

» Easier than Vapnik’s book, but still not introductory level; the examples are
not so intuitive

* The book An Introduction to Support Vector Machines by Cristianini

and Shawe-Taylor

» Not introductory level, but the explanation about Mercer’'s Theorem is
better than above literatures

= Neural Networks and Learning Machines by Haykin

» Contains a nice chapter on SVM introduction
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Classification and Prediction — Sub-Topics

=  What is classification? What is prediction?
. Issues regarding classification and prediction
= Classification by decision tree induction
. Bayesian classification
*  Rule-based classification
=  Classification by back propagation
= Support Vector Machines (SVM)
_2 =  Lazy learners (or learning from your neighbors)
] Frequent-pattern-based classification
= Other classification methods
=  Prediction
= Accuracy and error measures
. Ensemble methods

. Model selection
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Lazy vs. Eager Learning

= | azy vs. eager learning

» Lazy learning (e.g., instance-based learning): Simply
stores training data (or only minor processing) and waits
until it is given a test tuple

» Eager learning (the above discussed methods): Given a
set of training set, constructs a classification model
before receiving new (e.g., test) data to classify

= Lazy: less time in training but more time in
predicting
= Accuracy

» Lazy method effectively uses a richer hypothesis space
since it uses many local linear functions to form its
implicit global approximation to the target function

» Eager: must commit to a single hypothesis that covers
the entire instance space
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Lazy Learner: Instance-Based Methods i

» |nstance-based learning:

» Store training examples and delay the processing
(“lazy evaluation”) until a new instance must be
classified

» Typical approaches
» k-nearest neighbor approach

* Instances represented as points in a Euclidean
space.

» Locally weighted regression
 Constructs local approximation
» Case-based reasoning

* Uses symbolic representations and knowledge-
based inference
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The k-Nearest Neighbor Algorithm

= All instances correspond to points in the n-D space

= The nearest neighbor are defined in terms of
Euclidean distance, dist(X,, X;)

= Target function could be discrete- or real- valued

= For discrete-valued, k-NN returns the most common
value among the k training examples nearest to x,

= Vonoroi diagram: the decision surface induced by 1-
NN for a typical set of training examples
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Discussion on the k-NN Algorithm

= k-NN for real-valued prediction for a given unknown tuple
» Returns the mean values of the k nearest neighbors

» Distance-weighted nearest neighbor algorithm

» Weight the contribution of each of the k neighbors according to their

distance to the query x,
1

» Give greater weight to closer neighbors w=———
d(xq,xl.)2

= Robust to noisy data by averaging k-nearest neighbors
= Curse of dimensionality: distance between neighbors could
be dominated by irrelevant attributes

» To overcome it, axes stretch or elimination of the least relevant
attributes
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Case-Based Reasoning (CBR)

= CBR: Uses a database of problem solutions to solve new problems

= Store symbolic description (tuples or cases)—not points in a Euclidean
space
= Applications: Customer-service (product-related diagnosis), legal ruling

= Methodology
» Instances represented by rich symbolic descriptions (e.g., function graphs)

» Search for similar cases, multiple retrieved cases may be combined
» Tight coupling between case retrieval, knowledge-based reasoning, and
problem solving
= Challenges
» Find a good similarity metric

» Indexing based on syntactic similarity measure, and when failure,
backtracking, and adapting to additional cases
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Classification and Prediction — Sub-Topics

=  What is classification? What is prediction?

. Issues regarding classification and prediction

= Classification by decision tree induction

. Bayesian classification

] Rule-based classification

=  Classification by back propagation

= Support Vector Machines (SVM)

=  Lazy learners (or learning from your neighbors)
_’g . Frequent-pattern-based classification

] Other classification methods

=  Prediction

= Accuracy and error measures

. Ensemble methods

] Model selection
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Associative Classification

= Associative classification
» Association rules are generated and analyzed for use in classification

» Search for strong associations between frequent patterns
(conjunctions of attribute-value pairs) and class labels

» Classification: Based on evaluating a set of rules in the form of
P, p,... p, 2> “A
= Why effective?

» It explores highly confident associations among multiple attributes

= C” (conf, sup)

class

and may overcome some constraints introduced by decision-tree
induction, which considers only one attribute at a time

» In many studies, associative classification has been found to be more
accurate than some traditional classification methods, such as C4.5
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Typical Associative Classification Methods

CBA (Classification By Association: Liu, Hsu & Ma, KDD’'98)
» Mine association possible rules in the form of
» Cond-set (a set of attribute-value pairs) = class label

» Build classifier: Organize rules according to decreasing precedence based on
confidence and then support

= CMAR (Classification based on Multiple Association Rules: Li, Han, Pei, ICDM'01)
» Classification: Statistical analysis on multiple rules

» CPAR (Classification based on Predictive Association Rules: Yin & Han, SDM'03)
» Generation of predictive rules (FOIL-like analysis)
» High efficiency, accuracy similar to CMAR

= RCBT (Mining top-k covering rule groups for gene expression data, Cong et al.

SIGMOD’05)

» Explore high-dimensional classification, using top-k rule groups
» Achieve high classification accuracy and high run-time efficiency
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A Closer Look at CMAR

= CMAR (Classification based on Multiple Association Rules: Li, Han, Pei, ICDM'01)
= Efficiency: Uses an enhanced FP-tree that maintains the distribution of
class labels among tuples satisfying each frequent itemset
= Rule pruning whenever a rule is inserted into the tree
» Given two rules, R, and R,, if the antecedent of R, is more general than that
of R, and conf(R,) 2 conf(R,), then R, is pruned
» Prunes rules for which the rule antecedent and class are not positively
correlated, based on a 2 test of statistical significance
= Classification based on generated/pruned rules
» If only one rule satisfies tuple X, assign the class label of the rule
» If arule set S satisfies X, CMAR
« divides S into groups according to class labels

+ uses a weighted x2 measure to find the strongest group of rules, based
on the statistical correlation of rules within a group

 assigns X the class label of the strongest group
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Associative Classification May Achieve High Accuracy and Efficiency e

Dataset RCET | CBA | IRG Classifier C4.2 famly 3VM
single tree | bagging | boosting
AMIJALL (ALL) | 91.18% | 91.18% 64.71% 01.18% | 9L18% | 9L18% | 97.06%
Lung Cancer(LC) | 97.99% | 81.88% 59.93% BLERY, | 96.647 | B1.B8% | 06.64%
Ovarian Cancer(OC) | 97.67% | 93.02% - 0767V | 9T.6TR | 0767 | OT.6TH
Prostate Cancer(PC) | 97.06% | 82.35% 88.24% 26470 | 26477 | 2647% | 79041
Average Accuracy | 93.98% | 87.11% 3096% T43% | T709% | T43% | 92.70%
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Frequent Pattern-Based Classification

= H. Cheng, X. Yan, J. Han, and C.-W. Hsu,
“Discriminative Frequent Pattern Analysis for
Effective Classification”, ICDE'07.

= Accuracy issue
» Increase the discriminative power
» Increase the expressive power of the feature space

= Scalability issue
» It is computationally infeasible to generate all feature
combinations and filter them with an information gain
threshold
» Efficient method (DDPMine: FPtree pruning): H. Cheng,
X.Yan, J. Han, and P. S. Yu, "Direct Discriminative
Pattern Mining for Effective Classification", ICDE'08.

Frequent Pattern vs. Single Feature

The discriminative power of some frequent patterns is
higher than that of single features.
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Fig. 2. Information Gain vs. Pattern Frequency

Feature Selection

= Given a set of frequent patterns, both non-
discriminative and redundant patterns exist,
which can cause overfitting

= We want to single out the discriminative patterns
and remove redundant ones

= The notion of Maximal Marginal Relevance
(MMR) is borrowed

» A document has high marginal relevance if it is both
relevant to the query and contains minimal marginal
similarity to previously selected documents

106




Experimental Results
Table 1. Accuracy by SVM on Frequent Com- Table 2. Accuracy by C4.5 on Frequent Com-
bined Features vs. Single Features bined Features vs. Single Features
Data Single Feature Freq. Pattern Dataset| Single Features | Frequent Patterns
Ttem AliTtem_F S{Ttem_RBF\Pat_AllPal_FS Ttem ALY Item FS| Pat_Al Pat_FS
anneal | 99.78 | 99.78 99.11 9933 | 99.67 anneal h 08,33 97.22 98.44
austral | 85.01 85.50 55.01 S1.79 | 91.14 anstral .53 .53 54.21 88.24
auto 83.25 | 8121 TRR0 | 7197 | 90,79 auto 7170 TT.63 | 7L T8.77
breast 974G O97.46 96.9% 96.83 | 97.78 breast 95,50 95.56 95.40 96.35
cleve 84,81 R S5.80 | 7855 | 95.04 cleve =0T =0T 20,54 91.42
diabeted T4.41 7441 T4.55 T7.73 | 7T8.31 dinbetes T7.02 T7.02 T6.00 TH.OR
glass 75,19 | 75.19 T4.78 81.32 : 75.24 75,24 T6.62 79.89
Tieart 8481 LRI ®.07 BX.15 heart ¥1.85 ®1.%5 ®0.00 B6.30
hepatie | 8450 80,04 X583 96.83 hepatic TR.T0 85.21 =071 93.04
horse 83.70 H4.TY 52,306 92.39 horse H3.71 H3.71 54,50 8T.TT
iono 93.15 04,30 92,061 95.44 iono 92.30 92.30 92.89 94.87
iris 0400 96.00 HERYY 96.00 iris 94.00 94.00 9333 BT
labor 50,90 | 0L67 91.67 94,99 | 95,00 labor BG.6T RG,6T 95.00 91.67
lymph | 5100 | 8162 2120 | 8367 | 96.67 lymph T6.95 TT.62 T4.90 83.67
pima T4.506 TA.50 Th15 ThAZ | TTA6 pima 7580 TH.8G TH.28 T6.72
sonar | 8271 | SG6.55 8271 | 8460 | 90.86 sonar S0.83 S1.10 | 83.67 83.67
vehiele T70.43 7293 7200 | 7333 | 76.34 vehicle 7070 7149 T4.24 T4.06
wine 98,33 | 99.44 08,33 08,30 | 100 wine 05.52 03.82 06.63 09,44
FO0 a7.09 9709 95.00 | 94.18 | 99.00 P 9118 9118 95.00 a97.09
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Scalability Tests

Table 3. Accuracy & Time on Chess Data

min_sup #Patterns Time (s)SVM (%)|C4.5 (%)
1 N/A N/A N/A N/A
2000 68,967 44.703 92.52 97.59
2200 28,358 19.938 91.68 97.84
2500 6,837 2.906 91.68 97.62
2800 1,031 0.469 91.84 97.37
3000 136 0.063 91.90 97.06

Table 4. Accuracy & Time on Waveform Data

min_sup #Patterng Time (s)SVM (%) C4.5 (%)
1 9,468,100 | N/A N/A N/A
80 26,576 176.485 92.40 88.35
100 15,316 90.406 92.19 87.29
150 5,408 23.610 91.53 88.80
200 2,481 8.234 91.22 87.32
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DDPMine: Branch-and-Bound Search

sup(child) < sup(parent)

maximize IG(C|b)
subject to
min_sup < sup(b) < sup(a)

0 < sup4(b) < sup(a)
0 < sup_(b) < sup_(a)

a: constant, a parent
node

b: variable, a descendent
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DDPMine Efficiency: Runtime

700 . .
s Harmony
600 | mem@== DDPMine
i PatClass
@ 500}
£
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€ 300
=
@ 00}
100}
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Classification and Prediction — Sub-Topics

Ll What is classification? What is prediction?
. Issues regarding classification and prediction
Ll Classification by decision tree induction
. Bayesian classification
. Rule-based classification
=  Classification by back propagation
. Support Vector Machines (SVM)
. Lazy learners (or learning from your neighbors)
. Frequent-pattern-based classification
_2 . Other classification methods
. Prediction
= Accuracy and error measures
] Ensemble methods

. Model selection
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Genetic Algorithms (GA)

= Genetic Algorithm: based on an analogy to biological evolution

= An initial population is created consisting of randomly generated rules
» Each rule is represented by a string of bits
» E.g., if A; and 7A, then C, can be encoded as 100
» |f an attribute has k > 2 values, k bits can be used

= Based on the notion of survival of the fittest, a new population is
formed to consist of the fittest rules and their offsprings

= The fitness of a rule is represented by its classification accuracy on a
set of training examples

= Offsprings are generated by crossover and mutation

= The process continues until a population P evolves when each rule in P
satisfies a prespecified threshold

= Slow but easily parallelizable
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Rough Set Approach

= Rough sets are used to approximately or “roughly” define
equivalent classes

= A rough set for a given class C is approximated by two sets: a lower
approximation (certain to be in C) and an upper approximation
(cannot be described as not belonging to C)

= Finding the minimal subsets (reducts) of attributes for feature
reduction is NP-hard but a discernibility matrix (which stores the
differences between attribute values for each pair of data tuples) is
used to reduce the computation intensity

‘ N s --7~--—7- upper approximation of C
‘ i - -f-—-- [~1----1~ lower approximation of C
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o)
Fuzzy Set Approaches o ©

mediun

t T
WK 20K 30K 0K 50K 80K TOK ihcoume

» Fuzzy logic uses truth values between 0.0 and 1.0 to
represent the degree of membership (such as using
fuzzy membership graph)

= Attribute values are converted to fuzzy values

» e.g., income is mapped into the discrete categories {low,
medium, high} with fuzzy values calculated

= For a given new sample, more than one fuzzy value may
apply

= Each applicable rule contributes a vote for membership
in the categories

= Typically, the truth values for each predicted category
are summed, and these sums are combined
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Classification and Prediction — Sub-Topics

. What is classification? What is prediction?
. Issues regarding classification and prediction
= Classification by decision tree induction
. Bayesian classification
] Rule-based classification
=  Classification by back propagation
= Support Vector Machines (SVM)
= Lazy learners (or learning from your neighbors)
. Frequent-pattern-based classification
] Other classification methods
) = Prediction
= Accuracy and error measures
. Ensemble methods

] Model selection
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What Is Prediction?

(Numerical) prediction is similar to classification

» construct a model

» use model to predict continuous or ordered value for a given input
Prediction is different from classification

» Classification refers to predict categorical class label

» Prediction models continuous-valued functions
Major method for prediction: regression

» model the relationship between one or more independent or

predictor variables and a dependent or response variable

= Regression analysis
» Linear and multiple regression
» Non-linear regression

» Other regression methods: generalized linear model, Poisson
regression, log-linear models, regression trees
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Linear Regression

= Linear regression: involves a response variable y and a single
predictor variable x

Y =Wyt W, X

where w, (y-intercept) and w, (slope) are regression coefficients
= Method of least squares: estimates the best-fitting straight line

1D

Z(xiff)(yify) — —
W, == WA=YV—W.X

1 D, . 0 1

2. (x5, =%)
= Multiple linear regression: involves more than one predictor variable

» Training data is of the form (X,, y,), (X5, ¥),..., Xppp Yio)

» Ex. For 2-D data, we may have: y = w, + w, X;+ W, X,

» Solvable by extension of least square method or using SAS, S-Plus
» Many nonlinear functions can be transformed into the above
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. . .
Nonlinear Regression i

= Some nonlinear models can be modeled by a
polynomial function

= A polynomial regression model can be transformed
into linear regression model. For example,
y =Wy +wy X+ w, X2+ wy x3
convertible to linear with new variables: x, = x?, x;= x3
Y = Wot Wy X+ W, X+ W X
= Other functions, such as power function, can also
be transformed to linear model

= Some models are intractable nonlinear (e.g., sum
of exponential terms)

» possible to obtain least square estimates through
extensive calculation on more complex formulae




Other Regression-Based Models

= Generalized linear model:

» Foundation on which linear regression can be applied to modeling
categorical response variables

» Variance of y is a function of the mean value of y, not a constant

» Logistic regression: models the prob. of some event occurring as a
linear function of a set of predictor variables

» Poisson regression: models the data that exhibit a Poisson
distribution

» Log-linear models: (for categorical data)
» Approximate discrete multidimensional prob. distributions

» Also useful for data compression and smoothing

= Regression trees and model trees
» Trees to predict continuous values rather than class labels
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Regression Trees and Model Trees

= Regression tree: proposed in CART system (Breiman et al. 1984)
» CART: Classification And Regression Trees
» Each leaf stores a continuous-valued prediction
» Itis the average value of the predicted attribute for the training tuples that
reach the leaf
= Model tree: proposed by Quinlan (1992)

» Each leaf holds a regression model—a multivariate linear equation for the
predicted attribute

» A more general case than regression tree
= Regression and model trees tend to be more accurate than linear
regression when the data are not represented well by a simple linear
model
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Predictive Modeling in Multidimensional Databases

» Predictive modeling: Predict data values or construct
generalized linear models based on the database data
= One can only predict value ranges or category distributions
» Method outline:
» Minimal generalization
Attribute relevance analysis
» Generalized linear model construction
» Prediction
= Determine the major factors which influence the prediction

» Data relevance analysis: uncertainty measurement, entropy
analysis, expert judgement, etc.

= Multi-level prediction: drill-down and roll-up analysis

v
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Prediction: Numerical Data
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Prediction: Categorical Data
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Classification and Prediction — Sub-Topics

What is classification? What is prediction?
Issues regarding classification and prediction
Classification by decision tree induction
Bayesian classification

Rule-based classification

Classification by back propagation

Support Vector Machines (SVM)

Lazy learners (or learning from your neighbors)
Frequent-pattern-based classification

Other classification methods

Prediction

Accuracy and error measures

Ensemble methods

Model selection
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Classifier Accuracy Measures

Real class\Predicted class C1 ~~C1
C, True positive False negative
~C, False positive True negative
Real class\Predicted class buy_computer = yes buy_computer = no total recognition(%)
buy_computer = yes 6954 46 7000 99.34
buy_computer = no 412 2588 3000 86.27
total 7366 2634 10000 95.52

= Accuracy of a classifier M, acc(M): percentage of test set tuples that are
correctly classified by the model M

» Error rate (misclassification rate) of M = 1 — acc(M)

» Given m classes, CM,.J-, an entry in a confusion matrix, indicates # of tuples
in class i that are labeled by the classifier as class j

= Alternative accuracy measures (e.g., for cancer diagnosis)
sensitivity = t-pos/pos [* true positive recognition rate */
specificity = t-neg/neg /* true negative recognition rate */
precision = t-pos/(t-pos + f-pos)
accuracy = sensitivity * pos/(pos + neg) + specificity * neg/(pos + neg)

» This model can also be used for cost-benefit analysis
125

]
Predictor Error Measures z

» Measure predictor accuracy: measure how far off the predicted value is
from the actual known value

* Loss function: measures the error betw. y; and the predicted value y;
» Absolute error: |y, — y/|
» Squared error: (Y, — y;)2

= Test error (generalization error): the average loss over the test set

d d
- PUCIESDS
» Mean absolute error: ZIT Mean squared error: 7
d
d "2
. Z\y,—y,'l . Z(yi_yi)
» Relative absolute error: = Relative squared error: =————
z“y’,,y‘ Z(yi_y)z
= i=1

The mean squared-error exaggerates the presence of outliers

Popularly use (square) root mean-square error, similarly, root relative squared
error
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Evaluating the Accuracy of a Classifier or Predictor (1)

= Holdout method
» Given data is randomly partitioned into two independent sets
+ Training set (e.g., 2/3) for model construction
» Test set (e.g., 1/3) for accuracy estimation
» Random sampling: a variation of holdout
» Repeat holdout k times, accuracy = avg. of the accuracies
obtained
= Cross-validation (k-fold, where k = 10 is most popular)

» Randomly partition the data into k mutually exclusive subsets,
each approximately equal size

» At i-th iteration, use D, as test set and others as training set
» Leave-one-out: k folds where k = # of tuples, for small sized data

> Stratified cross-validation: folds are stratified so that class dist. in
each fold is approx. the same as that in the initial data

A

127

Evaluating the Accuracy of a Classifier or Predictor (Il)

= Bootstrap
» Works well with small data sets
» Samples the given training tuples uniformly with replacement

* i.e., each time a tuple is selected, it is equally likely to be
selected again and re-added to the training set

= Several boostrap methods, and a common one is .632

boostrap

» Suppose we are given a data set of d tuples. The data set is sampled d
times, with replacement, resulting in a training set of d samples. The data
tuples that did not make it into the training set end up forming the test set.
About 63.2% of the original data will end up in the bootstrap, and the
remaining 36.8% will form the test set (since (1 — 1/d)d = e = 0.368)

» Repeat the sampling procedue k times, overall accuracy of the
model: k

aco(M) =Y _(0.632x acc(M,)

i=1

+0.368xacc(M,) Wi”e,)

test_set
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Classification and Prediction — Sub-Topics

=  What is classification? What is prediction?
. Issues regarding classification and prediction
= Classification by decision tree induction
. Bayesian classification
] Rule-based classification
=  Classification by back propagation
= Support Vector Machines (SVM)
= Lazy learners (or learning from your neighbors)
. Frequent-pattern-based classification
] Other classification methods
= Prediction
= Accuracy and error measures
—f . Ensemble methods

] Model selection
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eu
Ensemble Methods: Increasing the Accuracy :

Combine Class
voles prediction

*= Ensemble methods
» Use a combination of models to increase accuracy
» Combine a series of k learned models, M;, M,, ..., M,, with the aim
of creating an improved model M*
= Popular ensemble methods
» Bagging: averaging the prediction over a collection of classifiers
» Boosting: weighted vote with a collection of classifiers
» Ensemble: combining a set of heterogeneous classifiers
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Bagging: Boostrap Aggregation

= Analogy: Diagnosis based on multiple doctors’ majority vote
= Training
» Given a set D of d tuples, at each iteration /, a training set D, of d tuples is
sampled with replacement from D (i.e., boostrap)
» A classifier model M, is learned for each training set D,
= Classification: classify an unknown sample X
» Each classifier M, returns its class prediction

» The bagged classifier M* counts the votes and assigns the class with the
most votes to X

= Prediction: can be applied to the prediction of continuous values by
taking the average value of each prediction for a given test tuple
= Accuracy
» Often significant better than a single classifier derived from D
» For noise data: not considerably worse, more robust
» Proved improved accuracy in prediction
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eu
Boosting :

» Analogy: Consult several doctors, based on a combination of weighted
diagnoses—weight assigned based on the previous diagnosis accuracy
= How boosting works?
»  Weights are assigned to each training tuple
» A series of k classifiers is iteratively learned

»  After a classifier M, is learned, the weights are updated to allow the
subsequent classifier, M,,,, to pay more attention to the training tuples that
were misclassified by M,

»  The final M* combines the votes of each individual classifier, where the
weight of each classifier's vote is a function of its accuracy
= The boosting algorithm can be extended for the prediction of
continuous values
= Comparing with bagging: boosting tends to achieve greater accuracy,
but it also risks overfitting the model to misclassified data
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Adaboost (Freund and Schapire, 1997)

Given a set of d class-labeled tuples, (Xy, y4), ..., Xy, Yq)
Initially, all the weights of tuples are set the same (1/d)
Generate k classifiers in k rounds. At round i,

»  Tuples from D are sampled (with replacement) to form a training set
D, of the same size

»  Each tuple’s chance of being selected is based on its weight

» A classification model M, is derived from D,

»  lts error rate is calculated using D, as a test set

»  If a tuple is misclssified, its weight is increased, o.w. it is decreased

Error rate: err(X;) is the misclassification error of tuple X;. Classifier
M error rate is the sum of the weights of the misclassified tuples:

error(M,) = iwj xerr(X;)
The weight of classifier M;’s vote is

og 1—erron(M,)
error(M,)

Classification and Prediction — Sub-Topics

What is classification? What is prediction?
Issues regarding classification and prediction
Classification by decision tree induction
Bayesian classification

Rule-based classification

Classification by back propagation

Support Vector Machines (SVM)

Lazy learners (or learning from your neighbors)
Frequent-pattern-based classification

Other classification methods

Prediction

Accuracy and error measures

Ensemble methods

Model selection
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Model Evaluation and Selection

= Evaluation metrics: How can we measure
accuracy? Other metrics to consider?
= Use test set of class-labeled tuples instead of
training set when assessing accuracy
» Methods for estimating a classifier's accuracy:
» Holdout method, random subsampling
» Cross-validation
» Bootstrap
» Comparing classifiers:
» Confidence intervals
» Cost-benefit analysis and ROC Curves

Classifier Evaluation Metrics: Accuracy & Error Rate

Confusion Matrix:

Actual class\Predicted class C, ~C,
C, True Positives (TP) False Negatives (FN)
~C, False Positives (FP) True Negatives (TN)

Classifier Accuracy, or recognition rate: percentage of test set tuples that are
correctly classified,

TP+TN
TP+TN+FP+FN

accuracy =

Error rate: 1 — accuracy, or

FP+FN
TP+TN+FP+FN

error rate =
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Classifier Evaluation Metrics: Example - Confusion Matrix

Actual class\Predicted | buy_computer = buy_computer = | Total | Recognition(%)

class no
yes
buy_computer = 6954 46 7000 99.34

yes

buy_computer = no 412 2588 3000 86.27
Total 7366 2634 1000 95.42

0

» Given m classes, an entry, CMi,j in a confusion
matrix indicates # of tuples in class i that were
labeled by the classifier as class j.

» May be extra rows/columns to provide totals or
recognition rate per class.
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Classifier Evaluation Metrics: Sensitivity and Specificity

= Class Imbalance Problem:

» one class may be rare, e.g. fraud detection
data, medical data

» significant majority of the negative class and
minority of the positive class

» Sensitivity: True Positive recognition rate,

sensitivit = E
S
Specificity: True Negative recognition rate,
TN

specificity = N
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Classifier Evaluation Metrics: Precision and Recall

» Precision: exactness — what % of tuples that the
classifier labeled as positive are actually
positive?

TP

TP+ FP

» Recall: completeness — what % of positive
tuples did the classifier label as positive?
TF
TP+ FN

PTECISIONn

recall =

» Perfect score is 1.0
» |nverse relationship between precision & recall

Classifier Evaluation Metrics: Example

Actual cancer = cancer = no Total | Recognition(
class\Predicted yes %)
class
cancer = yes 90 210 300 30.00
sensitivity
cancer = no 140 9560 9700 98.56
specificity
Total 230 9770 1000 96.40
0 accuracy

Precision = 90/230 = 39.13%; Recall = 90/300 = 30.00%
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Classifier Evaluation Metrics: Fand F; Measures

» F measure (F, or F-score): harmonic mean of
precision and recall,

Fo— 2 x precision X recall
- Fy: ~ precision + recall

» weighted measure of precision and recall

» assigns B times as much weight to recall as to
precision,

(1 + %) x precision x recall
3% x precision + recall

Fp
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Evaluating Classifier Accuracy: Holdout & Cross-Validation Methods

= Holdout method
» Given data is randomly partitioned into two independent sets
 Training set (e.g., 2/3) for model construction
» Test set (e.g., 1/3) for accuracy estimation
» Random sampling: a variation of holdout
* Repeat holdout k times, accuracy = avg. of the accuracies
obtained
= Cross-validation (k-fold, where k = 10 is most popular)

» Randomly partition the data into k mutually exclusive subsets,
each approximately equal size

» At i-th iteration, use D, as test set and others as training set
» Leave-one-out: k folds where k = # of tuples, for small sized data

» *Stratified cross-validation*: folds are stratified so that class
dist. in each fold is approx. the same as that in the initial data
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Evaluating the Classifier Accuracy: Bootstrap

= Bootstrap
» Works well with small data sets
» Samples the given training tuples uniformly with replacement

* i.e., each time a tuple is selected, it is equally likely to be
selected again and re-added to the training set

= Several bootstrap methods, and a common one is .632
boostrap

» A data set with d tuples is sampled d times, with replacement, resulting in a
training set of d samples. The data tuples that did not make it into the
training set end up forming the test set. About 63.2% of the original data
end up in the bootstrap, and the remaining 36.8% form the test set (since (1
—1/d)d = e =0.368)

» Repeat the sampling procedure k times, overall accuracy of the

model: k
acc(M)=>"(0.632xacc(M,)

i=1

+0.368xacc(M,)

test_set train_set )
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Estimating Confidence Intervals: Classifier Models M, vs. M,

= Suppose we have 2 classifiers, M; and M,.
Which is best?
= Use 10-fold cross-validation to obtain &7 (M)
and &T(Ma)
» These mean error rates are just estimates of
error on the true population of future data cases
» What if the difference between the 2 error rates
is just attributed to chance?
» Use a test of statistical significance
» Obtain confidence limits for our error estimates
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Estimating Confidence Intervals: Null Hypothesis

Perform 10-fold cross-validation

Assume samples follow a t distribution with k—171
degrees of freedom (here, k=70)

Use t-test (or Student’s t-test)

Null Hypothesis: M, & M, are the same, i.e.
|eFF (M) -erT(Mz) =0

If we can reject null hypothesis, then

» conclude that the difference between M, & M, is
statistically significant

» Chose model with lower error rate

Estimating Confidence Intervals: t-test

= |f only 1 test set available:pairwise comparison
» For i round of 10-fold cross-validation, the same cross
partitioning is used to obtain err(M,); and err(M,);
» Average over 10 rounds to get 877(M}) and 77 (M)
» t-test computes t-statistic with k-1 degrees of
freedom:

_ er(My) — err(My)

. where
Vvar(M; — M2)/k

- k
var(M; — My) = Z [err(Ml),- — err(My); — (&FF(My) — W(Mg))r

?!"|l—‘

ar(My) _ var(M:
Where  yar(ay — Mp) = \ﬁ"""ﬁ_ ) "’“réz 2
1

where &, & &, are # of cross-validation samples used for M, & M,, resp.
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Estimating Confidence Intervals: Table for t-distribution

TABLE B: 1-DISTRIBUTION CRITICAL VALUES

Teil probability p
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Estimating Confidence Intervals: Statistical Significance

= Are M, & M, significantly different?

» Compute t. Select significance level (e.g. sig = 5%)

» Consult table for t-distribution: Find ¢ value
corresponding to k-1 degrees of freedom (here, 9)

» t-distribution is symmetric — typically upper % points
of distribution shown — look up value for confidence
limit z=sig/2 (here, 0.025)

» Ift>zort<-z then t value lies in rejection region:

* Reject null hypothesis that mean error rates of M, & M, are
same
+ Conclude: statistically significant difference between M, & M,

» Otherwise, conclude that any difference is chance.
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Model Selection: ROC Curves

ROC (Receiver Operating
Characteristics) curves: for visual
comparison of classification models
Originated from signal detection theory
Shows the trade-off between the true
positive rate and the false positive rate
The area under the ROC curve is a
measure of the accuracy of the model

0E 1.0
falze positve rEw

Vertical axis represents

= Rank the test tuples in decreasing order: the true positive rate

the one that is most likely to belong to the Horizontal axis rep. the

positive class appears at the top of the false positive rate
list The plot also shows a

diagonal line

A model with perfect
accuracy will have an
area of 1.0

= The closer to the diagonal line (i.e., the
closer the area is to 0.5), the less
accurate is the model
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Issues Affecting Model Selection i

= Accuracy

» classifier accuracy: predicting class label
= Speed

» time to construct the model (training time)

» time to use the model (classification/prediction time)
» Robustness: handling noise and missing values
= Scalability: efficiency in disk-resident databases
» Interpretability

» understanding and insight provided by the model

» Other measures, e.g., goodness of rules, such as
decision tree size or compactness of
classification rules
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HJ’ . Summary and Conclusion
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Handling Different Kinds of Cases in Classification

= Class Imbalance Problem: Consider
sensitivity and specificity measures.

= Multiclass problem: Instead of assigning a
class label, assign a probability class
distribution

= Active learning
» Transfer learning
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Summary (1)

= Classification is a form of data analysis that extracts models
describing important data classes

» Effective and scalable methods have been developed for
Bayesian belief network, backpropagation, Support Vector
Machine (SVM), pattern-based classification, nearest
neighbor classifiers, and case-based reasoning, and other
classification methods such as genetic algorithms, rough set
and fuzzy set approaches

» Unlike naive Bayesian classification (which assumes class
conditional independence), Bayesian belief networks allow
class conditional independencies to be defined between
subsets of variables

ST ET A )

= Evaluation metrics include: accuracy, sensitivity, specificity, precision,
recall, F measure, and F; measure.

= Stratified k-fold cross-validation is recommended for accuracy
estimation. Bagging and boosting can be used to increase overall
accuracy by learning and combining a series of individual models.

= Significance tests and ROC curves are useful for model selection.

= There have been numerous comparisons of the different classification
methods; the matter remains a research topic.

= No single method has been found to be superior over all others for all
data sets.

= |ssues such as accuracy, training time, robustness, scalability, and
interpretability must be considered and can involve trade-offs, further
complicating the quest for an overall superior method.
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Summary (1)

= Backpropagation:
» Neural network algorithm that uses gradient descent

» Searches for a set of weights that model the data so as to minimize
the error between the network's class prediction and the actual
class label of data tuples

» Rules can be extracted for improved interpretability

= Support Vector Machine (SVM):
» For classification of both linear and nonlinear data

» Transforms original data into a higher dimension, from where it
finds a hyperplane for separation of the data using essential
training tuples called support vectors.

= Pattern-Based Classification:
» Uses association mining techniques that search for frequently
occurring patterns in large databases.
» The patterns may generate rules, which can be analyzed for use in
classification.
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Lazy Learners:

» store all training tuples and wait until presented with a test tuple
before performing generalization.

» k-nearest neighbor and case-based reasoning
= Genetic Algorithms: populations of rules “evolve” via
operations of crossover and mutation until all rules within a
population satisfy specified threshold.
= Rough Set Approach: approximately define classes that
are not distinguishable based on the available attributes
» Fuzzy Set Approaches: replace "brittle" threshold cutoffs

for continuous-valued attributes with degree of
membership functions.
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Assignments & Readings

= Readings

M » Chapter 6

= Individual Project #1
» Due 03/25/10

= Group Project Proposal
» Due 03/25/10
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Next Session: Cluster Analysis
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