
1

Data Mining

Session 5 – Sub-Topic
Data Cube Technology

Dr. Jean-Claude Franchitti

New York University
Computer Science Department

Courant Institute of Mathematical Sciences

Adapted from course textbook resources
Data Mining Concepts and Techniques (2nd Edition)

Jiawei Han and Micheline Kamber

2

22 Data Cube TechnologyData Cube Technology

Agenda

11 Session OverviewSession Overview

33 Summary and ConclusionSummary and Conclusion

3

Data Cube Technology in Brief

Efficient Methods for Data Cube Computation

Data Cubes for Advanced Applications

Knowledge Discovery with Data Cubes

Summary

4

Icons / Metaphors

4

Common Realization

Information

Knowledge/Competency Pattern

Governance

Alignment

Solution Approach

5

22 Data Cube TechnologyData Cube Technology

Agenda

11 Session OverviewSession Overview

33 Summary and ConclusionSummary and Conclusion

6

Efficient Computation of Data Cubes

Preliminary Concepts

General strategies of cube computation - Multi-

way array aggregation

BUC

H-cubing

Star-Cubing

High-Dimensional OLAP

7

Data Cube: A Lattice of Cuboids

time,item

time,item,location

time, item, location, supplierc

all

time item location supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D(base) cuboid

8

Data Cube: A Lattice of Cuboids

Base vs. aggregate cells; ancestor vs. descendant cells; parent vs.
child cells

1. (9/15, milk, Urbana, Dairy_land)
2. (9/15, milk, Urbana, *)
3. (*, milk, Urbana, *)
4. (*, milk, Urbana, *)
5. (*, milk, Chicago, *)
6. (*, milk, *, *)

all

time,item

time,item,location

time, item, location, supplier

time item location supplier

time,location

time,supplier
item,location

item,supplier
location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D(base) cuboid

9

Cube Materialization: Full Cube, Iceberg Cube and Closed Cube

Full cube vs. iceberg cube
compute cube sales iceberg as

select month, city, customer group, count(*)
from salesInfo
cube by month, city, customer group
having count(*) >= min support (or threshold) iceberg condition

Is iceberg cube good enough?
» 2 base cells: {(a1, a2, a3 . . . , a100):10, (a1, a2, b3, . . . , b100):10}
» How many cells will the iceberg cube have? Hint: A huge but tricky number!

Close cube:
» Closed cell c: if there exists no cell d, s.t. d is a descendant of c, and

d has the same measure value as c.
» Closed cube: a cube consisting of only closed cells
» What is the closed cube of the above base cuboid? Hint: only 3 cells

10

Roadmap for Efficient Computation

General cube computation heuristics (Agarwal et al.’96)

Computing full/iceberg cubes: 3 methodologies
» Bottom-Up: Multi-Way array aggregation (Zhao, Deshpande &

Naughton, SIGMOD’97)

» Top-down:

• BUC (Beyer & Ramarkrishnan, SIGMOD’99)

• H-cubing technique (Han, Pei, Dong & Wang: SIGMOD’01)

» Integrating Top-Down and Bottom-Up:

• Star-cubing algorithm (Xin, Han, Li & Wah: VLDB’03)

High-dimensional OLAP: A Minimal Cubing Approach (Li,
et al. VLDB’04)

Computing alternative kinds of cubes:
» Partial cube, closed cube, approximate cube, etc.

11

General Heuristics (Agarwal et al. VLDB’96)

Sorting, hashing, and grouping operations are applied to
the dimension attributes in order to reorder and cluster
related tuples
Aggregates may be computed from previously computed
aggregates, rather than from the base fact table
» Smallest-child: computing a cuboid from the smallest, previously

computed cuboid
» Cache-results: caching results of a cuboid from which other

cuboids are computed to reduce disk I/Os
» Amortize-scans: computing as many as possible cuboids at the

same time to amortize disk reads
» Share-sorts: sharing sorting costs cross multiple cuboids when

sort-based method is used
» Share-partitions: sharing the partitioning cost across multiple

cuboids when hash-based algorithms are used

12

Efficient Computation of Data Cubes

Preliminary Concepts

General strategies of cube computation - Multi-

way array aggregation

BUC

H-cubing

Star-Cubing

High-Dimensional OLAP

13

Multi-Way Array Aggregation

Array-based “bottom-up” algorithm

Using multi-dimensional chunks

No direct tuple comparisons

Simultaneous aggregation on
multiple dimensions

Intermediate aggregate values are
re-used for computing ancestor
cuboids

Cannot do Apriori pruning: No
iceberg optimization

A BC

AB

A

All

B

AC BC

C

14

Multi-way Array Aggregation for Cube Computation (MOLAP)

Partition arrays into chunks (a small sub-cube which fits in
memory).
Compressed sparse array addressing: (chunk_id, offset)
Compute aggregates in “multiway” by visiting cube cells in
the order which minimizes the # of times to visit each cell,
and reduces memory access and storage cost.

What is the best
traversing order
to do multi-way
aggregation?

A

B

29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1
c 0

b3

b2

b1

b0

a2 a3

C

B

44
28 56

40
24 52

36
20

60

15

Multi-way Array Aggregation for Cube Computation (3-D to 2-D)

all

A B

AB

ABC

AC BC

C

The best order is
the one that
minimizes the
memory
requirement and
reduced I/Os

ABC

AB

A

All

B

AC BC

C

16

Multi-way Array Aggregation for Cube Computation (2-D to 1-D)

ABC

AB

A

All

B

AC BC

C

17

Multi-Way Array Aggregation for Cube Computation (Method Summary)

Method: the planes should be sorted and
computed according to their size in ascending
order
» Idea: keep the smallest plane in the main memory,

fetch and compute only one chunk at a time for the
largest plane

Limitation of the method: computing well only for
a small number of dimensions
» If there are a large number of dimensions, “top-down”

computation and iceberg cube computation methods
can be explored

18

Efficient Computation of Data Cubes

Preliminary Concepts

General strategies of cube computation - Multi-

way array aggregation

BUC

H-cubing

Star-Cubing

High-Dimensional OLAP

19

Bottom-Up Computation (BUC)

BUC (Beyer & Ramakrishnan,
SIGMOD’99)
Bottom-up cube computation
(Note: top-down in our view!)

Divides dimensions into
partitions and facilitates iceberg
pruning
» If a partition does not satisfy

min_sup, its descendants can be
pruned

» If minsup = 1 ⇒ compute full CUBE!
No simultaneous aggregation

all

A B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB

1 all

2 A 10 B 14 C

7 AC 11 BC

4 ABC 6 ABD 8 ACD 12 BCD

9 AD 13 BD 15 CD

16 D

5 ABCD

3 AB

20

BUC: Partitioning

Usually, entire data set can’t
fit in main memory
Sort distinct values
» partition into blocks that fit

Continue processing
Optimizations
» Partitioning

• External Sorting, Hashing, Counting Sort
» Ordering dimensions to encourage pruning

• Cardinality, Skew, Correlation
» Collapsing duplicates

• Can’t do holistic aggregates anymore!

21

Efficient Computation of Data Cubes

Preliminary Concepts

General strategies of cube computation - Multi-

way array aggregation

BUC

H-cubing

Star-Cubing

High-Dimensional OLAP

22

H-Cubing: Using H-Tree Structure

Bottom-up computation
Exploring an H-tree
structure
If the current
computation of an H-tree
cannot pass min_sup, do
not proceed further
(pruning)
No simultaneous
aggregation

a1: 30 a2: 20 a3: 20 a4: 20

b1: 10 b2: 10 b3: 10

c1: 5 c2: 5

d2: 3d1: 2

root: 100

 all

 A B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB

23

H-tree: A Prefix Hyper-tree

Month City Cust_grp Prod Cost Price

Jan Tor Edu Printer 500 485

Jan Tor Hhd TV 800 1200

Jan Tor Edu Camera 1160 1280

Feb Mon Bus Laptop 1500 2500

Mar Van Edu HD 540 520

… … … … … …

root

edu hhd bus

Jan Mar Jan Feb

Tor Van Tor Mon

Q.I.Q.I. Q.I.Quant-
InfoSum:
1765
Cnt: 2bins

Attr. Val. Quant-Info Side-link
Edu Sum:2285 …
Hhd …
Bus …
… …

Jan …
Feb …
… …

Tor …
Van …
Mon …
… …

Header
table

24

root

Edu. Hhd. Bus.

Jan. Mar. Jan. Feb.

Tor. Van. Tor. Mon.

Q.I.Q.I. Q.I.Quant-Info
Sum: 1765
Cnt: 2
bins

Attr. Val. Quant-Info Side-link
Edu Sum:2285 …
Hhd …
Bus …
… …

Jan …
Feb …
… …
TorTor ……
Van …
Mon …
… …

Attr. Val. Q.I. Side-link
Edu …
Hhd …
Bus …
… …

Jan …
Feb …
… …

Header
Table
HTor

From (*, *, Tor) to (*, Jan, Tor)

Computing Cells Involving “City”

25

Computing Cells Involving Month But No City

root

Edu. Hhd. Bus.

Jan. Mar. Jan. Feb.

Tor. Van. Tor. Mont.

Q.I.Q.I. Q.I.

Attr. Val. Quant-Info Side-link
Edu. Sum:2285 …
Hhd. …
Bus. …
… …

Jan. …
Feb. …
Mar. …
… …

Tor. …
Van. …
Mont. …

… …

1. Roll up quant-info
2. Compute cells involving

month but no city

Q.I.

Top-k OK mark: if Q.I. in a child passes
top-k avg threshold, so does its parents.
No binning is needed!

26

Computing Cells Involving Only Cust_grp

root

edu hhd bus

Jan Mar Jan Feb

Tor Van Tor Mon

Q.I.Q.I. Q.I.

Attr. Val. Quant-Info Side-link
Edu Sum:2285 …
Hhd …
Bus …
… …

Jan …
Feb …
Mar …
… …
Tor …
Van …
Mon …
… …

Check header table directly

Q.I.

27

Efficient Computation of Data Cubes

Preliminary Concepts

General strategies of cube computation - Multi-

way array aggregation

BUC

H-cubing

Star-Cubing

High-Dimensional OLAP

28

Star-Cubing: An Integrating Method

D. Xin, J. Han, X. Li, B. W. Wah, Star-Cubing: Computing Iceberg Cubes
by Top-Down and Bottom-Up Integration, VLDB'03
Explore shared dimensions
» E.g., dimension A is the shared dimension of ACD and AD
» ABD/AB means cuboid ABD has shared dimensions AB

Allows for shared computations
» e.g., cuboid AB is computed simultaneously as ABD

C/C

AC/AC BC/BC

ABC/ABC ABD/AB ACD/A BCD

AD/A BD/B CD

D

ABCD/all

Aggregate in a top-down
manner but with the bottom-up
sub-layer underneath which will
allow Apriori pruning

Shared dimensions grow in
bottom-up fashion

29

Iceberg Pruning in Shared Dimensions

Anti-monotonic property of shared
dimensions
» If the measure is anti-monotonic, and if the

aggregate value on a shared dimension does not
satisfy the iceberg condition, then all the cells
extended from this shared dimension cannot
satisfy the condition either

Intuition: if we can compute the shared
dimensions before the actual cuboid, we can
use them to do Apriori pruning
Problem: how to prune while still aggregate
simultaneously on multiple dimensions?

30

Cell Trees

Use a tree structure

similar to H-tree to

represent cuboids

Collapses common

prefixes to save memory

Keep count at node

Traverse the tree to

retrieve a particular tuple

a1: 30 a2: 20 a3: 20 a4: 20

b1: 10 b2: 10 b3: 10

c1: 5 c2: 5

d2: 3d1: 2

root: 100

31

Star Attributes and Star Nodes

Intuition: If a single-
dimensional aggregate on an
attribute value p does not
satisfy the iceberg condition, it
is useless to distinguish them
during the iceberg computation
» E.g., b2, b3, b4, c1, c2, c4, d1, d2, d3

Solution: Replace such
attributes by a *. Such
attributes are star attributes,
and the corresponding nodes
in the cell tree are star nodes

A B C D Count

a1 b1 c1 d1 1

a1 b1 c4 d3 1

a1 b2 c2 d2 1

a2 b3 c3 d4 1

a2 b4 c3 d4 1

32

Example: Star Reduction

Suppose minsup = 2
Perform one-dimensional
aggregation. Replace attribute
values whose count < 2 with *.
And collapse all *’s together
Resulting table has all such
attributes replaced with the
star-attribute
With regards to the iceberg
computation, this new table is
a loseless compression of the
original table

A B C D Count
a1 b1 * * 2
a1 * * * 1
a2 * c3 d4 2

A B C D Count
a1 b1 * * 1
a1 b1 * * 1
a1 * * * 1
a2 * c3 d4 1
a2 * c3 d4 1

33

Star Tree

Given the new compressed
table, it is possible to
construct the corresponding
cell tree—called star tree

Keep a star table at the side
for easy lookup of star
attributes

The star tree is a loseless
compression of the original
cell tree

a1:3

root:5

a2:2

b*:2

c3:2

d4:2

b*:1 b1:2

c*:1

d*:1

c*:2

d*:2

Star Table

...

b3 *

b2 *

b4 *

c1 *

c2 *

d1 *

A B C D Count

a1 b
1

* * 2

a1 * * * 1
a2 * c3 d

4
2

34

Star-Cubing Algorithm—DFS on Lattice Tree

all

A B/B C/C

AC/AC BC/BC

ABC/ABC ABD/AB ACD/A BCD

AD/A BD/B CD

D/D

ABCD

/A

AB/AB

BCD: 51

b*: 33 b1: 26

c*: 27c3: 211c*: 14

d*: 15 d4: 212 d*: 28

root: 5

a1: 3 a2: 2

b*: 2b1: 2b*: 1

d*: 1

c*: 1

d*: 2

c*: 2

 d4: 2

c3: 2

35

Multi-Way Aggregation

a1:3

b*:1 b1:2

c*:1

d*:1

c*:2

d*:2

root:5

a2:2

b*:2

c3:2

d4:2

1

2

3

4

5

d*:1 5

c*:1

d*:1

4

5

a1CD/a1:3 2 a1b*D/a1b*:1

d*:1

a1b*c*/a1b*c*:13 4

5

Base−Tree BCD−Tree ACD/A−Tree ABC/ABC−TreeABD/AB−Tree

b*:1

c*:1

1

3

4

BCD:5

ABC/ABCABD/ABACD/ABCD

ABCD

36

Star-Cubing Algorithm—DFS on Star-Tree

37

Multi-Way Star-Tree Aggregation

Start depth-first search at the root of the base star tree

At each new node in the DFS, create corresponding star
tree that are descendents of the current tree according
to the integrated traversal ordering
» E.g., in the base tree, when DFS reaches a1, the ACD/A tree is

created

» When DFS reaches b*, the ABD/AD tree is created

The counts in the base tree are carried over to the new
trees

38

Multi-Way Aggregation (2)

When DFS reaches a leaf node (e.g., d*), start
backtracking
On every backtracking branch, the count in the
corresponding trees are output, the tree is
destroyed, and the node in the base tree is
destroyed
Example
» When traversing from d* back to c*, the
a1b*c*/a1b*c* tree is output and destroyed

» When traversing from c* back to b*, the
a1b*D/a1b* tree is output and destroyed

» When at b*, jump to b1 and repeat similar process

39

Efficient Computation of Data Cubes

Preliminary Concepts

General strategies of cube computation - Multi-

way array aggregation

BUC

H-cubing

Star-Cubing

High-Dimensional OLAP

40

The Curse of Dimensionality

None of the previous cubing method can handle
high dimensionality!
A database of 600k tuples. Each dimension has
cardinality of 100 and zipf of 2.

41

Motivation of High-D OLAP

X. Li, J. Han, and H. Gonzalez, High-
Dimensional OLAP: A Minimal Cubing Approach,
VLDB'04
Challenge to current cubing methods:
» The “curse of dimensionality’’ problem
» Iceberg cube and compressed cubes: only delay the

inevitable explosion
» Full materialization: still significant overhead in

accessing results on disk
High-D OLAP is needed in applications
» Science and engineering analysis
» Bio-data analysis: thousands of genes
» Statistical surveys: hundreds of variables

42

Fast High-D OLAP with Minimal Cubing

Observation: OLAP occurs only on a small

subset of dimensions at a time

Semi-Online Computational Model

1.Partition the set of dimensions into shell fragments

2.Compute data cubes for each shell fragment while

retaining inverted indices or value-list indices

3.Given the pre-computed fragment cubes,

dynamically compute cube cells of the high-

dimensional data cube online

43

Properties of Proposed Method

Partitions the data vertically

Reduces high-dimensional cube into a set of

lower dimensional cubes

Online re-construction of original high-

dimensional space

Lossless reduction

Offers tradeoffs between the amount of pre-

processing and the speed of online

computation

44

Example Computation

Let the cube aggregation function be count

Divide the 5 dimensions into 2 shell fragments:
» (A, B, C) and (D, E)

tid A B C D E
1 a1 b1 c1 d1 e1
2 a1 b2 c1 d2 e1
3 a1 b2 c1 d1 e2
4 a2 b1 c1 d1 e2
5 a2 b1 c1 d1 e3

45

1-D Inverted Indices

Build traditional invert index or RID list

Attribute Value TID List List Size
a1 1 2 3 3
a2 4 5 2
b1 1 4 5 3
b2 2 3 2
c1 1 2 3 4 5 5
d1 1 3 4 5 4
d2 2 1
e1 1 2 2
e2 3 4 2
e3 5 1

46

Shell Fragment Cubes: Ideas

Generalize the 1-D inverted indices to multi-dimensional
ones in the data cube sense
Compute all cuboids for data cubes ABC and DE while
retaining the inverted indices

For example, shell
fragment cube ABC
contains 7 cuboids:
» A, B, C
» AB, AC, BC
» ABC

This completes the offline
computation stage

111 2 3 1 4 5a1 b1

04 5 2 3a2 b2
24 54 5 1 4 5a2 b1
22 31 2 3 2 3a1 b2

List SizeTID ListIntersectionCell

∩

∩

∩

∩ ⊗

47

Shell Fragment Cubes: Size and Design

Given a database of T tuples, D dimensions, and F shell
fragment size, the fragment cubes’ space requirement is:

» For F < 5, the growth is sub-linear

Shell fragments do not have to be disjoint
Fragment groupings can be arbitrary to allow for
maximum online performance
» Known common combinations (e.g.,<city, state>) should be

grouped together.

Shell fragment sizes can be adjusted for optimal balance
between offline and online computation

O T D
F


 


  (2

F −1)










48

ID_Measure Table

If measures other than count are present, store
in ID_measure table separate from the shell
fragments

tid count sum
1 5 70
2 3 10
3 8 20
4 5 40
5 2 30

49

The Frag-Shells Algorithm

1. Partition set of dimension (A1,…,An) into a set of k

fragments (P1,…,Pk).

2. Scan base table once and do the following

3. insert <tid, measure> into ID_measure table.

4. for each attribute value ai of each dimension Ai

5. build inverted index entry <ai, tidlist>

6. For each fragment partition Pi

7. build local fragment cube Si by intersecting tid-lists

in bottom- up fashion.

50

Frag-Shells (2)

A B C D E F …

ABC
Cube

DEF
Cube

D Cuboid
EF Cuboid

DE Cuboid

Cell Tuple-ID List
d1 e1 {1, 3, 8, 9}
d1 e2 {2, 4, 6, 7}
d2 e1 {5, 10}
… …

Dimensions

51

Online Query Computation: Query

A query has the general form

Each ai has 3 possible values

1. Instantiated value

2. Aggregate * function

3. Inquire ? function

For example, returns a

2-D data cube.

 a1,a2,K,an :M

3 ? ? * 1: count

52

Online Query Computation: Method

Given the fragment cubes, process a query
as follows

1. Divide the query into fragment, same as the shell

2. Fetch the corresponding TID list for each
fragment from the fragment cube

3. Intersect the TID lists from each fragment to
construct instantiated base table

4. Compute the data cube using the base table with
any cubing algorithm

53

Online Query Computation: Sketch

A B C D E F G H I J K L M N …

Online
Cube

Instantiated
Base Table

54

Experiment: Size vs. Dimensionality (50 and 100 cardinality)

(50-C): 106 tuples, 0 skew, 50 cardinality, fragment size 3.
(100-C): 106 tuples, 2 skew, 100 cardinality, fragment size 2.

55

Experiments on Real World Data

UCI Forest CoverType data set
» 54 dimensions, 581K tuples

» Shell fragments of size 2 took 33 seconds and 325MB
to compute

» 3-D subquery with 1 instantiate D: 85ms~1.4 sec.

Longitudinal Study of Vocational Rehab. Data
» 24 dimensions, 8818 tuples

» Shell fragments of size 3 took 0.9 seconds and 60MB
to compute

» 5-D query with 0 instantiated D: 227ms~2.6 sec.

56

Data Cube Technology in Brief

Efficient Methods for Data Cube Computation

Data Cubes for Advanced Applications

Knowledge Discovery with Data Cubes

Summary

57

Data Cubes for Advanced Applications

Data cubes have been developed for sophisticated data
sets and advanced applications
Sophisticated data sets
» Stream cube, spatial cube, multimedia cube, text cube, RFID

cube, etc. — to be studied in volume 2

Data Cubes for Advanced Applications
» Sampling Cube

• X. Li, J. Han, Z. Yin, J.-G. Lee, Y. Sun, “Sampling Cube: A
Framework for Statistical OLAP over Sampling Data”,
SIGMOD’08

» Ranking Cube
• D. Xin, J. Han, H. Cheng, and X. Li. Answering top-k queries

with multi-dimensional selections: The ranking cube
approach. VLDB’06

58

Statistical Surveys and OLAP

Statistical survey: A popular tool to collect information
about a population based on a sample

Ex.: TV ratings, US Census, election polls

A common tool in politics, health, market research,
science, and many more
An efficient way of collecting information (Data collection
is expensive)
Many statistical tools available, to determine validity

Confidence intervals
Hypothesis tests

OLAP (multidimensional analysis) on survey data
highly desirable but can it be done well?

59

Surveys: Sample vs. Whole Population

Age\Education High-school College Graduate

18

19

20

…

Data is only a sample of population

60

Problems for Drilling in Multidim. Space

Age\Education High-school College Graduate

18

19

20

…

Data is only a sample of population but samples could be
small when drilling to certain multidimensional space

61

OLAP on Survey (i.e., Sampling) Data

Age/Education High-school College Graduate

18

19

20

…

Semantics of query is unchanged
Input data has changed

62

Challenges for OLAP on Sampling Data

Computing confidence intervals in OLAP
context
No data?

Not exactly. No data in subspaces in cube
Sparse data
Causes include sampling bias and query
selection bias

Curse of dimensionality
Survey data can be high dimensional
Over 600 dimensions in real world example
Impossible to fully materialize

63

Example 1: Confidence Interval

Age/Education High-school College Graduate

18

19

20

…

What is the average income of 19-year-old high-school students?
Return not only query result but also confidence interval

64

Confidence Interval

Confidence interval at :

x is a sample of data set; is the mean of sample

tc is the critical t-value, calculated by a look-up

• is the estimated standard error of the mean

Example: $50,000 ± $3,000 with 95% confidence

Treat points in cube cell as samples

Compute confidence interval as traditional sample set

Return answer in the form of confidence interval
Indicates quality of query answer

User selects desired confidence interval

65

Efficient Computing Confidence Interval Measures

Efficient computation in all cells in data cube
Both mean and confidence interval are algebraic

Why confidence interval measure is algebraic?

is algebraic

where both s and l (count) are algebraic

Thus one can calculate cells efficiently at more
general cuboids without having to start at the
base cuboid each time

66

Example 2: Query Expansion

Age/Education High-school College Graduate

18

19

20

…

What is the average income of 19-year-old college students?

67

Boosting Confidence by Query Expansion

From the example: The queried cell “19-year-
old college students” contains only 2 samples
Confidence interval is large (i.e., low
confidence). why?

Small sample size
High standard deviation with samples

Small sample sizes can occur at relatively
low dimensional selections

Collect more data?― expensive!
Use data in other cells? Maybe, but have to
be careful

68

Intra-Cuboid Expansion: Choice 1

Age/Education High-school College Graduate

18

19

20

…

Expand query to include 18 and 20 year olds?

69

Intra-Cuboid Expansion: Choice 2

Age/Education High-school College Graduate

18

19

20

…

Expand query to include high-school and graduate students?

70

Query Expansion

71

Intra-Cuboid Expansion

Combine other cells’ data into own to “boost”
confidence

If share semantic and cube similarity
Use only if necessary
Bigger sample size will decrease confidence
interval

Cell segment similarity
» Some dimensions are clear: Age
» Some are fuzzy: Occupation
» May need domain knowledge
Cell value similarity

» How to determine if two cells’ samples come from
the same population?

» Two-sample t-test (confidence-based)

72

Inter-Cuboid Expansion

If a query dimension is
Not correlated with cube value
But is causing small sample size by drilling down too
much

Remove dimension (i.e., generalize to *) and
move to a more general cuboid
Can use two-sample t-test to determine
similarity between two cells across cuboids
Can also use a different method to be shown
later

73

Query Expansion Experiments

Real world sample data: 600 dimensions and
750,000 tuples
0.05% to simulate “sample” (allows error
checking)

74

Ranking Cubes – Efficient Computation of Ranking queries

Data cube helps not only OLAP but also ranked search
(top-k) ranking query: only returns the best k results
according to a user-specified preference, consisting of (1)
a selection condition and (2) a ranking function
Ex.: Search for apartments with expected price 1000 and
expected square feet 800

• Select top 1 from Apartment
• where City = “LA” and Num_Bedroom = 2
• order by [price – 1000]^2 + [sq feet - 800]^2 asc

Efficiency question: Can we only search what we need?
» Build a ranking cube on both selection dimensions and ranking

dimensions

75

Sliced Partition
for city=“LA”

Sliced Partition
for BR=2

Ranking Cube: Partition Data on Both Selection and Ranking Dimensions

One single data
partition as the template

Slice the data partition
by selection conditions

Partition for
all data

76

Materialize Ranking-Cube

1120
560
500
200

1000
900
800
600

Sq feet

4
11
11
15
6
2
5
5

Block ID

12002LAt7
12002LAt6

8001SEAt3

11001LAt5
10003CLEt4

13503CLEt8

7002CLEt2
5001SEAt1

PriceBRCitytid

Step 1: Partition Data on
Ranking Dimensions

Step 2: Group data by
Selection Dimensions

City

BR
City & BR

3 421

CLE
LA

SEA

Step 3: Compute Measures for each group

For the cell (LA)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Block-level: {11, 15}
Data-level: {11: t6, t7; 15: t5}

77

Search with Ranking-Cube:
Simultaneously Push Selection and Ranking

Select top 1 from Apartment
where city = “LA”
order by [price – 1000]^2 + [sq feet - 800]^2 asc

800

1000

Without ranking-cube: start
search from here

With ranking-cube:
start search from here

Measure for LA:
{11, 15}
{11: t6,t7; 15:t5}

11

15

Given the bin boundaries,
locate the block with top score[200, 400, 600, 800, 1120]Bin boundary for sq feet

[500, 600, 800, 1100,1350]Bin boundary for price

78

Processing Ranking Query: Execution Trace

Select top 1 from Apartment
where city = “LA”
order by [price – 1000]^2 + [sq feet - 800]^2 asc

800

1000

With ranking-
cube: start search
from here

Measure for LA:
{11, 15}
{11: t6,t7; 15:t5}

11

15

f=[price-1000]^2 + [sq feet – 800]^2
[200, 400, 600, 800, 1120]Bin boundary for sq feet
[500, 600, 800, 1100,1350]Bin boundary for price

Execution Trace:

1. Retrieve High-level measure for LA {11, 15}

2. Estimate lower bound score for block 11, 15

f(block 11) = 40,000, f(block 15) = 160,000

3. Retrieve block 11
4. Retrieve low-level measure for block 11
5. f(t6) = 130,000, f(t7) = 97,600

Output t7, done!

79

Ranking Cube: Methodology and Extension

Ranking cube methodology
» Push selection and ranking simultaneously

» It works for many sophisticated ranking functions

How to support high-dimensional data?
» Materialize only those atomic cuboids that contain

single selection dimensions

• Uses the idea similar to high-dimensional OLAP

• Achieves low space overhead and high
performance in answering ranking queries with a
high number of selection dimensions

80

Data Cube Technology in Brief

Efficient Methods for Data Cube Computation

Data Cubes for Advanced Applications

Knowledge Discovery with Data Cubes

Summary

81

Knowledge Discovery with Data Cubes

Discovery-Driven Exploration of Data Cubes

Complex Aggregation at Multiple Granularities:

Multi-Feature Cubes

Prediction Cubes: Data Mining in Multi-

Dimensional Cube Space

82

Discovery-Driven Exploration of Data Cubes

Hypothesis-driven
» exploration by user, huge search space

Discovery-driven (Sarawagi, et al.’98)
» Effective navigation of large OLAP data cubes

» pre-compute measures indicating exceptions, guide
user in the data analysis, at all levels of aggregation

» Exception: significantly different from the value
anticipated, based on a statistical model

» Visual cues such as background color are used to
reflect the degree of exception of each cell

83

Kinds of Exceptions and their Computation

Parameters
» SelfExp: surprise of cell relative to other cells at

same level of aggregation
» InExp: surprise beneath the cell
» PathExp: surprise beneath cell for each drill-down

path

Computation of exception indicator (modeling
fitting and computing SelfExp, InExp, and
PathExp values) can be overlapped with cube
construction
Exception themselves can be stored, indexed
and retrieved like precomputed aggregates

84

Examples: Discovery-Driven Data Cubes

85

Knowledge Discovery with Data Cubes

Discovery-Driven Exploration of Data Cubes

Complex Aggregation at Multiple Granularities:

Multi-Feature Cubes

Prediction Cubes: Data Mining in Multi-

Dimensional Cube Space

86

Complex Aggregation at Multiple Granularities: Multi-Feature Cubes

Multi-feature cubes (Ross, et al. 1998): Compute complex queries
involving multiple dependent aggregates at multiple granularities
Ex. Grouping by all subsets of {item, region, month}, find the
maximum price in 1997 for each group, and the total sales among all
maximum price tuples

select item, region, month, max(price), sum(R.sales)
from purchases
where year = 1997
cube by item, region, month: R
such that R.price = max(price)

Continuing the last example, among the max price tuples, find the
min and max shelf live, and find the fraction of the total sales due to
tuple that have min shelf life within the set of all max price tuples

87

Knowledge Discovery with Data Cubes

Discovery-Driven Exploration of Data Cubes

Complex Aggregation at Multiple Granularities:

Multi-Feature Cubes

Prediction Cubes: Data Mining in Multi-

Dimensional Cube Space

88

Data Mining in Cube Space

Data cube greatly increases the analysis bandwidth
Four ways to interact OLAP-styled analysis and data mining
» Using cube space to define data space for mining
» Using OLAP queries to generate features and targets for mining,

e.g., multi-feature cube
» Using data-mining models as building blocks in a multi-step mining

process, e.g., prediction cube
» Using data-cube computation techniques to speed up repeated

model construction
• Cube-space data mining may require building a model for each

candidate data space
• Sharing computation across model-construction for different

candidates may lead to efficient mining

89

Prediction Cubes

Prediction cube: A cube structure that stores
prediction models in multidimensional data space
and supports prediction in OLAP manner
Prediction models are used as building blocks to
define the interestingness of subsets of data, i.e.,
to answer which subsets of data indicate better
prediction

90

How to Determine the Prediction Power of an Attribute?

Ex. A customer table D:
» Two dimensions Z: Time (Month, Year) and Location

(State, Country)
» Two features X: Gender and Salary
» One class-label attribute Y: Valued Customer

Q: “Are there times and locations in which the
value of a customer depended greatly on the
customers gender (i.e., Gender: predictiveness
attribute V)?”
Idea:
» Compute the difference between the model built on

that using X to predict Y and that built on using X – V
to predict Y

» If the difference is large, V must play an important role
at predicting Y

91

Efficient Computation of Prediction Cubes

Naïve method: Fully materialize the
prediction cube, i.e., exhaustively build
models and evaluate them for each cell
and for each granularity
Better approach: explore score function
decomposition that reduces prediction
cube computation to data cube
computation

92

22 Data Cube TechnologyData Cube Technology

Agenda

11 Session OverviewSession Overview

33 Summary and ConclusionSummary and Conclusion

93

Data Cube Technology: Summary

Efficient Methods for Data Cube Computation
MultiWay Array Aggregation
BUC
H-cubing
Star-Cubing
High-Dimensional OLAP with Shell-Fragments

Data Cubes for Advanced Applications
Sampling Cubes
Ranking Cubes

Knowledge Discovery with Data Cubes
Discovery-Driven Exploration of Data Cubes
Multi-feature Cubes
Prediction Cubes

Much more to be studied on mining in cube space

94

Ref.(I) Data Cube Computation Methods

S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S.
Sarawagi. On the computation of multidimensional aggregates. VLDB’96
D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient view maintenance in data warehouses.
SIGMOD’97
K. Beyer and R. Ramakrishnan. Bottom-Up Computation of Sparse and Iceberg CUBEs.. SIGMOD’99
M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman. Computing iceberg queries
efficiently. VLDB’98
J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H.
Pirahesh. Data cube: A relational aggregation operator generalizing group-by, cross-tab and sub-totals.
Data Mining and Knowledge Discovery, 1:29–54, 1997.
J. Han, J. Pei, G. Dong, K. Wang. Efficient Computation of Iceberg Cubes With Complex Measures.
SIGMOD’01
L. V. S. Lakshmanan, J. Pei, and J. Han, Quotient Cube: How to Summarize the Semantics of a Data
Cube, VLDB'02
X. Li, J. Han, and H. Gonzalez, High-Dimensional OLAP: A Minimal Cubing Approach, VLDB'04
Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for simultaneous
multidimensional aggregates. SIGMOD’97
K. Ross and D. Srivastava. Fast computation of sparse datacubes. VLDB’97
D. Xin, J. Han, X. Li, B. W. Wah, Star-Cubing: Computing Iceberg Cubes by Top-Down and Bottom-Up
Integration, VLDB'03
D. Xin, J. Han, Z. Shao, H. Liu, C-Cubing: Efficient Computation of Closed Cubes by Aggregation-
Based Checking, ICDE'06

95

Ref. (II) Advanced Applications with Data Cubes

D. Burdick, P. Deshpande, T. S. Jayram, R. Ramakrishnan, and S. Vaithyanathan.
OLAP over uncertain and imprecise data. VLDB’05
X. Li, J. Han, Z. Yin, J.-G. Lee, Y. Sun, “Sampling Cube: A Framework for Statistical
OLAP over Sampling Data”, SIGMOD’08
C. X. Lin, B. Ding, J. Han, F. Zhu, and B. Zhao. Text Cube: Computing IR measures for
multidimensional text database analysis. ICDM’08
D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP operations in spatial data
warehouses. SSTD’01
N. Stefanovic, J. Han, and K. Koperski. Object-based selective materialization for
efficient implementation of spatial data cubes. IEEE Trans. Knowledge and Data
Engineering, 12:938–958, 2000.
T. Wu, D. Xin, Q. Mei, and J. Han. Promotion analysis in multidimensional space.
VLDB’09
T. Wu, D. Xin, and J. Han. ARCube: Supporting ranking aggregate queries in partially
materialized data cubes. SIGMOD’08
D. Xin, J. Han, H. Cheng, and X. Li. Answering top-k queries with multi-dimensional
selections: The ranking cube approach. VLDB’06
J. S. Vitter, M. Wang, and B. R. Iyer. Data cube approximation and histograms via
wavelets. CIKM’98
D. Zhang, C. Zhai, and J. Han. Topic cube: Topic modeling for OLAP on multi-
dimensional text databases. SDM’09

96

Ref. (III) Knowledge Discovery with Data Cubes

R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases.
ICDE’97
B.-C. Chen, L. Chen, Y. Lin, and R. Ramakrishnan. Prediction cubes. VLDB’05
B.-C. Chen, R. Ramakrishnan, J.W. Shavlik, and P. Tamma. Bellwether analysis:
Predicting global aggregates from local regions. VLDB’06
Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang, Multi-Dimensional Regression
Analysis of Time-Series Data Streams, VLDB'02
G. Dong, J. Han, J. Lam, J. Pei, K. Wang. Mining Multi-dimensional Constrained
Gradients in Data Cubes. VLDB’ 01
R. Fagin, R. V. Guha, R. Kumar, J. Novak, D. Sivakumar, and A. Tomkins. Multi-
structural databases. PODS’05
J. Han. Towards on-line analytical mining in large databases. SIGMOD Record, 27:97–
107, 1998
T. Imielinski, L. Khachiyan, and A. Abdulghani. Cubegrades: Generalizing association
rules. Data Mining & Knowledge Discovery, 6:219–258, 2002.
R. Ramakrishnan and B.-C. Chen. Exploratory mining in cube space. Data Mining and
Knowledge Discovery, 15:29–54, 2007.
K. A. Ross, D. Srivastava, and D. Chatziantoniou. Complex aggregation at multiple
granularities. EDBT'98
S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven exploration of OLAP data
cubes. EDBT'98
G. Sathe and S. Sarawagi. Intelligent Rollups in Multidimensional OLAP Data. VLDB'01

