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Data Cube: A Lattice of Cuboids
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Data Cube: A Lattice of Cuboids

Base vs. aggregate cells; ancestor vs. descendant cells; parent vs. 
child cells

1. (9/15, milk, Urbana, Dairy_land) 
2. (9/15, milk, Urbana, *) 
3. (*, milk, Urbana, *) 
4. (*, milk, Urbana, *)
5. (*, milk, Chicago, *)
6. (*, milk, *, *) 

all
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Cube Materialization: Full Cube, Iceberg Cube and Closed Cube

Full cube vs. iceberg cube
compute cube sales iceberg as

select month, city, customer group, count(*)
from salesInfo
cube by month, city, customer group
having count(*) >= min support (or threshold) iceberg condition

Is iceberg cube good enough?
» 2 base cells:  {(a1, a2, a3 . . . , a100):10, (a1, a2, b3, . . . , b100):10}
» How many cells will the iceberg cube have? Hint: A huge but tricky number!

Close cube:
» Closed cell c: if there exists no cell d, s.t. d is a descendant of c, and 

d has the same measure value as c.
» Closed cube: a cube consisting of only closed cells
» What is the closed cube of the above base cuboid?  Hint: only 3 cells
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Roadmap for Efficient Computation

General cube computation heuristics (Agarwal et al.’96)

Computing full/iceberg cubes: 3 methodologies 
» Bottom-Up: Multi-Way array aggregation (Zhao, Deshpande & 

Naughton, SIGMOD’97) 

» Top-down: 

• BUC (Beyer & Ramarkrishnan, SIGMOD’99)

• H-cubing technique (Han, Pei, Dong & Wang: SIGMOD’01)

» Integrating Top-Down and Bottom-Up: 

• Star-cubing algorithm (Xin, Han, Li & Wah: VLDB’03)

High-dimensional OLAP: A Minimal Cubing Approach (Li, 
et al. VLDB’04)

Computing alternative kinds of cubes: 
» Partial cube, closed cube, approximate cube, etc.
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General Heuristics (Agarwal et al. VLDB’96)

Sorting, hashing, and grouping operations are applied to 
the dimension attributes in order to reorder and cluster 
related tuples
Aggregates may be computed from previously computed 
aggregates, rather than from the base fact table
» Smallest-child: computing a cuboid from the smallest, previously 

computed cuboid
» Cache-results: caching results of a cuboid from which other 

cuboids are computed to reduce disk I/Os
» Amortize-scans: computing as many as possible cuboids at the 

same time to amortize disk reads
» Share-sorts: sharing sorting costs cross multiple cuboids when 

sort-based method is used
» Share-partitions: sharing the partitioning cost across multiple 

cuboids when hash-based algorithms are used

12
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Multi-Way Array Aggregation

Array-based “bottom-up” algorithm

Using multi-dimensional chunks

No direct tuple comparisons

Simultaneous aggregation on 
multiple dimensions

Intermediate aggregate values are 
re-used for computing ancestor 
cuboids

Cannot do Apriori pruning: No 
iceberg optimization

A BC

AB

A

All

B

AC BC

C
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Multi-way Array Aggregation for Cube Computation (MOLAP)

Partition arrays into chunks (a small sub-cube which fits in 
memory). 
Compressed sparse array addressing: (chunk_id, offset)
Compute aggregates in “multiway” by visiting cube cells in 
the order which minimizes the # of times to visit each cell, 
and reduces memory access and storage cost.

What is the best 
traversing order 
to do multi-way 
aggregation?

A

B
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1 2 3 4

5

9
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Multi-way Array Aggregation for Cube Computation (3-D to 2-D)

all

A B

AB

ABC

AC BC

C

The best order is 
the one that 
minimizes the 
memory 
requirement and 
reduced I/Os

ABC

AB

A

All

B

AC BC

C
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Multi-way Array Aggregation for Cube Computation (2-D to 1-D)

ABC

AB

A

All

B

AC BC

C
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Multi-Way Array Aggregation for Cube Computation (Method Summary)

Method: the planes should be sorted and 
computed according to their size in ascending 
order
» Idea: keep the smallest plane in the main memory, 

fetch and compute only one chunk at a time for the 
largest plane

Limitation of the method: computing well only for 
a small number of dimensions
» If there are a large number of dimensions, “top-down”

computation and iceberg cube computation methods 
can be explored
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Bottom-Up Computation (BUC)

BUC (Beyer & Ramakrishnan, 
SIGMOD’99) 
Bottom-up cube computation 
(Note: top-down in our view!)

Divides dimensions into 
partitions and facilitates iceberg 
pruning
» If a partition does not satisfy 

min_sup, its descendants can be 
pruned

» If minsup = 1 ⇒ compute full CUBE!
No simultaneous aggregation

all

A B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB

1 all

2 A 10 B 14 C

7 AC 11 BC

4 ABC 6 ABD 8 ACD 12 BCD

9 AD 13 BD 15 CD

16 D

5 ABCD

3 AB
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BUC: Partitioning

Usually, entire data set                                 can’t 
fit in main memory
Sort distinct values
» partition into blocks that fit

Continue processing
Optimizations
» Partitioning

• External Sorting, Hashing, Counting Sort
» Ordering dimensions to encourage pruning

• Cardinality, Skew, Correlation
» Collapsing duplicates

• Can’t do holistic aggregates anymore!
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H-Cubing: Using H-Tree Structure

Bottom-up computation
Exploring an H-tree 
structure
If the current 
computation of an H-tree 
cannot pass min_sup, do 
not proceed further 
(pruning)
No simultaneous 
aggregation

a1: 30 a2: 20 a3: 20 a4: 20

b1: 10 b2: 10 b3: 10

c1: 5 c2: 5

d2: 3d1: 2

root: 100

 all

 A  B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB
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H-tree: A Prefix Hyper-tree

Month City Cust_grp Prod Cost Price

Jan Tor Edu Printer 500 485

Jan Tor Hhd TV 800 1200

Jan Tor Edu Camera 1160 1280

Feb Mon Bus Laptop 1500 2500

Mar Van Edu HD 540 520

… … … … … …

root

edu hhd bus

Jan Mar Jan Feb

Tor Van Tor Mon

Q.I.Q.I. Q.I.Quant-
InfoSum: 
1765
Cnt: 2bins

Attr. Val. Quant-Info Side-link
Edu Sum:2285 …
Hhd …
Bus …
… …

Jan …
Feb …
… …

Tor …
Van …
Mon …
… …

Header
table
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root

Edu. Hhd. Bus.

Jan. Mar. Jan. Feb.

Tor. Van. Tor. Mon.

Q.I.Q.I. Q.I.Quant-Info
Sum: 1765
Cnt: 2
bins

Attr. Val. Quant-Info Side-link
Edu Sum:2285 …
Hhd …
Bus …
… …

Jan …
Feb …
… …
TorTor ……
Van …
Mon …
… …

Attr. Val. Q.I. Side-link
Edu …
Hhd …
Bus …
… …

Jan …
Feb …
… …

Header
Table
HTor

From (*, *, Tor) to (*, Jan, Tor)

Computing Cells Involving “City”
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Computing Cells Involving Month But No City

root

Edu. Hhd. Bus.

Jan. Mar. Jan. Feb.

Tor. Van. Tor. Mont.

Q.I.Q.I. Q.I.

Attr. Val. Quant-Info Side-link
Edu. Sum:2285 …
Hhd. …
Bus. …
… …

Jan. …
Feb. …
Mar. …
… …

Tor. …
Van. …
Mont. …

… …

1. Roll up quant-info
2. Compute cells involving 

month but no city

Q.I.

Top-k OK mark: if Q.I. in a child passes 
top-k avg threshold, so does its parents. 
No binning is needed!
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Computing Cells Involving Only Cust_grp

root

edu hhd bus

Jan Mar Jan Feb

Tor Van Tor Mon

Q.I.Q.I. Q.I.

Attr. Val. Quant-Info Side-link
Edu Sum:2285 …
Hhd …
Bus …
… …

Jan …
Feb …
Mar …
… …
Tor …
Van …
Mon …
… …

Check header table directly

Q.I.
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Star-Cubing: An Integrating Method

D. Xin, J. Han, X. Li, B. W. Wah, Star-Cubing: Computing Iceberg Cubes 
by Top-Down and Bottom-Up Integration, VLDB'03
Explore shared dimensions
» E.g., dimension A is the shared dimension of ACD and AD
» ABD/AB means cuboid ABD has shared dimensions AB

Allows for shared computations
» e.g., cuboid AB is computed simultaneously as ABD

C/C

AC/AC BC/BC

ABC/ABC ABD/AB ACD/A BCD

AD/A BD/B CD

D

ABCD/all

Aggregate in a top-down 
manner but with the bottom-up 
sub-layer underneath which will 
allow Apriori pruning

Shared dimensions grow in 
bottom-up fashion



29

Iceberg Pruning in Shared Dimensions

Anti-monotonic property of shared 
dimensions
» If the measure is anti-monotonic, and if the 

aggregate value on a shared dimension does not 
satisfy the iceberg condition, then all the cells 
extended from this shared dimension cannot 
satisfy the condition either

Intuition: if we can compute the shared 
dimensions before the actual cuboid, we can 
use them to do Apriori pruning
Problem: how to prune while still aggregate 
simultaneously on multiple dimensions?

30

Cell Trees

Use a tree structure 

similar to H-tree to 

represent cuboids

Collapses common 

prefixes to save memory

Keep count at node

Traverse the tree to 

retrieve a particular tuple

a1: 30 a2: 20 a3: 20 a4: 20

b1: 10 b2: 10 b3: 10

c1: 5 c2: 5

d2: 3d1: 2

root: 100



31

Star Attributes and Star Nodes

Intuition: If a single-
dimensional  aggregate on an 
attribute value p does not 
satisfy the iceberg condition, it 
is useless to distinguish them 
during the iceberg computation
» E.g., b2, b3, b4, c1, c2, c4, d1, d2, d3 

Solution: Replace such 
attributes by a *.  Such 
attributes are star attributes,
and the corresponding nodes 
in the cell tree are star nodes

A B C D Count

a1 b1 c1 d1 1

a1 b1 c4 d3 1

a1 b2 c2 d2 1

a2 b3 c3 d4 1

a2 b4 c3 d4 1

32

Example: Star Reduction

Suppose minsup = 2
Perform one-dimensional 
aggregation.  Replace attribute 
values whose count < 2 with *.  
And collapse all *’s together
Resulting table has all such 
attributes replaced with the 
star-attribute
With regards to the iceberg 
computation, this new table is 
a loseless compression of the 
original table

A B C D Count
a1 b1 * * 2
a1 * * * 1
a2 * c3 d4 2

A B C D Count
a1 b1 * * 1
a1 b1 * * 1
a1 * * * 1
a2 * c3 d4 1
a2 * c3 d4 1
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Star Tree

Given the new compressed 
table, it is possible to 
construct the corresponding 
cell tree—called star tree

Keep a star table at the side 
for easy lookup of star 
attributes

The star tree is a loseless
compression of the original 
cell tree

a1:3

root:5

a2:2

b*:2

c3:2

d4:2

b*:1 b1:2

c*:1

d*:1

c*:2

d*:2

Star Table

...

b3        *

b2        *

b4        *

c1        *

c2        *

d1        *

A B C D Count

a1 b
1

* * 2

a1 * * * 1
a2 * c3 d

4
2
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Star-Cubing Algorithm—DFS on Lattice Tree

all

A B/B C/C

AC/AC BC/BC

ABC/ABC ABD/AB ACD/A BCD

AD/A BD/B CD

D/D

ABCD

/A

AB/AB

BCD: 51

b*: 33 b1: 26

c*: 27c3: 211c*: 14

d*: 15 d4: 212 d*: 28

root: 5

a1: 3 a2: 2

b*: 2b1: 2b*: 1

d*: 1

c*: 1

d*: 2

c*: 2

 d4: 2

c3: 2
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Multi-Way Aggregation

a1:3

b*:1 b1:2

c*:1

d*:1

c*:2

d*:2

root:5

a2:2

b*:2

c3:2

d4:2

1

2

3

4

5

d*:1 5

c*:1

d*:1

4

5

a1CD/a1:3 2 a1b*D/a1b*:1

d*:1

a1b*c*/a1b*c*:13 4

5

Base−Tree BCD−Tree ACD/A−Tree ABC/ABC−TreeABD/AB−Tree

b*:1

c*:1

1

3

4

BCD:5

ABC/ABCABD/ABACD/ABCD

ABCD

36

Star-Cubing Algorithm—DFS on Star-Tree
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Multi-Way Star-Tree Aggregation

Start depth-first search at the root of the base star tree

At each new node in the DFS, create corresponding star 
tree that are descendents of the current tree according 
to the integrated traversal ordering 
» E.g., in the base tree, when DFS reaches a1, the ACD/A tree is 

created

» When DFS reaches b*, the ABD/AD tree is created

The counts in the base tree are carried over to the new 
trees
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Multi-Way Aggregation (2)

When DFS reaches a leaf node (e.g., d*), start 
backtracking
On every backtracking branch, the count in the 
corresponding trees are output, the tree is 
destroyed, and the node in the base tree is 
destroyed
Example
» When traversing from d* back to c*, the 
a1b*c*/a1b*c* tree is output and destroyed

» When traversing from c* back to b*, the 
a1b*D/a1b* tree is output and destroyed

» When at b*, jump to b1 and repeat similar process
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The Curse of Dimensionality

None of the previous cubing method can handle 
high dimensionality!
A database of 600k tuples.  Each dimension has 
cardinality of 100 and zipf of 2.
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Motivation of High-D OLAP

X. Li, J. Han, and H. Gonzalez, High-
Dimensional OLAP: A Minimal Cubing Approach, 
VLDB'04
Challenge to current cubing methods:
» The “curse of dimensionality’’ problem
» Iceberg cube and compressed cubes: only delay the 

inevitable explosion
» Full materialization: still significant overhead in 

accessing results on disk
High-D OLAP is needed in applications
» Science and engineering analysis
» Bio-data analysis: thousands of genes
» Statistical surveys: hundreds of variables
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Fast High-D OLAP with Minimal Cubing

Observation: OLAP occurs only on a small 

subset of dimensions at a time

Semi-Online Computational Model

1.Partition the set of dimensions into shell fragments

2.Compute data cubes for each shell fragment while 

retaining inverted indices or value-list indices

3.Given the pre-computed fragment cubes, 

dynamically compute cube cells of the high-

dimensional data cube online
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Properties of Proposed Method

Partitions the data vertically

Reduces high-dimensional cube into a set of 

lower dimensional cubes

Online re-construction of original high-

dimensional space

Lossless reduction

Offers tradeoffs between the amount of pre-

processing and the speed of online 

computation
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Example Computation

Let the cube aggregation function be count

Divide the 5 dimensions into 2 shell fragments: 
» (A, B, C) and (D, E)

tid A B C D E
1 a1 b1 c1 d1 e1
2 a1 b2 c1 d2 e1
3 a1 b2 c1 d1 e2
4 a2 b1 c1 d1 e2
5 a2 b1 c1 d1 e3
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1-D Inverted Indices

Build traditional invert index or RID list

Attribute Value TID List List Size
a1 1 2 3 3
a2 4 5 2
b1 1 4 5 3
b2 2 3 2
c1 1 2 3 4 5 5
d1 1 3 4 5 4
d2 2 1
e1 1 2 2
e2 3 4 2
e3 5 1
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Shell Fragment Cubes: Ideas

Generalize the 1-D inverted indices to multi-dimensional 
ones in the data cube sense
Compute all cuboids for data cubes ABC and DE while 
retaining the inverted indices

For example, shell 
fragment cube ABC 
contains 7 cuboids:
» A, B, C
» AB, AC, BC
» ABC

This completes the offline 
computation stage

111 2 3    1 4 5a1 b1

04 5    2 3a2 b2
24 54 5    1 4 5a2 b1
22 31 2 3    2 3a1 b2

List SizeTID ListIntersectionCell

∩

∩

∩

∩ ⊗
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Shell Fragment Cubes: Size and Design

Given a database of T tuples, D dimensions, and F shell 
fragment size, the fragment cubes’ space requirement is:

» For F < 5, the growth is sub-linear

Shell fragments do not have to be disjoint
Fragment groupings can be arbitrary to allow for 
maximum online performance
» Known common combinations (e.g.,<city, state>) should be 

grouped together.

Shell fragment sizes can be adjusted for optimal balance 
between offline and online computation

O T D
F

 
  

 
  (2

F −1)
 

 
 

 

 
 
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ID_Measure Table

If measures other than count are present, store 
in ID_measure table separate from the shell 
fragments

tid count sum
1 5 70
2 3 10
3 8 20
4 5 40
5 2 30
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The Frag-Shells Algorithm

1. Partition set of dimension (A1,…,An) into a set of k

fragments (P1,…,Pk).

2. Scan base table once and do the following

3. insert <tid, measure> into ID_measure table.

4. for each attribute value ai of each dimension Ai

5. build inverted index entry <ai, tidlist>

6. For each fragment partition Pi

7. build local fragment cube Si by intersecting tid-lists 

in bottom- up fashion.

50

Frag-Shells (2)

A B C D E F …

ABC
Cube

DEF
Cube

D Cuboid
EF Cuboid

DE Cuboid

Cell Tuple-ID List
d1 e1 {1, 3, 8, 9}
d1 e2 {2, 4, 6, 7}
d2 e1 {5, 10}
… …

Dimensions
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Online Query Computation: Query

A query has the general form

Each ai has 3 possible values

1. Instantiated value

2. Aggregate * function

3. Inquire ? function

For example,                                returns a 

2-D data cube.

 a1,a2,K,an :M

3 ? ? * 1: count
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Online Query Computation: Method

Given the fragment cubes, process a query 
as follows

1. Divide the query into fragment, same as the shell

2. Fetch the corresponding TID list for each 
fragment from the fragment cube

3. Intersect the TID lists from each fragment to 
construct instantiated base table

4. Compute the data cube using the base table with 
any cubing algorithm
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Online Query Computation: Sketch

A B C D E F G H I J K L M N …

Online
Cube

Instantiated 
Base Table
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Experiment: Size vs. Dimensionality (50 and 100 cardinality)

(50-C): 106 tuples, 0 skew, 50 cardinality, fragment size 3.
(100-C): 106 tuples, 2 skew, 100 cardinality, fragment size 2.
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Experiments on Real World Data

UCI Forest CoverType data set
» 54 dimensions, 581K tuples

» Shell fragments of size 2 took 33 seconds and 325MB 
to compute

» 3-D subquery with 1 instantiate D: 85ms~1.4 sec.

Longitudinal Study of Vocational Rehab. Data
» 24 dimensions, 8818 tuples

» Shell fragments of size 3 took 0.9 seconds and 60MB 
to compute

» 5-D query with 0 instantiated D: 227ms~2.6 sec.
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Data Cube Technology in Brief

Efficient Methods for Data Cube Computation

Data Cubes for Advanced Applications

Knowledge Discovery with Data Cubes

Summary
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Data Cubes for Advanced Applications

Data cubes have been developed for sophisticated data 
sets and advanced applications
Sophisticated data sets
» Stream cube, spatial cube, multimedia cube, text cube, RFID 

cube, etc. — to be studied in volume 2

Data Cubes for Advanced Applications
» Sampling Cube

• X. Li, J. Han, Z. Yin, J.-G. Lee, Y. Sun, “Sampling Cube: A 
Framework for Statistical OLAP over Sampling Data”, 
SIGMOD’08

» Ranking Cube
• D. Xin, J. Han, H. Cheng, and X. Li. Answering top-k queries 

with multi-dimensional selections: The ranking cube 
approach. VLDB’06
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Statistical Surveys and OLAP

Statistical survey: A popular tool to collect information 
about a population based on a sample

Ex.: TV ratings, US Census, election polls

A common tool in politics, health, market research, 
science, and many more
An efficient way of collecting information (Data collection 
is expensive)
Many statistical tools available, to determine validity

Confidence intervals
Hypothesis tests

OLAP (multidimensional analysis) on survey data
highly desirable but can it be done well?
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Surveys: Sample vs. Whole Population 

Age\Education High-school College Graduate

18

19

20

…

Data is only a sample of population

60

Problems for Drilling in Multidim. Space

Age\Education High-school College Graduate

18

19

20

…

Data is only a sample of population but samples could be 
small when drilling to certain multidimensional space
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OLAP on Survey (i.e., Sampling) Data

Age/Education High-school College Graduate

18

19

20

…

Semantics of query is unchanged
Input data has changed

62

Challenges for OLAP on Sampling Data

Computing confidence intervals in OLAP 
context
No data?

Not exactly.  No data in subspaces in cube
Sparse data
Causes include sampling bias and query 
selection bias 

Curse of dimensionality
Survey data can be high dimensional
Over 600 dimensions in real world example
Impossible to fully materialize
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Example 1: Confidence Interval

Age/Education High-school College Graduate

18

19

20

…

What is the average income of 19-year-old high-school students?
Return not only query result but also confidence interval

64

Confidence Interval

Confidence interval at    : 

x is a sample of data set;     is the mean of sample

tc is the critical t-value, calculated by a look-up

• is the estimated standard error of the mean

Example: $50,000 ± $3,000 with 95% confidence

Treat points in cube cell as samples

Compute confidence interval as traditional sample set

Return answer in the form of confidence interval
Indicates quality of query answer

User selects desired confidence interval
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Efficient Computing Confidence Interval Measures

Efficient computation in all cells in data cube
Both mean and confidence interval are algebraic

Why confidence interval measure is algebraic?

is algebraic

where both s and l (count) are algebraic

Thus one can calculate cells efficiently at more 
general cuboids without having to start at the 
base cuboid each time

66

Example 2: Query Expansion

Age/Education High-school College Graduate

18

19

20

…

What is the average income of 19-year-old college students?
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Boosting Confidence by Query Expansion

From the example: The queried cell “19-year-
old college students” contains only 2 samples
Confidence interval is large  (i.e., low 
confidence). why?

Small sample size 
High standard deviation with samples 

Small sample sizes can occur at relatively 
low dimensional selections

Collect more data?― expensive!
Use data in other cells?  Maybe, but have to 
be careful
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Intra-Cuboid Expansion: Choice 1

Age/Education High-school College Graduate

18

19

20

…

Expand query to include 18 and 20 year olds?



69

Intra-Cuboid Expansion: Choice 2

Age/Education High-school College Graduate

18

19

20

…

Expand query to include high-school and graduate students?

70

Query Expansion
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Intra-Cuboid Expansion

Combine other cells’ data into own to “boost”
confidence

If share semantic and cube similarity
Use only if necessary
Bigger sample size will decrease confidence 
interval

Cell segment similarity
» Some dimensions are clear: Age
» Some are fuzzy: Occupation
» May need domain knowledge
Cell value similarity

» How to determine if two cells’ samples come from 
the same population?

» Two-sample t-test (confidence-based)
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Inter-Cuboid Expansion

If a query dimension is 
Not correlated with cube value
But is causing small sample size by drilling down too 
much

Remove dimension (i.e., generalize to *) and 
move to a more general cuboid
Can use two-sample t-test to determine 
similarity between two cells across cuboids
Can also use a different method to be shown 
later
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Query Expansion Experiments

Real world sample data: 600 dimensions and 
750,000 tuples
0.05% to simulate “sample” (allows error 
checking)
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Ranking Cubes – Efficient Computation of Ranking queries

Data cube helps not only OLAP but also ranked search
(top-k) ranking query: only returns the best k results 
according to a user-specified preference, consisting of (1) 
a selection condition and (2) a ranking function
Ex.: Search for apartments with expected price 1000 and 
expected square feet 800

• Select top 1 from Apartment
• where City = “LA” and Num_Bedroom = 2
• order by [price – 1000]^2 + [sq feet - 800]^2 asc

Efficiency question: Can we only search what we need?
» Build a ranking cube on both selection dimensions and ranking 

dimensions
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Sliced Partition 
for city=“LA”

Sliced Partition 
for BR=2

Ranking Cube: Partition Data on Both Selection and Ranking Dimensions

One single data 
partition as the template

Slice the data partition 
by selection conditions

Partition for
all data
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Materialize Ranking-Cube

1120
560
500
200

1000
900
800
600

Sq feet

4
11
11
15
6
2
5
5

Block ID

12002LAt7
12002LAt6

8001SEAt3

11001LAt5
10003CLEt4

13503CLEt8

7002CLEt2
5001SEAt1

PriceBRCitytid

Step 1: Partition Data on 
Ranking Dimensions

Step 2: Group data by
Selection Dimensions

City

BR
City & BR

3 421

CLE
LA

SEA

Step 3: Compute Measures for each group

For the cell (LA)

1            2             3        4

5            6             7        8

9            10        11        12

13         14              15   16

Block-level: {11, 15}
Data-level: {11: t6, t7; 15: t5}
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Search with Ranking-Cube: 
Simultaneously Push Selection and Ranking

Select top 1 from Apartment
where city = “LA”
order by [price – 1000]^2 + [sq feet - 800]^2 asc

800

1000

Without ranking-cube: start 
search from here

With ranking-cube: 
start search from here

Measure for LA: 
{11, 15}
{11: t6,t7; 15:t5}

11

15

Given the bin boundaries, 
locate the block with top score[200, 400, 600, 800, 1120]Bin boundary for sq feet

[500, 600, 800, 1100,1350]Bin boundary for price
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Processing Ranking Query: Execution Trace

Select top 1 from Apartment
where city = “LA”
order by [price – 1000]^2 + [sq feet - 800]^2 asc

800

1000

With ranking-
cube: start search 
from here

Measure for LA: 
{11, 15}
{11: t6,t7; 15:t5}

11

15

f=[price-1000]^2 + [sq feet – 800]^2
[200, 400, 600, 800, 1120]Bin boundary for sq feet
[500, 600, 800, 1100,1350]Bin boundary for price

Execution Trace:

1. Retrieve High-level measure for LA {11, 15}

2. Estimate lower bound score for block 11, 15

f(block 11) = 40,000, f(block 15) = 160,000

3. Retrieve block 11
4. Retrieve low-level measure for block 11
5. f(t6) = 130,000, f(t7) = 97,600

Output t7, done!
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Ranking Cube: Methodology and Extension

Ranking cube methodology
» Push selection and ranking simultaneously

» It works for many sophisticated ranking functions

How to support high-dimensional data?
» Materialize only those atomic cuboids that contain 

single selection dimensions

• Uses the idea similar to high-dimensional OLAP

• Achieves low space overhead and high 
performance in answering ranking queries with a 
high number of selection dimensions
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Data Cube Technology in Brief

Efficient Methods for Data Cube Computation

Data Cubes for Advanced Applications

Knowledge Discovery with Data Cubes

Summary
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Knowledge Discovery with Data Cubes

Discovery-Driven Exploration of Data Cubes

Complex Aggregation at Multiple Granularities: 

Multi-Feature Cubes

Prediction Cubes: Data Mining in Multi-

Dimensional Cube Space
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Discovery-Driven Exploration of Data Cubes

Hypothesis-driven
» exploration by user, huge search space

Discovery-driven (Sarawagi, et al.’98)
» Effective navigation of large OLAP data cubes

» pre-compute measures indicating exceptions, guide 
user in the data analysis, at all levels of aggregation

» Exception: significantly different from the value 
anticipated, based on a statistical model

» Visual cues such as background color are used to 
reflect the degree of exception of each cell
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Kinds of Exceptions and their Computation

Parameters 
» SelfExp: surprise of cell relative to other cells at 

same level of aggregation
» InExp: surprise beneath the cell
» PathExp: surprise beneath cell for each drill-down 

path

Computation of exception indicator (modeling 
fitting and computing SelfExp, InExp, and 
PathExp values) can be overlapped with cube 
construction
Exception themselves can be stored, indexed 
and retrieved like precomputed aggregates
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Examples: Discovery-Driven Data Cubes
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Knowledge Discovery with Data Cubes

Discovery-Driven Exploration of Data Cubes

Complex Aggregation at Multiple Granularities: 

Multi-Feature Cubes

Prediction Cubes: Data Mining in Multi-

Dimensional Cube Space
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Complex Aggregation at Multiple Granularities: Multi-Feature Cubes

Multi-feature cubes (Ross, et al. 1998): Compute complex queries 
involving multiple dependent aggregates at multiple granularities
Ex. Grouping by all subsets of {item, region, month}, find the 
maximum price in 1997 for each group, and the total sales among all 
maximum price tuples

select item, region, month, max(price), sum(R.sales)
from purchases
where year = 1997
cube by item, region, month: R
such that R.price = max(price)

Continuing the last example, among the max price tuples, find the  
min and max shelf live, and find the fraction of the total sales due to 
tuple that have min shelf life within the set of all max price tuples
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Knowledge Discovery with Data Cubes

Discovery-Driven Exploration of Data Cubes

Complex Aggregation at Multiple Granularities: 

Multi-Feature Cubes

Prediction Cubes: Data Mining in Multi-

Dimensional Cube Space
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Data Mining in Cube Space

Data cube greatly increases the analysis bandwidth 
Four ways to interact OLAP-styled analysis and data mining
» Using cube space to define data space for mining 
» Using OLAP queries to generate features and targets for mining, 

e.g., multi-feature cube
» Using data-mining models as building blocks in a multi-step mining 

process, e.g., prediction cube
» Using data-cube computation techniques to speed up repeated 

model construction
• Cube-space data mining may require building a model for each 

candidate data space
• Sharing computation across model-construction for different 

candidates may lead to efficient mining
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Prediction Cubes

Prediction cube: A cube structure that stores 
prediction models in multidimensional data space 
and supports prediction in OLAP manner
Prediction models are used as building blocks to 
define the interestingness of subsets of data, i.e., 
to answer which subsets of data indicate better 
prediction
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How to Determine the Prediction Power of an Attribute?

Ex. A customer table D:
» Two dimensions Z: Time (Month, Year ) and Location 

(State, Country)
» Two features X: Gender and Salary
» One class-label attribute Y: Valued Customer

Q: “Are there times and locations in which the 
value of a customer depended greatly on the 
customers gender (i.e., Gender: predictiveness
attribute V)?”
Idea:
» Compute the difference between the model built on 

that using X to predict Y and that built on using X – V
to predict Y

» If the difference is large, V must play an important role 
at predicting Y
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Efficient Computation of Prediction Cubes

Naïve method: Fully materialize the 
prediction cube, i.e., exhaustively build 
models and evaluate them for each cell 
and for each granularity
Better approach: explore score function 
decomposition that reduces prediction 
cube computation to data cube 
computation
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22 Data Cube TechnologyData Cube Technology

Agenda

11 Session OverviewSession Overview

33 Summary and ConclusionSummary and Conclusion
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Data Cube Technology: Summary

Efficient Methods for Data Cube Computation
MultiWay Array Aggregation
BUC
H-cubing
Star-Cubing
High-Dimensional OLAP with Shell-Fragments

Data Cubes for Advanced Applications 
Sampling Cubes 
Ranking Cubes 

Knowledge Discovery with Data Cubes 
Discovery-Driven Exploration of Data Cubes 
Multi-feature Cubes 
Prediction Cubes

Much more to be studied on mining in cube space
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