
1

Software Engineering

Session 2 – Main Theme
Software Development Lifecycles (SDLCs)

Dr. Jean-Claude Franchitti

New York University
Computer Science Department

Courant Institute of Mathematical Sciences

Presentation material partially based on textbook slides
Software Engineering: A Practitioner’s Approach (7/e)

by Roger S. Pressman
Slides copyright © 1996, 2001, 2005, 2009

2

22 Software Engineering LifeCycles (SDLCs)Software Engineering LifeCycles (SDLCs)

Agenda

11 Session OverviewSession Overview

33 Summary and ConclusionSummary and Conclusion

3

What is the class about?

Course description and syllabus:
» http://www.nyu.edu/classes/jcf/g22.2440-001/

» http://www.cs.nyu.edu/courses/spring10/G22.2440-001/

Textbooks:
» Software Engineering: A Practitioner’s Approach

Roger S. Pressman
McGraw-Hill Higher International
ISBN-10: 0-0712-6782-4, ISBN-13: 978-00711267823, 7th Edition (04/09)

» http://highered.mcgraw-hill.com/sites/0073375977/information_center_view0/
» http://highered.mcgraw-

hill.com/sites/0073375977/information_center_view0/table_of_contents.html

4

Agenda

Software Engineering Detailed
Process Models
Agile Development
Software Engineering Knowledge
Roles and Types of Standards

ISO 12207: Life Cycle Standard
IEEE Standards for Software Engineering Processes and
Specifications

Summary and Conclusion
Readings
Assignment #1
Course Project

5

Icons / Metaphors

5

Common Realization

Information

Knowledge/Competency Pattern

Governance

Alignment

Solution Approach

6

22 Software Engineering LifeCycles (SDLCs)Software Engineering LifeCycles (SDLCs)

Agenda

11 Session OverviewSession Overview

33 Summary and ConclusionSummary and Conclusion

7

Process Models

Agile Development

Roles and Types of Standards

Software Engineering Knowledge

Agenda – Software Engineering Fundamentals

Software Engineering Detailed

22 Software Engineering LifeCycles SDLCsSoftware Engineering LifeCycles SDLCs

8

What is a SDLC

System Development Life Cycle:
It is about developing a software-driven
solution to a business problem
It concerns a process which takes from
two months to two years
This is called a System Development Life
Cycle but it should really be called a
(Business) Solution Development Life
Cycle

9

Software Engineering (1/2)

Some realities
A concerted effort should be made to understand the
problem before a software solution is developed
Design becomes a pivotal activity
Software should exhibit high quality
Software should be maintainable

The seminal definition
Software engineering is the establishment and use of sound
engineering principles in order to obtain economically
software that is reliable and works efficiently on real
machines

10

Software Engineering (2/2)

The IEEE definition
Software Engineering:

(1) The application of a systematic, disciplined,
quantifiable approach to the development, operation,
and maintenance of software; that is, the application of
engineering to software
(2) The study of approaches as in (1)

11

A Layered Technology

Software Engineering

a a ““qualityquality”” focusfocus

process modelprocess model

methodsmethods

toolstools

12

A Process Framework

Process frameworkProcess framework
Framework activitiesFramework activities

work tasks
work products
milestones & deliverables
QA checkpoints

Umbrella ActivitiesUmbrella Activities

13

Framework Activities

Communication
Planning
Modeling

Analysis of requirements
Design

Construction
Code generation
Testing

Deployment

14

Umbrella Activities

Software project management
Formal technical reviews
Software quality assurance
Software configuration management
Work product preparation and
production
Reusability management
Measurement
Risk management

15

Adapting a Process Model

The overall flow of activities, actions, and tasks and the
interdependencies among them
The degree to which actions and tasks are defined within each
framework activity
The degree to which work products are identified and required
The manner which quality assurance activities are applied
The manner in which project tracking and control activities are
applied
The overall degree of detail and rigor with which the process is
described
The degree to which the customer and other stakeholders are
involved with the project
The level of autonomy given to the software team
The degree to which team organization and roles are prescribed

16

The Essence of Practice

Polya* suggests:
1. Understand the problem (communication and analysis)
2. Plan a solution (modeling and software design)
3. Carry out the plan (code generation)
4. Examine the result for accuracy (testing and quality

assurance)

* http://www.stevemcconnell.com/rl-top10.htm

17

Understand the Problem

Who has a stake in the solution to the
problem? That is, who are the stakeholders?
What are the unknowns? What data, functions,
and features are required to properly solve the
problem?
Can the problem be compartmentalized? Is it
possible to represent smaller problems that
may be easier to understand?
Can the problem be represented graphically?
Can an analysis model be created?

18

Plan the Solution

Have you seen similar problems before? Are there
patterns that are recognizable in a potential solution?
Is there existing software that implements the data,
functions, and features that are required?
Has a similar problem been solved? If so, are
elements of the solution reusable?
Can subproblems be defined? If so, are solutions
readily apparent for the subproblems?
Can you represent a solution in a manner that leads
to effective implementation? Can a design model be
created?

19

Carry Out the Plan

Does the solution conform to the plan? Is
source code traceable to the design model?
Is each component part of the solution
provably correct? Has the design and code
been reviewed, or better, have correctness
proofs been applied to algorithm?

20

Examine the Result

Is it possible to test each component part of the
solution? Has a reasonable testing strategy
been implemented?
Does the solution produce results that conform
to the data, functions, and features that are
required? Has the software been validated
against all stakeholder requirements?

21

David Hooker’s General Principles*

1: The Reason It All Exists
2: KISS (Keep It Simple, Stupid!)
3: Maintain the Vision
4: What You Produce, Others Will Consume
5: Be Open to the Future
6: Plan Ahead for Reuse
7: Think!

* http://c2.com/cgi/wiki?SevenPrinciplesOfSoftwareDevelopment

22

Software Myths

Affect managers, customers (and other non-
technical stakeholders) and practitioners
Are believable because they often have
elements of truth,

but …
Invariably lead to bad decisions,

therefore …
Insist on reality as you navigate your way
through software engineering

23

How It all Starts

Every software project is precipitated by some
business need

The need to correct a defect in an existing application;
The need to the need to adapt a ‘legacy system’ to a
changing business environment;
The need to extend the functions and features of an
existing application, or
The need to create a new product, service, or system.

24

SDLC Characteristics

Whatever form it takes, it is always
followed by a maintenance cycle:

Maintenance is the most expensive part
If all the steps are done carefully maintenance is
reduced
For maintenance to be effective , documentation must
exist

25

Business Solution Characteristics

A software-driven solution consists of two
parts:

Model
Prototypes
Diagrams and supporting Documents

System
Hardware
Software

26

Some Definitions (1/3)

Prototype
An initial software-driven solution usually done with a
rapid development tool
Usually has limited functionality
Users can see results very quickly

Planning
The process of gathering what is needed to solve a
business problem
Includes a feasibility study
Includes project steps

27

Analysis
The process of determining detail requirements in the
form of a model

Design
The process of drawing blueprints for a new system
at a high-level first then at a detailed level

Construction
The actual coding of the model into a software
package
Uses one or more programming languages

Java
C#
C++
etc.

Some Definitions (2/3)

28

Implementation
Doing whatever is necessary to startup a system
Includes:

Database
Networks
Hardware configuration

Maintenance
Doing whatever is necessary to keep a system
running
Includes:

Repairs to correct errors
Rnhancements to accommodate changes in requirements

Some Definitions (3/3)

29

Deliverables

Deliverables consist mainly of diagrams and
their supporting documentation
For example:

Models that emphasize dynamics
Models that emphasize structure
Models can be used for specifying the outcome of
analysis
Models can be used for specifying the outcome of
design

30

Sample Deliverables – Planning (1/3)

Planning:
System Functions

A simple list of each requirement a system must do
For example:

record video rental
calculate fine

System Attributes
A simple property describing each requirement of a
system
For example:

record video rental under 15 seconds
calculate fine and return response in 5 seconds

31

Sample Deliverables – Planning (2/3)

Planning:

Environmental Diagram

Rent Video
Pay
Employees

Video Store
Information System

Clerk

32

Sample Deliverables – Planning (3/3)

Planning:
Prototype

Recall it is a first system usually done with a rapid
development tool
Since users can see results very quickly they will
pay attention
Final product is seldom created in same tool as the
prototype

33

Sample Deliverables - Analysis

Analysis:
Use case

Shows the dynamics between the users (actors) of the
system and the system itself
This is a narrative representation

Conceptual Diagram
Shows the structure of the objects and their relationships
This is a graphical representation

System Sequence Diagram
Shows the dynamics between the users (actors) of the
system and the system itself
This is a graphical representation

Contracts
Shows the state of each object before each action
This is a narrative representation

34

Sample High-Level Architecture Design Conceptual Blueprint

Users—

Sales TradiDesk

User
Interfaces

Client
Administrator

Marketing

Client

Support

Phone

PDA

Connectivity
e-Business

Portal e-Business Services

Data Repositories

Legacy
Systems

Web

Visitor

VPN

Facilitator

Facilitator
Administrator

User
Data

Legacy
Databases

XML-Based Application Data

Back-Office
Systems

Component
Manager

XML/Web
Enabling
Facilities

35

U
ni

ve
rs

ity
 In

te
rn

et
 L

A
N

U
ni

ve
rs

ity
 In

tra
ne

t W
A

N

University Intranet LAN

Professor

Facilitators

Clients

Students

Presentation Enabling:
Authoring
Posting

Q&A Enabling:
Authoring
Posting

Business
Functions Users

NT &
Unix

Win
2000

IVR

University
Internet or

Intranet LANs

University
Internet LAN

PBX-Based Service

Connectivity

Facilitator Interfaces

Call Forwarding,
Teleconferencing, etc.

Front Office Apps

Ft Off. & Web Apps

Portal Mgmt.
Interface

Maintenance Apps

Web-Enabled
Applications

Client Interfaces

Telephony-Based
Services

Web-Enabled
Applications

"Lights Out" Svcs

XML, Email, Fax

e-Business
Portal

Integrated Data Architecture Layer

e-Business Services

Front Office Apps

Data Mining

Educational Applications
(Custom Java Applications)

Facilitator Application,
Channel, and Client/

System Admin Interfaces

Business Intelligence
(Customer Analysis, Course Planning)

Customer Care Services
(Call Center Support: Educational & Systems)

Personalization Interface

Channels Interface
(Browsers, PDAs, WAPs)

Remote Training Interface

Customer Calls Handling
(ACD, Flex-Routing, Call Center Mgmt.)

CSR Assisted Services
(Product Support, Issue Resolution, Proactive

Account Mgmt.)

Email XML
Interfaces Fax

Internet-Based Services
(XML interfaces, Email, Browser)

Collaborative Applications
(2D Avatars, Classroom Navigation, Chat, Events)

Real Time Services
(Web Channels, Chat, TV Events, etc.)

Collaborative Applications
(2D Avatars, Classroom Navigation, Chat, Events)

Voice/Data Integration
Teleweb / Web Integration Services

(Consolidated Messaging, Telephone-Based Web
Services, Video Conf., etc.)

(via VPN)

Software / Global Content
Monitoring / Backup

PBX-Based Services

Teaching
Assistant

Presentation Enabling:
Authoring

Q&A Enabling:
Integration

System Support:
Monitoring
System Admin.
Help Desk

FaxbackIVR

Telephony Svcs

NT &
Unix

Win
2000

University
Interne or

Intranet LANs

Front Office Apps

Ft Off. & Web Apps

"Lights Out" Services

Telephony Svcs

PDA/WAP Applications

Win
2000

Web Applications Client Interface
(Presentation querying, locating, and viewing -

Questions capture and Q&A viewring)

Self Care Services
(tutorials, online help)

In scope

Out of scope

Legend:

WAP Server

(via VPN)

Third Party Data

Content-Mgmt Repository

XML-based presentation
oriented publishing

templates

Component Manager
Application Server Back-Office SystemsXML/Web Enabling Facilities

Client Request Handler
Subnet (within DMZ)

Web Server

Servlet Engine

Client Request Handler
Firewall

Component Manager
Firewall

Servlets/JSPs:
 session hdlr
 SMIL presentation hdlr
 Q&A hdlr
 XML MOM/POP hdlr
 etc.

Facilitator/Client Admin. Servlets

System Administration Servlets

Legacy Systems

Chat Platform
Application Logic

Chatroom Component

ChatUser Component

Client & System
Administration Component

Entitlement & Security
Component

Connectors
Course Production Systems)

Support Services

Process Automation &
Dynamic Content Mgmt.

Session/State Mgmt.

Site Development Svc.

XML Core Services
(Doc Hdlr, Version Manager)

DataWarehouse-Driven
Processing

Legacy Operational Data

Desktop
Filesystems

In Memory Database

Customer Profiles
Time Critical
Information

Global Application Data Replicas

Business Information Warehouse

Operational Data Store
Client Knowledge Engine

Metadata Repository

XML
MOM & POP
Templates

Educational Research
Educational News

etc.

SMIL Data
XLF Data

Operational Data

Local Account Data
Entitlement/Security Data

etc.

JSP Engine

Client Request Handler API

University Systems
Firewall

Client Administration

Login, Authentification,
Non-Repudiation

Router

Presentation Enabling:
Querying
Locating
Viewing

Q&A Enabling:
Capture
Viewing

Registration Systems

Accounting Systems

Sales/Marketing Systems

Internal Administration

Course Development Systems

Human Resources Systems

Payroll Systtems

Course Production Systems

Proxy Server

Support Systtems

Client Support Systtems
(carreer management, alumni
relations, library support, etc.)

Database Management Systems (DBMS)

Sample High-Level Architecture Design Logical Blueprint

36

Facilitators, and Production Interfaces

Component Manager

XML/Web Enabling Facilities

Firewall

Database Server

Application
Server

U
ni

ve
rs

ity
 In

tra
ne

t L
A

N
 (d

ua
l)

Firewall

Firewall

Router

Router

Firewall / IIOP Proxy Server

Tape Silo
Veritas Network
Backup (shared service)

University Mgmt. Firewall

University Systems & Network Management Environment

Intrusion
Detection

Connects to
all devices below

Security &
Entitlements Srv

Intrusion
Detection

Intrusion Detection

Internet

University
Intranet LAN Professor/TA

HSRP

Sun E220/Solaris 2.6
nC

ipher SSL accelerator
Apache H

TTP sever
Tom

C
at servlet engine

Tom
C

at jsp engine

Alteon AC3

Sun E220/Solaris 2.6
Checkpoint Firewall-1
Stonebeat
IONA Wonderwall Proxy Server

Sun E220/Solaris 2.6
C

heckpoint Firew
all-1

Stonebeat

Sun E420/Solaris 2.6
W

ebLogic

Sun E4500/Solaris 2.6
50G

B D
isk Array

Sybase 11.9.2

Sun E420/Solaris 2.6
enC

om
m

erce G
etAccess

50G
B D

isk Array

Web-Enabled
Applications

Facilitator
Application and
Client/System
Administration

Interfaces

Students, Professor, and TA Interfaces

Web-Enabled
Applications

Clients/Facilitators
Application/Admin

Interfaces
(e.g.,SOJA Applet)XML, Email, Fax

Collaborative
Applications

(e.g., Chat Applet)

Channels Interface

Sun E420/Solaris 2.6
200GB raid5 Disk Array
iPlanet Enterprise Svr
Webtrends

Admin/Reporting
Server

Load
Balancers

Web Server
Servlets & JSP

Engines

Intrusion Detection

Sun E220/Solaris 2.6
Checkpoint Firewall-1
Stonebeat

N
FR

 Flight R
ecorder

R
em

ote-1
N

FR
 Flight R

ecorder
R

em
ote-1

Client Request Handler

Servlets/JSPs:
- session handler
- SMIL presentation handler
- Q&A handler
- Cocoon 2 XML POP handler

NFR Flight Recorder
Remote-1

Client
Workstation

Professor/TA
Workstation

Back-Office Systems

Client Administration

Internal Administration

Program
Administrator

U
ni

ve
rs

ity
 In

te
rn

et
 L

A
N

 (d
ua

l)

Support Services

XML Core Services

Session/State/EOD Mgmt

Dynamic Content Mgmt

Chat Platform
Application Logic

ChatUser Component

ChatRoom Component

Global Application Data

SMIL Data
XLF Data

Operational Data

Content Mgmt. Repository

XML POP
Templates

Sample High-Level Architecture Design Physical Blueprint

37

Sample Deliverables - Design

Design:
Interaction Diagram

Shows the interaction between objects
This is a graphic representation
It is a dynamic blueprint

Class Diagram
Shows the structure between objects
Shows the structure inside objects
This is a graphic representation
It is a static blueprint

38

Process Models

Agile Development

Roles and Types of Standards

Software Engineering Knowledge

Agenda – Software Engineering Fundamentals

Software Engineering Detailed

22 Software Engineering LifeCycles SDLCsSoftware Engineering LifeCycles SDLCs

39

A Generic Process Model

40

Process Flow

41

Identifying a Task Set

A task set defines the actual work to be done to
accomplish the objectives of a software
engineering action

A list of the tasks to be accomplished
A list of the work products to be produced
A list of the quality assurance filters to be applied

42

Process Patterns

A process pattern
describes a process-related problem that is
encountered during software engineering work,
identifies the environment in which the problem
has been encountered, and
suggests one or more proven solutions to the
problem

Stated in more general terms, a process pattern
provides you with a template [Amb98] - a
consistent method for describing problem
solutions within the context of the software
process

43

Process Pattern Types

Stage patterns - defines a problem associated
with a framework activity for the process
Task patterns - defines a problem associated
with a software engineering action or work
task and relevant to successful software
engineering practice
Phase patterns - define the sequence of
framework activities that occur with the
process, even when the overall flow of
activities is iterative in nature

44

Prescriptive Models

Prescriptive process models advocate an orderly
approach to software engineering

That leads to a few questions …
If prescriptive process models strive for structure
and order, are they inappropriate for a software
world that thrives on change?
Yet, if we reject traditional process models (and
the order they imply) and replace them with
something less structured, do we make it
impossible to achieve coordination and
coherence in software work?

45

The Waterfall Model Revisited

Communicat ion
Planning

Modeling
Construct ion

Deployment
analysis
design code

test

project init iat ion
requirement gat hering estimating

scheduling
tracking

delivery
support
f eedback

46

The V-Model

47

The Incremental Model

C o m m u n i c a t i o n
P l a n n i n g

M o d e l i n g

C o n s t r u c t i o n

D e p l o y m e n t
 d e l i v e r y
 f e e d b a c k

analys is

des ign code
t est

increment # 1

increment # 2

delivery of
1st increment

delivery of
2nd increment

delivery of
nt h increment

increment # n

project calendar time

C o m m u n i c a t i o n
P l a n n i n g

M o d e l i n g
C o n s t r u c t i o n

D e p l o y m e n t
 d e l i v e r y
 f e e d b a c k

analysis

design code

t est

C o m m u n i c a t i o n
P l a n n i n g

M o d e l i n g
C o n s t r u c t i o n

D e p l o y m e n t
 d e l i v e r y
 f e e d b a c k

analysis

design code
t est

48

Evolutionary Models: Prototyping

Construction
of prototype

Com m unicat ion

Q u ick p lan

Const r uct ion
o f
p r o t o t ype

Mo d e l in g
 Q u ick d e sig n

De live r y
& Fe e dback

Deployment

communication

Quick
plan

Modeling
Quick design

Construction
of prototype

Deployment
delivery &
feedback

49

Evolutionary Models: The Spiral Model Revisited

communication

planning

modeling

construction
deployment
 delivery
 feedback

start

analysis
design

code
test

estimation
scheduling
risk analysis

50

Evolutionary Models: Concurrent

Under review

Baselined

Done

Under

revision

Await ing

changes

Under

development

none

Modeling act ivity

represents the state
of a software engineering
activity or task

51

Still Other Process Models

Component based development—the process to
apply when reuse is a development objective
Formal methods—emphasizes the mathematical
specification of requirements
AOSD—provides a process and methodological
approach for defining, specifying, designing, and
constructing aspects
Unified Process—a “use-case driven,
architecture-centric, iterative and incremental”
software process closely aligned with the Unified
Modeling Language (UML)

52

The Unified Process (UP)

software increment

Release

Incept ion

Elaborat ion

construct ion

transit ion

product ion

inception

elaboration

53

UP Phases

Inception Elaboration Construction Transition Production

UP Phases

Workflows

Requirements

Analysis

Design

Implementation

Test

Iterations #1 #2 #n-1 #n

Support

54

UP Work Products

Inception phase

Elaboration phase

Construction phase

Transition phase

Vision document
Init ial use-case model
Init ial project glossary
Init ial business case
Init ial risk assessment .
Project plan,
 phases and it erat ions.
Business model,
 if necessary.
One or more prot ot ypes
I ncept i o
n

Use-case model
Supplement ary requirement s
 including non-funct ional
Analysis model
Soft ware archit ect ure
 Descript ion.
Execut able archit ect ural
 prot ot ype.
Preliminary design model
Revised risk list
Project plan including
 it erat ion plan
 adapt ed workflows
 milest ones
 t echnical work product s
Preliminary user manual

Design model
Soft ware component s
Int egrat ed soft ware
 increment
Test plan and procedure
Test cases
Support document at ion
 user manuals
 inst allat ion manuals
 descript ion of current
 increment

Delivered soft ware increment
Bet a t est report s
General user feedback

55

Personal Software Process (PSP)

Planning. This activity isolates requirements and develops both size and
resource estimates. In addition, a defect estimate (the number of defects
projected for the work) is made. All metrics are recorded on worksheets or
templates. Finally, development tasks are identified and a project schedule
is created.
High-level design. External specifications for each component to be
constructed are developed and a component design is created. Prototypes
are built when uncertainty exists. All issues are recorded and tracked.
High-level design review. Formal verification methods (Chapter 21) are
applied to uncover errors in the design. Metrics are maintained for all
important tasks and work results.
Development. The component level design is refined and reviewed. Code
is generated, reviewed, compiled, and tested. Metrics are maintained for all
important tasks and work results.
Postmortem. Using the measures and metrics collected (this is a
substantial amount of data that should be analyzed statistically), the
effectiveness of the process is determined. Measures and metrics should
provide guidance for modifying the process to improve its effectiveness.

56

Team Software Process (TSP)

Build self-directed teams that plan and track their work,
establish goals, and own their processes and plans. These can
be pure software teams or integrated product teams (IPT) of
three to about 20 engineers.
Show managers how to coach and motivate their teams and
how to help them sustain peak performance.
Accelerate software process improvement by making CMM
Level 5 behavior normal and expected.

The Capability Maturity Model (CMM), a measure of the effectiveness
of a software process, is discussed in Chapter 30.

Provide improvement guidance to high-maturity organizations.
Facilitate university teaching of industrial-grade team skills.

57

CMM & PSP/TSP (http://www.sei.cmu.edu)

The Capability Maturity Model for Software (SW-
CMM) is used by organization to guide their
software process improvement efforts
Personal Software Process

http://www.sei.cmu.edu/tsp/psp.html

The Team Software Process (TSP) was designed
to implement effective, high-maturity processes for
project teams
If all projects in an organization are using the TSP,
does the organization exhibit the characteristics of
high process maturity, as described in the SW-
CMM?

http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr008.pdf

58

SEI’s IDEALModel

IDEAL is an organizational improvement model

59

Research and put together a comparative write-up or
traditional Process Models:

Waterfall
V
Phased
Evolutionary
Spiral
CBSE
RUP
PSP/TSP

Team Exercise #1 – Groups will present in class

60

Process Models

Agile Development

Roles and Types of Standards

Software Engineering Knowledge

Agenda – Software Engineering Fundamentals

Software Engineering Detailed

22 Software Engineering LifeCycles SDLCsSoftware Engineering LifeCycles SDLCs

61

The Manifesto for Agile Software Development

““We are uncovering better ways of developing software We are uncovering better ways of developing software
by doing it and helping others do it. Through this work by doing it and helping others do it. Through this work
we have come to value: we have come to value:

•Individuals and interactions over processes and
tools
•Working software over comprehensive
documentation
•Customer collaboration over contract negotiation
•Responding to change over following a plan

That is, while there is value in the items on the right, we That is, while there is value in the items on the right, we
value the items on the left more.value the items on the left more.””

Kent Beck et al

62

What is “Agility”?

Effective (rapid and adaptive)
response to change
Effective communication among all
stakeholders
Drawing the customer onto the team
Organizing a team so that it is in
control of the work performed

Yielding …
Rapid, incremental delivery of
software

63

Agility and the Cost of Change

64

An Agile Process

Is driven by customer descriptions of what
is required (scenarios)
Recognizes that plans are short-lived
Develops software iteratively with a heavy
emphasis on construction activities
Delivers multiple ‘software increments’
Adapts as changes occur

65

Agility Principles (1/2)

1. Our highest priority is to satisfy the customer through early
and continuous delivery of valuable software.

2. Welcome changing requirements, even late in development.
Agile processes harness change for the customer's competitive
advantage.

3. Deliver working software frequently, from a couple of weeks
to a couple of months, with a preference to the shorter
timescale.

4. Business people and developers must work together daily
throughout the project.

5. Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done.

6. The most efficient and effective method of conveying
information to and within a development team is face–to–face
conversation.

66

Agility Principles (2/2)

7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development.

The sponsors, developers, and users should be able to
maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good
design enhances agility.

10. Simplicity – the art of maximizing the amount of
work not done – is essential.

11. The best architectures, requirements, and designs
emerge from self–organizing teams.

12. At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its
behavior accordingly.

67

Human Factors Revisited

the process molds to the needs of the people
and team, not the other way around
key traits must exist among the people on an
agile team and the team itself:
» Competence.
» Common focus.
» Collaboration.
» Decision-making ability.
» Fuzzy problem-solving ability.
» Mutual trust and respect.
» Self-organization.

68

eXtreme Programming (XP) - http://www.extremeprogramming.org/

A lightweight software methodology
Few rules and practices or ones which are
easy to follow
Emphasizes customer involvement and
promotes team work
See XP’s rules and practices at
http://www.extremeprogramming.org/rules.html

69

Extreme Programming (XP) (1/3)

The most widely used agile process, originally
proposed by Kent Beck
XP Planning

Begins with the creation of “user stories”
Agile team assesses each story and assigns a cost
Stories are grouped to for a deliverable increment
A commitment is made on delivery date
After the first increment “project velocity” is used to
help define subsequent delivery dates for other
increments

70

Extreme Programming (XP) (2/3)

XP Design
Follows the KIS principle
Encourage the use of CRC cards (see Chapter 8)
For difficult design problems, suggests the creation of
“spike solutions”—a design prototype
Encourages “refactoring”—an iterative refinement of
the internal program design

XP Coding
Recommends the construction of a unit test for a
store before coding commences
Encourages “pair programming”

XP Testing
All unit tests are executed daily
“Acceptance tests” are defined by the customer and
excuted to assess customer visible functionality

71

Extreme Programming (XP) (3/3)

unit t est
cont inuous integrat ion

acceptance test ing

pair
programming

Release

user stories
 values
 acceptance t est crit eria
it erat ion plan

simple design
 CRC cards

spike solut ions
 prototypes

refactoring

software increment
project velocity computed

72

XP Project Lifecycle

73

eXtreme Programming (XP) Map

74

XP Iteration Planning

75

XP Unit Testing

76

Agile Modeling & XP Summarized

Practices-based software process whose scope is to
describe how to model and document in an effective and
“agile” manner
One goal is to address the issue of how to apply
modeling techniques on software projects taking an agile
approach such as:

eXtreme Programming (XP)
Dynamic Systems Development Method (DSDM)
SCRUM
etc.

Using modeling throughout the XP lifecycle
http://www.agilemodeling.com/essays/agileModelingXPLifecycle.htm

Additional information
http://www.agilemodeling.com/
http://www.agilemodeling.com/resources.htm

77

Adaptive Software Development (1/2)

Originally proposed by Jim Highsmith
ASD — distinguishing features

Mission-driven planning
Component-based focus
Uses “time-boxing” (See Chapter 24)
Explicit consideration of risks
Emphasizes collaboration for requirements
gathering
Emphasizes “learning” throughout the
process

78

Adaptive Software Development (2/2)

adapt ive cycle planning
 uses mission statement
 project const raints
 basic requirements
t ime-boxed release plan

Requirements gathering
 JAD
 mini-specs

components implemented/ t ested
 focus groups for feedback
 formal technical reviews
postmortems

software increment
adjustments for subsequent cycles

Release

79

Dynamic Systems Development Method (1/2)

Promoted by the DSDM Consortium
(www.dsdm.org)
DSDM—distinguishing features

Similar in most respects to XP and/or ASD
Nine guiding principles

Active user involvement is imperative.
DSDM teams must be empowered to make decisions.
The focus is on frequent delivery of products.
Fitness for business purpose is the essential criterion for acceptance of
deliverables.
Iterative and incremental development is necessary to converge on an
accurate business solution.
All changes during development are reversible.
Requirements are baselined at a high level
Testing is integrated throughout the life-cycle.

80

Dynamic Systems Development Method (2/2)

DSDM Life Cycle (with permission of the DSDM consortium)

81

Scrum

Originally proposed by Schwaber and
Beedle
Scrum—distinguishing features

Development work is partitioned into “packets”
Testing and documentation are on-going as
the product is constructed
Work occurs in “sprints” and is derived from a
“backlog” of existing requirements
Meetings are very short and sometimes
conducted without chairs
“demos” are delivered to the customer with the
time-box allocated

82

Scrum Process Overview

83

Scrum Timeline Breakdown

Agile based projects are broken

down into Releases

At the end of each Release, a

working version of the product is

delivered to the Business Users

Each Release is made up of a

number of sprints

At the end of each Sprint, a

working version of the product is

deployed with incremental

functionalities added over the

previous sprint

During each Sprint, daily scrum

calls are held where status update

is provided by the team

Project Start Project End

2-3 months

2-4 weeks

Daily

84

Crystal

Proposed by Cockburn and Highsmith
Crystal—distinguishing features

Actually a family of process models that
allow “maneuverability” based on problem
characteristics
Face-to-face communication is emphasized
Suggests the use of “reflection workshops”
to review the work habits of the team

85

Feature Driven Development (1/2)

Originally proposed by Peter Coad et al
FDD—distinguishing features

Emphasis is on defining “features”
a feature “is a client-valued function that can be

implemented in two weeks or less.”
Uses a feature template

<action> the <result> <by | for | of | to> a(n) <object>

A features list is created and “plan by feature”
is conducted
Design and construction merge in FDD

86

Feature Driven Development (2/2)

Reprinted with permission of Peter Reprinted with permission of Peter CoadCoad

87

Agile Modeling

Originally proposed by Scott Ambler
Suggests a set of agile modeling principles

Model with a purpose
Use multiple models
Travel light
Content is more important than representation
Know the models and the tools you use to
create them
Adapt locally

88

Process Models

Agile Development

Roles and Types of Standards

Software Engineering Knowledge

Agenda – Software Engineering Fundamentals

Software Engineering Detailed

22 Software Engineering LifeCycles SDLCsSoftware Engineering LifeCycles SDLCs

89

Software Engineering Knowledge

You often hear people say that software development
knowledge has a 3-year half-life: half of what you
need to know today will be obsolete within 3 years. In
the domain of technology-related knowledge, that’s
probably about right. But there is another kind of
software development knowledge—a kind that I think
of as "software engineering principles"—that does
not have a three-year half-life. These software
engineering principles are likely to serve a
professional programmer throughout his or her
career.

Steve McConnell

90

Principles that Guide Process - I

Principle #1. Be agile. Whether the process model you choose
is prescriptive or agile, the basic tenets of agile development
should govern your approach.
Principle #2. Focus on quality at every step. The exit
condition for every process activity, action, and task should
focus on the quality of the work product that has been
produced.
Principle #3. Be ready to adapt. Process is not a religious
experience and dogma has no place in it. When necessary,
adapt your approach to constraints imposed by the problem,
the people, and the project itself.
Principle #4. Build an effective team. Software engineering
process and practice are important, but the bottom line is
people. Build a self-organizing team that has mutual trust and
respect.

91

Principles that Guide Process - II

Principle #5. Establish mechanisms for communication and
coordination. Projects fail because important information falls
into the cracks and/or stakeholders fail to coordinate their
efforts to create a successful end product.
Principle #6. Manage change. The approach may be either
formal or informal, but mechanisms must be established to
manage the way changes are requested, assessed, approved
and implemented.
Principle #7. Assess risk. Lots of things can go wrong as
software is being developed. It’s essential that you establish
contingency plans.
Principle #8. Create work products that provide value for
others. Create only those work products that provide value for
other process activities, actions or tasks.

92

Principles that Guide Practice

Principle #1. Divide and conquer. Stated in a more
technical manner, analysis and design should always
emphasize separation of concerns (SoC).
Principle #2. Understand the use of abstraction. At
it core, an abstraction is a simplification of some
complex element of a system used to communication
meaning in a single phrase.
Principle #3. Strive for consistency. A familiar
context makes software easier to use.
Principle #4. Focus on the transfer of information.
Pay special attention to the analysis, design,
construction, and testing of interfaces.

93

Principles that Guide Practice

Principle #5. Build software that exhibits effective
modularity. Separation of concerns (Principle #1) establishes a
philosophy for software. Modularity provides a mechanism for
realizing the philosophy.
Principle #6. Look for patterns. Brad Appleton [App00]
suggests that: “The goal of patterns within the software
community is to create a body of literature to help software
developers resolve recurring problems encountered throughout
all of software development.
Principle #7. When possible, represent the problem and its
solution from a number of different perspectives.
Principle #8. Remember that someone will maintain the
software.

94

Communication Principles

Principle #1. Listen. Try to focus on the speaker’s words,
rather than formulating your response to those words.
Principle # 2. Prepare before you communicate. Spend the
time to understand the problem before you meet with others.
Principle # 3. Someone should facilitate the activity. Every
communication meeting should have a leader (a facilitator) to
keep the conversation moving in a productive direction; (2) to
mediate any conflict that does occur, and (3) to ensure than
other principles are followed.
Principle #4. Face-to-face communication is best. But it
usually works better when some other representation of the
relevant information is present.

95

Communication Principles

Principle # 5. Take notes and document decisions. Someone participating
in the communication should serve as a “recorder” and write down all
important points and decisions.
Principle # 6. Strive for collaboration. Collaboration and consensus
occur when the collective knowledge of members of the team is combined
…

Principle # 7. Stay focused, modularize your discussion. The more
people involved in any communication, the more likely that discussion will
bounce from one topic to the next.

Principle # 8. If something is unclear, draw a picture.

Principle # 9. (a) Once you agree to something, move on; (b) If you can’t
agree to something, move on; (c) If a feature or function is unclear and
cannot be clarified at the moment, move on.

Principle # 10. Negotiation is not a contest or a game. It works best
when both parties win.

96

Planning Principles

Principle #1. Understand the scope of the project.
It’s impossible to use a roadmap if you don’t know
where you’re going. Scope provides the software
team with a destination.
Principle #2. Involve the customer in the planning
activity. The customer defines priorities and
establishes project constraints.
Principle #3. Recognize that planning is iterative.
A project plan is never engraved in stone. As work
begins, it very likely that things will change.
Principle #4. Estimate based on what you know.
The intent of estimation is to provide an indication of
effort, cost, and task duration, based on the team’s
current understanding of the work to be done.

97

Planning Principles

Principle #5. Consider risk as you define the plan. If you have
identified risks that have high impact and high probability,
contingency planning is necessary.
Principle #6. Be realistic. People don’t work 100 percent of
every day.
Principle #7. Adjust granularity as you define the plan.
Granularity refers to the level of detail that is introduced as a
project plan is developed.
Principle #8. Define how you intend to ensure quality. The
plan should identify how the software team intends to ensure
quality.
Principle #9. Describe how you intend to accommodate
change. Even the best planning can be obviated by uncontrolled
change.
Principle #10. Track the plan frequently and make
adjustments as required. Software projects fall behind schedule
one day at a time.

98

Modeling Principles

In software engineering work, two classes of
models can be created:

Requirements models (also called analysis models)
represent the customer requirements by depicting
the software in three different domains: the
information domain, the functional domain, and
the behavioral domain.
Design models represent characteristics of the
software that help practitioners to construct it
effectively: the architecture, the user interface, and
component-level detail.

99

Requirements Modeling Principles

Principle #1. The information domain of a problem
must be represented and understood.
Principle #2. The functions that the software
performs must be defined.
Principle #3. The behavior of the software (as a
consequence of external events) must be
represented.
Principle #4. The models that depict information,
function, and behavior must be partitioned in a
manner that uncovers detail in a layered (or
hierarchical) fashion.
Principle #5. The analysis task should move from
essential information toward implementation detail.

100

Design Modeling Principles

Principle #1. Design should be traceable to the requirements model.
Principle #2. Always consider the architecture of the system to be built.
Principle #3. Design of data is as important as design of processing
functions.
Principle #5. User interface design should be tuned to the needs of the
end-user. However, in every case, it should stress ease of use.
Principle #6. Component-level design should be functionally
independent.
Principle #7. Components should be loosely coupled to one another
and to the external environment.
Principle #8. Design representations (models) should be easily
understandable.
Principle #9. The design should be developed iteratively. With each
iteration, the designer should strive for greater simplicity.

101

Agile Modeling Principles

Principle #1. The primary goal of the software team is to build software,
not create models.
Principle #2. Travel light—don’t create more models than you need.
Principle #3. Strive to produce the simplest model that will describe the
problem or the software.
Principle #4. Build models in a way that makes them amenable to
change.
Principle #5. Be able to state an explicit purpose for each model that is
created.
Principle #6. Adapt the models you develop to the system at hand.
Principle #7. Try to build useful models, but forget about building
perfect models.
Principle #8. Don’t become dogmatic about the syntax of the model. If it
communicates content successfully, representation is secondary.
Principle #9. If your instincts tell you a model isn’t right even though it
seems okay on paper, you probably have reason to be concerned.
Principle #10. Get feedback as soon as you can.

102

Construction Principles

The construction activity encompasses a set of coding
and testing tasks that lead to operational software that
is ready for delivery to the customer or end-user.
Coding principles and concepts are closely aligned
programming style, programming languages, and
programming methods.
Testing principles and concepts lead to the design of
tests that systematically uncover different classes of
errors and to do so with a minimum amount of time
and effort.

103

Preparation Principles

Before you write one line of code, be sure
you:

Understand of the problem you’re trying to solve.
Understand basic design principles and concepts.
Pick a programming language that meets the needs of
the software to be built and the environment in which it
will operate.
Select a programming environment that provides tools
that will make your work easier.
Create a set of unit tests that will be applied once the
component you code is completed.

104

Coding Principles

As you begin writing code, be sure you:
Constrain your algorithms by following structured programming
[Boh00] practice.
Consider the use of pair programming
Select data structures that will meet the needs of the design.
Understand the software architecture and create interfaces that are
consistent with it.
Keep conditional logic as simple as possible.
Create nested loops in a way that makes them easily testable.
Select meaningful variable names and follow other local coding
standards.
Write code that is self-documenting.
Create a visual layout (e.g., indentation and blank lines) that aids
understanding.

105

Validation Principles

After you’ve completed your first coding
pass, be sure you:

Conduct a code walkthrough when appropriate.
Perform unit tests and correct errors you’ve uncovered.
Refactor the code.

106

Testing Principles

Al Davis suggests the following:
Principle #1. All tests should be traceable to
customer requirements.
Principle #2. Tests should be planned long before
testing begins.
Principle #3. The Pareto principle applies to
software testing.
Principle #4. Testing should begin “in the small”
and progress toward testing “in the large.”
Principle #5. Exhaustive testing is not possible.

107

Deployment Principles

Principle #1. Customer expectations for the
software must be managed. Too often, the customer
expects more than the team has promised to deliver,
and disappointment occurs immediately.
Principle #2. A complete delivery package should
be assembled and tested.
Principle #3. A support regime must be established
before the software is delivered. An end-user expects
responsiveness and accurate information when a
question or problem arises.
Principle #4. Appropriate instructional materials
must be provided to end-users.
Principle #5. Buggy software should be fixed first,
delivered later.

108

Process Models

Agile Development

Roles and Types of Standards

Software Engineering Knowledge

Agenda – Software Engineering Fundamentals

Software Engineering Detailed

22 Software Engineering LifeCycles SDLCsSoftware Engineering LifeCycles SDLCs

109

Process Assessment and Improvement

Standard CMMI Assessment Method for Process Improvement
(SCAMPI) — provides a five step process assessment model that
incorporates five phases: initiating, diagnosing, establishing, acting and
learning.
CMM-Based Appraisal for Internal Process Improvement (CBA
IPI)—provides a diagnostic technique for assessing the relative maturity of
a software organization; uses the SEI CMM as the basis for the assessment
[Dun01]
SPICE—The SPICE (ISO/IEC15504) standard defines a set of
requirements for software process assessment. The intent of the standard is
to assist organizations in developing an objective evaluation of the efficacy
of any defined software process. [ISO08]

ISO 9001:2000 for Software—a generic standard that applies to any
organization that wants to improve the overall quality of the products,
systems, or services that it provides. Therefore, the standard is directly
applicable to software organizations and companies. [Ant06]

110

ISO 12207
http://www.acm.org/tsc/lifecycle.html
http://www.12207.com/

IEEE Standards for Software Engineering Processes
and Specifications

http://standards.ieee.org/catalog/olis/se.html
http://members.aol.com/kaizensepg/standard.htm

Other Standards

111

22 Software Engineering LifeCycles (SDLCs)Software Engineering LifeCycles (SDLCs)

Agenda

11 Session OverviewSession Overview

33 Summary and ConclusionSummary and Conclusion

112

Course Assignments

Individual Assignments
Reports based on case studies / class presentations

Project-Related Assignments
All assignments (other than the individual assessments) will
correspond to milestones in the team project.
As the course progresses, students will be applying various
methodologies to a project of their choice. The project and related
software system should relate to a real-world scenario chosen by each
team. The project will consist of inter-related deliverables which are
due on a (bi-) weekly basis.
There will be only one submission per team per deliverable and all
teams must demonstrate their projects to the course instructor.
A sample project description and additional details will be available
under handouts on the course Web site

113

Team Project

Project Logistics
Teams will pick their own projects, within certain constraints: for instance,
all projects should involve multiple distributed subsystems (e.g., web-
based electronic services projects including client, application server, and
database tiers). Students will need to come up to speed on whatever
programming languages and/or software technologies they choose for their
projects - which will not necessarily be covered in class.
Students will be required to form themselves into "pairs" of exactly two (2)
members each; if there is an odd number of students in the class, then one
(1) team of three (3) members will be permitted. There may not be any
"pairs" of only one member! The instructor and TA(s) will then assist the
pairs in forming "teams", ideally each consisting of two (2) "pairs", possibly
three (3) pairs if necessary due to enrollment, but students are encouraged
to form their own 2-pair teams in advance. If some students drop the
course, any remaining pair or team members may be arbitrarily reassigned
to other pairs/teams at the discretion of the instructor (but are strongly
encouraged to reform pairs/teams on their own). Students will develop and
test their project code together with the other member of their programming
pair.

114

Document Transformation methodology driven
approach
» Strategy Alignment Elicitation

• Equivalent to strategic planning
– i.e., planning at the level of a project set

» Strategy Alignment Execution
• Equivalent to project planning + SDLC

– i.e., planning a the level of individual projects + project
implementation

Build a methodology Wiki & partially implement the
enablers
Apply transformation methodology approach to a
sample problem domain for which a business solution
must be found
Final product is a wiki/report that focuses on
» Methodology / methodology implementation / sample

business-driven problem solution

Team Project Approach - Overall

115

Document sample problem domain and
business-driven problem of interest
» Problem description
» High-level specification details
» High-level implementation details
» Proposed high-level timeline

Team Project Approach – Initial Step

116

Assignments & Readings

Readings

» Slides and Handouts posted on the course web site

» Textbook: Chapter 1 & Part One-Chapters 2-4

Team Project

» Team Project proposal (format TBD in class)

Team Exercise #1

» Presentation topic proposal (format TBD in class)

Project Frameworks Setup (ongoing)

» As per reference provided on the course Web site

117

Next Session: Software Development Lifecycles (SDLCs)

118

Any Questions?

119

Next Session: Planning and Managing Requirements

