Software Engineering
Session 2 - Main Theme
Software Development Lifecycles (SDLCs)
Dr. Jean-Claude Franchitti
New York University
Computer Science Department
Courant Institute of Mathematical Sciences
by Roger S. Pressman
Slides copyright © 1996, 2001, 2005, 2009

Presentation material partially based on textbook slides
Software Engineering: A Practitioner’s Approach (7/e)

ot
W
\\\W\.&
R 2 2
o i o 2 P
\\h\\ LLE LS L
g
s A2t
’~ Sy sy
Z Sl 7 L
2, \\““\S\\%Q
\\\\#

. Summary and Conclusion

-




What is the class about?

= Course description and syllabus:
» http://www.nyu.edu/classes/jcf/g22.2440-001/
» http://www.cs.nyu.edu/courses/spring10/G22.2440-001/

= Textbooks:
» Software Engineering: A Practitioner’s Approach
i Roger S. Pressman
McGraw-Hill Higher International
ISBN-10: 0-0712-6782-4, ISBN-13: 978-00711267823, 7t Edition (04/09)

» http://highered.mcgraw-hill.com/sites/0073375977/information_center view0/

» http://highered.mcgraw-
hill.com/sites/0073375977/information_center_view0/table of contents.html

= Software Engineering Detailed
= Process Models
= Agile Development
= Software Engineering Knowledge
= Roles and Types of Standards
= |SO 12207: Life Cycle Standard
= |EEE Standards for Software Engineering Processes and
Specifications
= Summary and Conclusion
= Readings
= Assignment #1
= Course Project




Icons / Metaphors

) womaton
g

. CommonReslizstion
c

T KnowledgerCompetency pttern
U covemance
Mgment
Soution pproach

e

4

‘ U

Agenda

]

. Summary and Conclusion




Agenda — Software Engineering Fundamentals

T

‘ ~

What is a SDLC

System Development Life Cycle:

» |t is about developing a software-driven
solution to a business problem

= |t concerns a process which takes from
two months to two years

» This is called a System Development Life
Cycle but it should really be called a
(Business) Solution Development Life
Cycle




Software Engineering (1/2)

= Some realities

= A concerted effort should be made to understand the
problem before a software solution is developed

= Design becomes a pivotal activity
= Software should exhibit high quality
= Software should be maintainable

= The seminal definition

= Software engineering is the establishment and use of

in order to obtain
software that is on

Software Engineering (2/2)

= The IEEE definition

= Software Engineering:
= (1) The application of a
to the

of software; that is, the application of
engineering to software

= (2) The study of approaches as in (1)




A Layered Technology

tools

methods

process model

a “quality” focus

Software Engineering

A Process Framework

Process framework
Framework activities
work tasks

work products

milestones & deliverables
QA checkpoints
Umbrella Activities




Framework Activities

= Communication
Planning

Modeling

= Analysis of requirements
» Design

Construction

» Code generation

» Testing

Deployment

Umbrella Activities

» Software project management

» Formal technical reviews

» Software quality assurance

» Software configuration management

» Work product preparation and
production

= Reusability management
»* Measurement
» Risk management




Adapting a Process Model

= The overall flow of activities, actions, and tasks and the
interdependencies among them

» The degree to which actions and tasks are defined within each
framework activity

* The degree to which work products are identified and required

» The manner which quality assurance activities are applied

» The manner in which project tracking and control activities are
applied

» The overall degree of detail and rigor with which the process is
described

* The degree to which the customer and other stakeholders are
involved with the project

* The level of autonomy given to the software team
» The degree to which team organization and roles are prescribed

The Essence of Practice

= Polya* suggests:
1. Understand the problem (communication and analysis)
2. Plan a solution (modeling and software design)
3. Carry out the plan (code generation)
4. Examine the result for accuracy (testing and quality
assurance)

* http://www.stevemcconnell.com/rl-top10.htm




Understand the Problem

That is, who are the stakeholders?

What data, functions,
and features are required to properly solve the
problem?

Is it
possible to represent smaller problems that
may be easier to understand?

Can an analysis model be created?

Plan the Solution

Are there
patterns that are recognizable in a potential solution?
Is there existing software that implements the data,
functions, and features that are required?

If so, are
elements of the solution reusable?

If so, are solutions
readily apparent for the subproblems?

Can a design model be
created?




Carry Out the Plan

Is
source code traceable to the design model?

Has the design and code
been reviewed, or better, have correctness
proofs been applied to algorithm?

Examine the Result

Has a reasonable testing strategy
been implemented?

Has the software been validated
against all stakeholder requirements?

20




David Hooker’s General Principles*

» 1: The Reason It All Exists

» 2: KISS (Keep It Simple, Stupid!)

» 3: Maintain the Vision

= 4: What You Produce, Others Will Consume
= 5: Be Open to the Future

» 6: Plan Ahead for Reuse

» 7: Think!

* http://c2.com/cqi/wiki?SevenPrinciples OfSoftwareDevelopment

21

Software Myths

= Affect managers, customers (and other non-
technical stakeholders) and practitioners

= Are believable because they often have
elements of truth,

» Invariably lead to bad decisions,

» |nsist on reality as you navigate your way
through software engineering

22




How It all Starts

= Every software project is precipitated by some

business need
= The need to correct a defect in an existing application;
» The need to the need to adapt a ‘legacy system’ to a
changing business environment;
» The need to extend the functions and features of an
existing application, or
= The need to create a new product, service, or system.

23

SDLC Characteristics

» Whatever form it takes, it is always
followed by a maintenance cycle:

= Maintenance is the most expensive part

= If all the steps are done carefully maintenance is
reduced

= For maintenance to be effective , documentation must
exist

24




Business Solution Characteristics

= A software-driven solution consists of two
parts:
= Model
= Prototypes
= Diagrams and supporting Documents
» System
» Hardware
= Software

25

Some Definitions (1/3)

» Prototype

= An initial software-driven solution usually done with a
rapid development tool

= Usually has limited functionality
= Users can see results very quickly

* Planning

= The process of gathering what is needed to solve a
business problem

» Includes a feasibility study
» Includes project steps

26




Some Definitions (2/3)

= Analysis
» The process of determining detail requirements in the
form of a model
» Design
= The process of drawing blueprints for a new system
at a high-level first then at a detailed level
= Construction
= The actual coding of the model into a software
package
= Uses one or more programming languages
= Java
= C#
= C++
= etc.

27

Some Definitions (3/3)

» Implementation
= Doing whatever is necessary to startup a system
» Includes:
= Database
= Networks
= Hardware configuration
= Maintenance
= Doing whatever is necessary to keep a system
running

» Includes:
= Repairs to correct errors
= Rnhancements to accommodate changes in requirements

28




Deliverables

» Deliverables consist mainly of diagrams and
their supporting documentation

» For example:
» Models that emphasize dynamics
= Models that emphasize structure
= Models can be used for specifying the outcome of
analysis
= Models can be used for specifying the outcome of
design

29

Sample Deliverables - Planning (1/3)

» Planning:
= System Functions
= A simple list of each requirement a system must do

= For example:
= record video rental
= calculate fine

» System Attributes

= A simple property describing each requirement of a
system
= For example:
= record video rental under 15 seconds
= calculate fine and return response in 5 seconds

30




Sample Deliverables - Planning (2/3)

» Planning:

Environmental Diagram

Rent Video

Video Store
Information System

Clerk i

Pay
Employees

31

Sample Deliverables - Planning (3/3)

= Planning:
» Prototype

» Recall it is a first system usually done with a rapid
development tool

= Since users can see results very quickly they will
pay attention

» Final product is seldom created in same tool as the
prototype

32




Sample Deliverables - Analysis

= Analysis:
= Use case

= Shows the dynamics between the users (actors) of the
system and the system itself

= This is a narrative representation

= Conceptual Diagram
= Shows the structure of the objects and their relationships
= This is a graphical representation

= System Sequence Diagram

= Shows the dynamics between the users (actors) of the
system and the system itself

= This is a graphical representation

= Contracts
= Shows the state of each object before each action
= This is a narrative representation

33

Sample High-Level Architecture Design Conceptual Blueprint

e-Business Back-Office
Portal e-Bi Systems

Users— Connectivity

usiness Services
Client
Web
Client <>
Administrator
" XML/Web.
Sales TradiDesk Enabling omponent Legacy
VPN User Facilities Manager Systems
Interface
Marketing
Facilitator
Phone
<>
Visitor

Support I I

«~—> XML-Based Application Data

Facilitator
Administrator

= = = = =P = = =»

Data Repositories

34




Sample High-Level Architecture Design Logical Blueprint

Business e-Business
Functions  Users Connectivity ort e-Business Services Legacy Systems

Facilitator Interfaces U iversity Inranet LA
PBX-Based Servic
Presentation Enabling: Rofer
e (= L
ostng XMLWeb Enabling Facilties Back-Office Systers
Application Server
Q8A Ensbing
Ruthorng Client Request Handler Chat Platiorm
Posiing Firewall pplication Logic
Professor
ubnet (within DI Client Administration
Wb sarver
Proy Somer
Presentaton Enabiing: abled
Rathor z
" Application: senveenge Jl ssp engne
Ingraton Pk O e Crenne, ava Clem
= i A intacss
System Support: = = T ——
Monionng et e
System Admin S peron v
Help Dosk. Teaching XL NOMPOP har e e
Assistant Hopienions o
=———— Session'Stale Mgt Internal Administration
ut' Sves
3 Process Automaton &
aic Cortent M.
g -
Client Interfaces =
Telephony-Based
Taey S i

Integrated Data Architecture Layer

Database Management Systems (DBMS)
i ropitore
QA Enabing:
Capture

ving

X ML Data
MOM&POP.

Students XLF Dala
Templatos Operational Data

Legacy Operatonal Data

Legens:

‘olaboraive Aepicatons

Business Information Warehouse. Thid Party Data

35

Sample High-Level Architecture Design Physical Blueprint

University Systems & Network i |

Universiy Mg, Firewall

Tape Silo
Veritas Network
Backup (shared service)
) (Componert Manager T
Comecis to Firewall / 1I0P Proxy Server =0 soplesin e
ai dovces beow Stn E220/Solars 26 i
Enecioain Provall t 2o
Sionabat 8% —
2z IONA WondenwallProxy Server a5
7z 2
3 &
%3 [
2 - 205
Intrusion 2 33332 e
Detection & 33835 il EH
H giay 552 [Conemecommim
HEE = el
L H Security & g
3gz8s Entitlements Srv § SN Do
I E S E XLF Dala
3 5 > wso | Opersional Data
g 3 EH
2 £50  Global Applcation Data
z 2 = —
3 E 33
Cotoon's 0. POP hander = g5
£ Tomp
H > H ampltes
H 2 5 Gontent g Repostory
E H Back-Offce Systomd
Firevall ? s Sun E4201Soiars 26
7z (2 et Entorprise Sur
FERIS ebirends
. - = '3 Admin/Reporting
S, Prfosear s AR Intusion 3 Server  fusion Dotection
— R | Dotection £
|§| — g Faciitators,
= cin
Cllnt i
Worksaton| XML, Emal, Fax Web-Enabled
— University Ropicaions
oGt g
Worstaton
Sun E220/Solaris 26 Program
Crecpon Froval 1 S Adminitator
Stonebent Inrsion Detection
R Reorter
= = AN

36




Sample Deliverables - Design

= Design:
» [nteraction Diagram
» Shows the interaction between objects
= This is a graphic representation
= |t is a dynamic blueprint

= Class Diagram
= Shows the structure between objects
= Shows the structure inside objects
= This is a graphic representation
= |t is a static blueprint

Agenda — Software Engineering Fundamentals

e |




A Generic Process Model

Software process

Process framework

Umbrella activities i

framework activity # 1

software engineering action #1.1
wiork tasks
werk products
quality assurance points
project milestones

Task sets

H

H
software engineering action #1.k
worlk tasks

work products

quality assurance points
project milestones

: |
.
framework activity # n

software engineering action #n.1

work tasks

wark products

quality assurance points
praject milestones

Task sets

Task sets

:

:
software engineering action #n.m
work tasks

work products

quality assurance points
project milestones

Task sets

39

Process Flow

S =

{a} brear process flow
Demmn!mH Flaneing Madaling Consiruction H Deplaymant }_).

() iteratee process fos

>

=]

(d) paralel process flow

40




Identifying a Task Set

= A task set defines the actual work to be done to
accomplish the objectives of a software
engineering action

41

Process Patterns

= A
= describes a process-related problem that is
encountered during software engineering work,

= identifies the environment in which the problem
has been encountered, and

= suggests one or more proven solutions to the
problem
= Stated in more general terms, a process pattern
provides you with a template [ Amb98] -

42




Process Pattern Types

- defines a problem associated
with a framework activity for the process

- defines a problem associated
with a software engineering action or work
task and relevant to successful software
engineering practice

- define the sequence of
framework activities that occur with the
process, even when the overall flow of
activities is iterative in nature

43

Prescriptive Models

» Prescriptive process models advocate an orderly
approach to software engineering

» |f prescriptive process models strive for structure
and order,

= Yet, if we reject traditional process models (and
the order they imply) and replace them with
something less structured,

44




The Waterfall Model Revisited

— Communication -
project initiation Planning
requirement gat heri estimating > Modeling
scheduling .
N analysis —_—a
acking design Deployment
delivery —
support
feedback
45

The V-Model

Architectural System
Design Testing

Integration
Testing

46




The Incremental Model

increment #n

[ ] delivery of
Py ry

increment # 2 ® nth increment

delivery of
2nd increment

increment # 1

delivery of
1st increment

software functionality and features

project calendar time

47

Evolutionary Models: Prototyping

48




Evolutionary Models: The Spiral Model Revisited

planning
estimation
scheduling
risk analysis

communication
modeling
analysis
design

deployment
deli constructlon
elivery code
feedback test

49

Evolutionary Models: Concurrent

Modeling activity
~

r
Under
development
Awaiting
changes

represents thefstate
of a software pngineering
activity or tasl

50




Still Other Process Models

—the process to
apply when reuse is a development objective

—emphasizes the mathematical
specification of requirements

—provides a process and methodological
approach for defining, specifying, designing, and
constructing aspects

—a “use-case driven,
architecture-centric, iterative and incremental”
software process closely aligned with the Unified
Modeling Language (UML)

51

The Unified Process (UP)

construction

Release

transition

software increment

\

production

52




UP Phases

UP Phases

Inception Baboration Construction Transition Production

Workflows

Requirements

Analysis

Design

Implementation

Test

Support

Iterations | #1 #2 #n-1 #n

UP Work Products

Inception phase

Baboration phase

Vision document

Initial use-case model
Initial project glossary Use-case model
Initial business case Supplementary requirement

Construction phase

Initial risk assessment . including non-functiona Design model Transition phase
Project plan, ) . Analysis model Software components
phases and Iterations. Software architecture Integrated software Delivered software increment
@SIHeSS model, Description. increment Betatest reports
if necessary. Executable architectura Test plan and procedure General user feedback
One or more prototypes prototype. Test cases
Preliminary design model Support documentation
Revised risk list user manuals
Project plan including installation manuals
iteration plan description of current
adapt ed workflows increment
milestones

technical work products
Preliminary user manua

54




Personal Software Process (PSP)

This activity isolates requirements and develops both size and
resource estimates. In addition, a defect estimate (the number of defects
projected for the work) is made. All metrics are recorded on worksheets or
templates. Finally, development tasks are identified and a project schedule
is created.

External specifications for each component to be
constructed are developed and a component design is created. Prototypes
are built when uncertainty exists. All issues are recorded and tracked.

Formal verification methods (Chapter 21) are
applied to uncover errors in the design. Metrics are maintained for all
important tasks and work results.

The component level design is refined and reviewed. Code
is generated, reviewed, compiled, and tested. Metrics are maintained for all
important tasks and work results.

Using the measures and metrics collected (this is a
substantial amount of data that should be analyzed statistically), the
effectiveness of the process is determined. Measures and metrics should
provide guidance for modifying the process to improve its effectiveness.

55

Team Software Process (TSP)

= Build self-directed teams that plan and track their work,
establish goals, and own their processes and plans. These can
be pure software teams or integrated product teams (IPT) of
three to about 20 engineers.

= Show managers how to coach and motivate their teams and
how to help them sustain peak performance.

= Accelerate software process improvement by making CMM
Level 5 behavior normal and expected.

= The Capability Maturity Model (CMM), a measure of the effectiveness
of a software process, is discussed in Chapter 30.

= Provide improvement guidance to high-maturity organizations.
= Facilitate university teaching of industrial-grade team skills.

56




CMM & PSP/TSP (http://www.sei.cmu.edu)

= The Capability Maturity Model for Software (SW-
CMM) is used by organization to guide their
software process improvement efforts

= Personal Software Process
= hitp://www.sei.cmu.edu/tsp/psp.html

» The Team Software Process (TSP) was designed
to implement effective, high-maturity processes for
project teams

= |f all projects in an organization are using the TSP,
does the organization exhibit the characteristics of
high process maturity, as described in the SW-
CMM?

= http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr008.pdf

57

SEI's IDEALModel

= |DEAL is an organizational improvement model

Learning

Silmubus for Change E;nr-r.ml Spansorship | Infrasiruciuee)

Pilat Test
Sohation

Init iating Charoclerize
Cuerent &
Cusined Statos

_/
. M Deciop
Diagnosing Nl Tl

Establishing

58




Team Exercise #1 — Groups will present in class

= Research and put together a comparative write-up or
traditional Process Models:
= Waterfall
=V
* Phased
= Evolutionary
= Spiral
» CBSE
= RUP
= PSP/TSP

Agenda — Software Engineering Fundamentals

Software Engineering Detailed
Process Models

. Agile Development J
Software Engineering Knowledge
Roles and Types of Standards




The Manifesto for Agile Software Development

“We are uncovering better ways of developing software
by doing it and helping others do it. Through this work
we have come to value:

That is, while there is value in the items on the right, we
value the items on the left more.”

61

What is “Agility”?

» Effective (rapid and adaptive)
response to change

Effective communication among all
stakeholders

Drawing the customer onto the team

Organizing a team so that it is in
control of the work performed

Rapid, incremental delivery of
software

62




Agility and the Cost of Change

-
8
o
-
c
E cost of change
= using convertional
® software processes R
&
- -
cast aof change o
using agile processes il
— - N, idealized cost of change using
e agile process
o

b
—_—

development schedule progress

63

An Agile Process

Is driven by customer descriptions of what
is required (scenarios)

Recognizes that plans are short-lived

Develops software iteratively with a heavy
emphasis on construction activities

Delivers multiple ‘software increments’
Adapts as changes occur

64




Agility Principles (1/2)

1. Our highest priority is to satisfy the customer through early
and continuous delivery of valuable software.

2. Welcome changing requirements, even late in development.
Agile processes harness change for the customer's competitive
advantage.

3. Deliver working software frequently, from a couple of weeks
to a couple of months, with a preference to the shorter
timescale.

4. Business people and developers must work together daily
throughout the project.

5. Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done.

6. The most efficient and effective method of conveying
information to and within a development team is face—to—face
conversation.

65

Agility Principles (2/2)

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development.
The sponsors, developers, and users should be able to
maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good
design enhances agility.

10. Simplicity — the art of maximizing the amount of
work not done — is essential.

11. The best architectures, requirements, and designs
emerge from self—organizing teams.

12. At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its
behavior accordingly.

66




Human Factors Revisited

" the process molds to the needs of the people
and team, not the other way around
= key traits must exist among the people on an
agile team and the team itself:
»
»
»
>
>
»>

»

67

eXtreme Programming (XP) - http://www.extremeprogramming.org/

= A lightweight software methodology

» Few rules and practices or ones which are
easy to follow

» Emphasizes customer involvement and
promotes team work

» See XP’s rules and practices at
http://www.extremeprogramming.org/rules.html

68




Extreme Programming (XP) (1/3)

» The most widely used agile process, originally
proposed by Kent Beck

= XP Planning
= Begins with the creation of *
= Agile team assesses each story and assigns a
= Stories are grouped to for a
= A is made on delivery date

= After the first increment “ ”is used to
help define subsequent delivery dates for other
increments

”

69

Extreme Programming (XP) (2/3)

= XP Design
= Follows the
= Encourage the use of (see Chapter 8)

= For difficult design problems, suggests the creation of
“ "—a design prototype

= Encourages “ "—an iterative refinement of
the internal program design
= XP Coding
» Recommends the fora

store before coding commences
= Encourages “ ?
= XP Testing
= All

- are defined by the customer and
excuted to assess customer visible functionality

70




Extreme Programming (XP) (3/3)

simple design spike solutions
CRCcards prototypes
user stories
values
acceptance test criteria
iteration plan

refactoring

pair
programming

Release
unit test
continuous integration

software increment
project velocity computed

acceptance testing

71

XP Project Lifecycle

User Tast Sce!narios
Stories i
{ Requirements N:ew User Story:.
H \\ / Project \-tloc'n)u\\ ,(__.Bugs___\\
Achitectural System_"_ Release Release_- Hteration Latest Acceptance Customer_- Small
Spike T hitaphor Planning Plan hErsion Tests Approval Releases
7N N et T
Uncertain Confident Iteration
Estimates Estimates
Spike
) ) i Herations to Rel A
Exploration Planning i er 'D;:a;e ease i Productionizing
Phase Phase H i Phase
Maintenance Phase

72



eXtreme Programming (XP) Map

v N
P 4 - Extreme Programming Project

Emrﬁn‘a Programming

Test Scenarios

Mew User Story

User Stories ; ;
Requirements Project Velacity Bugs

. System Release Late_st Custormer
Architecturaly i no,  Release  pian \-fersmn Acceptance approval . S$mall
Spike Planmng@\\ Tests Releases
Uncertain Canfident Mext lteration
Estimates Estimates
Splke Capyright 2000 1. Deavan Wells

73

XP Iteration Planning

v _
P 4 - [teration @Zoom Out

Extreme Frogramming

New User Story,
Release Project Velocity
Plan ,
Yser Stories Unfinished Tasks Learn and
communicate
[ ey
Project . lteration Functionality

Next velocity Iteration Plan Devel ; —aLatest
Iteration Planning Cvelopment 1. BugFixes v y/ergion

Failed Acceptance M
Test
ess Doay by Day

Bllg 5 Copyright 2004 1. Doavan Wells

74




XP Unit Testing

A
> 4 - Collective Code Ownership @zoomout

V9
Extreme Programming

Move People
CRC Around 100%
Cards 1 Unit
Simple
Design e Tests
Complex Change Need
Pair Passed
Froblem Help ;
Failed Run All Unit
Next Task Pair Create \nit v Ngl_\:S%JSnit . Tests
or Failed __ Up ., Test Pair _#t Continuous |Run
a Unit —— I — - . Failed
Acceptance Test ot Programming e, Integration |acceptance
& W
Test @\ Tast Functionality Test
Simple Complex
Code Code
Acceptance
¥ Test
Ref'c_lctor Passed
Copyright 2000 1. Deavan Wells Merc1lessly

75

Agile Modeling & XP Summarized

Practices-based software process whose scope is to

describe how to model and document in an effective and
“agile” manner

= One goal is to address the issue of how to apply

modeling techniques on software projects taking an agile
approach such as:

= eXtreme Programming (XP)
= Dynamic Systems Development Method (DSDM)
= SCRUM
= efc.
= Using modeling throughout the XP lifecycle

= http://www.agilemodeling.com/essays/agileModelingXPLifecycle.htm
= Additional information

= http://www.agilemodeling.com/

= http://www.agilemodeling.com/resources.htm

76




Adaptive Software Development (1/2)

» Originally proposed by Jim Highsmith
» ASD — distinguishing features

. planning

= Uses “ " (See Chapter 24)

= Explicit consideration of

» Emphasizes for requirements
gathering

= Emphasizes “ ” throughout the
process

77

Adaptive Software Development (2/2)

adaptive cycle planning Requirement s gat hering
uses mission statement JAD
project constraints mini-specs
basic requirement s

time-boxed release plan

Release
software increment
adjustments for subsequent cycles Component s implement ed/ tested
focus groups for feedback
formal technical reviews

postmortems

78




Dynamic Systems Development Method (1/2)

» Promoted by the DSDM Consortium
(www.dsdm.org)
» DSDM—distinguishing features
= Similar in most respects to XP and/or ASD
= Nine guiding principles

79

Dynamic Systems Development Method (2/2)

S Play

DSDM Life Cycle (with permission of the DSDM consortium)

80




= Originally proposed by Schwaber and
Beedle
» Scrum—distinguishing features
» Development work is partitioned into “packets”

= Testing and documentation are on-going as
the product is constructed

» Work occurs in “sprints” and is derived from a
“backlog” of existing requirements

» leetings are very short and sometimes
conducted without chairs

= “demos” are delivered to the customer with the
time-box allocated

81

Scrum Process Overview

paily c¥cle

& > Daily scrum
N » Daily work
&

Preparation
Release n

Process

82




Scrum Timeline Breakdown

Project Start

<—— 2-3 months ——>

<——  2-4 weeks —>

Sprint 1 Sprint 2

<= Dpaily >

Project End

= Agile based projects are broken

down into Releases

= At the end of each Release, a

working version of the product is
delivered to the Business Users

= Each Release is made up of a

number of sprints

= At the end of each Sprint, a

working version of the product is
deployed with incremental
functionalities added over the

previous sprint

= During each Sprint, daily scrum

calls are held where status update
is provided by the team

83

Crystal

» Proposed by Cockburn and Highsmith
» Crystal—distinguishing features

» Actually a family of process models that
allow “maneuverability” based on problem

characteristics

» Face-to-face communication is emphasized

» Suggests the use of “reflection workshops”
to review the work habits of the team

84




Feature Driven Development (1/2)

» QOriginally proposed by Peter Coad et al
» FDD—distinguishing features

» Emphasis is on defining

= “is a client-valued function that can be
implemented in two weeks or less.”

= Uses a
= <action> the <result> <by | for | of | to> a(n) <object>
= A is created and “
is conducted

» Design and construction merge in FDD

85

Feature Driven Development (2/2)

|
:
! I
Devela ; ; 7
= P | Builca Plan Design Build
—o Features | By |-+ By |- By
Overal Lis: Feature Feature Fezture
Wadel ) L

umar: shape A [zt of featune 2 A development plos A deaigh packsce COﬂ'ﬁ'lﬂGU chend
thancortent grouped info sels  Clas cwners (SRqUentes) valledfun:tion

L & o
An oblec modal and sibfclareas  Feature SEOVIEI 0 mowe contantto

s nits . the ogjed model

Reprinted with permission of Peter Coad

86




Agile Modeling

= Originally proposed by Scott Ambler

» Suggests a set of agile modeling principles
= Model with a purpose
= Use multiple models
= Travel light
= Content is more important than representation

= Know the models and the tools you use to
create them

= Adapt locally

Agenda — Software Engineering Fundamentals

Software Engineering Detailed
Process Models

Agile Development
. Software Engineering Knowledge J
Roles and Types of Standards




Software Engineering Knowledge

» You often hear people say that software development
knowledge has a 3-year half-life: half of what you
need to know today will be obsolete within 3 years. In
the domain of technology-related knowledge, that’s
probably about right. But there is another kind of
software development knowledge—a kind that I think
of as —that does
not have a three-year half-life. These software
engineering principles are likely to serve a
professional programmer throughout his or her
career.

Steve McConnell

89

Principles that Guide Process - |

Whether the process model you choose
is prescriptive or agile, the basic tenets of agile development
should govern your approach.

The exit
condition for every process activity, action, and task should
focus on the quality of the work product that has been
produced.

Process is not a religious
experience and dogma has no place in it. When necessary,
adapt your approach to constraints imposed by the problem,
the people, and the project itself.

Software engineering
process and practice are important, but the bottom line is
people. Build a self-organizing team that has mutual trust and
respect.

90




Principles that Guide Process - Il

= Principle #5. Establish mechanisms for communication and
coordination. Projects fail because important information falls
into the cracks and/or stakeholders fail to coordinate their
efforts to create a successful end product.

= Principle #6. Manage change. The approach may be either
formal or informal, but mechanisms must be established to
manage the way changes are requested, assessed, approved
and implemented.

= Principle #7. Assess risk. Lots of things can go wrong as
software is being developed. It’s essential that you establish
contingency plans.

= Principle #8. Create work products that provide value for
others. Create only those work products that provide value for
other process activities, actions or tasks.

91

Principles that Guide Practice

Stated in a more
technical manner, analysis and design should always
emphasize separation of concerns (SoC).

At
it core, an abstraction is a simplification of some
complex element of a system used to communication
meaning in a single phrase.

A familiar
context makes software easier to use.

Pay special attention to the analysis, design,
construction, and testing of interfaces.

92




Principles that Guide Practice

Separation of concerns (Principle #1) establishes a
philosophy for software. Modularity provides a mechanism for
realizing the philosophy.

Brad Appleton [App00]
suggests that: “The goal of patterns within the software
community is to create a body of literature to help software

developers resolve recurring problems encountered throughout
all of software development.

93

Communication Principles

Try to focus on the speaker’s words,
rather than formulating your response to those words.

Spend the
time to understand the problem before you meet with others.

Every
communication meeting should have a leader (a facilitator) to
keep the conversation moving in a productive direction; (2) to
mediate any conflict that does occur, and (3) to ensure than
other principles are followed.

But it
usually works better when some other representation of the
relevant information is present.

94




Communication Principles

Someone participating
in the communication should serve as a “recorder” and write down all
important points and decisions.

Collaboration and consensus
occur when the collective knowledge of members of the team is combined

The more
people involved in any communication, the more likely that discussion will
bounce from one topic to the next.

95

Planning Principles

It’s impossible to use a roadmap if you don’t know
where you're going. Scope provides the software
team with a destination.

The customer defines priorities and
establishes project constraints.

A project plan is never engraved in stone. As work
begins, it very likely that things will change.

The intent of estimation is to provide an indication of
effort, cost, and task duration, based on the team’s
current understanding of the work to be done.

96




Planning Principles

If you have
identified risks that have high impact and high probability,
contingency planning is necessary.

People don’t work 100 percent of
every day.

Granularity refers to the level of detail that is introduced as a
project plan is developed.

The
plan should identify how the software team intends to ensure

quality.

Even the best planning can be obviated by uncontrolled
change.
= Principle #10.
Software projects fall behind schedule
one day at a time.

97

Modeling Principles

= In software engineering work, two classes of
models can be created:

represent the customer requirements by depicting
the software in three different domains: the
information domain, the functional domain, and
the behavioral domain.

. represent characteristics of the
software that help practitioners to construct it
effectively: the architecture, the user interface, and
component-level detail.

98




Requirements Modeling Principles

99

Design Modeling Principles

= Principle #1. Design should be traceable to the requirements model.

= Principle #2. Always consider the architecture of the system to be built.

= Principle #3. Design of data is as important as design of processing
functions.

= Principle #5. User interface design should be tuned to the needs of the
end-user. However, in every case, it should stress ease of use.

= Principle #6. Component-level design should be functionally
independent.

= Principle #7. Components should be loosely coupled to one another
and to the external environment.

= Principle #8. Design representations (models) should be easily
understandable.

= Principle #9. The design should be developed iteratively. With each
iteration, the designer should strive for greater simplicity.

100




Agile Modeling Principles

= Principle #1. The primary goal of the software team is to build software,
not create models.

= Principle #2. Travel light—don’t create more models than you need.

= Principle #3. Strive to produce the simplest model that will describe the
problem or the software.

= Principle #4. Build models in a way that makes them amenable to
change.

= Principle #5. Be able to state an explicit purpose for each model that is
created.

= Principle #6. Adapt the models you develop to the system at hand.

= Principle #7. Try to build useful models, but forget about building
perfect models.

= Principle #8. Don’t become dogmatic about the syntax of the model. If it
communicates content successfully, representation is secondary.

= Principle #9. If your instincts tell you a model isn’t right even though it
seems okay on paper, you probably have reason to be concerned.

= Principle #10. Get feedback as soon as you can.

101

Construction Principles

» The construction activity encompasses a set of coding
and testing tasks that lead to operational software that
is ready for delivery to the customer or end-user.

are closely aligned
programming style, programming languages, and
programming methods.

lead to the design of
tests that systematically uncover different classes of
errors and to do so with a minimum amount of time
and effort.

102




Preparation Principles

= Before you write one line of code, be sure
you:
= Understand of the problem you're trying to solve.
= Understand basic design principles and concepts.

» Pick a programming language that meets the needs of
the software to be built and the environment in which it
will operate.

= Select a programming environment that provides tools
that will make your work easier.

= Create a set of unit tests that will be applied once the
component you code is completed.

Coding Principles

= As you begin writing code, be sure you:
= Constrain your algorithms by following structured programming
[Boh00] practice.

= Consider the use of pair programming
= Select data structures that will meet the needs of the design.

= Understand the software architecture and create interfaces that are
consistent with it.

= Keep conditional logic as simple as possible.
= Create nested loops in a way that makes them easily testable.

= Select meaningful variable names and follow other local coding
standards.

= Write code that is self-documenting.

= Create a visual layout (e.g., indentation and blank lines) that aids
understanding.

104




Validation Principles

= After you’ve completed your first coding
pass, be sure you:
= Conduct a code walkthrough when appropriate.
» Perform unit tests and correct errors you've uncovered.
= Refactor the code.

Testing Principles

= Al Davis suggests the following:

= Principle #1. All tests should be traceable to
customer requirements.

= Principle #2. Tests should be planned long before
testing begins.

= Principle #3. The Pareto principle applies to
software testing.

» Principle #4. Testing should begin “in the small”
and progress toward testing “in the large.”

= Principle #5. Exhaustive testing is not possible.

106




Deployment Principles

= Principle #1. Customer expectations for the
software must be managed. Too often, the customer
expects more than the team has promised to deliver,
and disappointment occurs immediately.

= Principle #2. A complete delivery package should
be assembled and tested.

* Principle #3. A support regime must be established
before the software is delivered. An end-user expects
responsiveness and accurate information when a
question or problem arises.

= Principle #4. Appropriate instructional materials
must be provided to end-users.

= Principle #5. Buggy software should be fixed first,
delivered later.

107

Agenda — Software Engineering Fundamentals

Software Engineering Detailed
Process Models

Agile Development
Software Engineering Knowledge
. Roles and Types of Standards

108




Process Assessment and Improvement

= Standard CMMI Assessment Method for Process Improvement
(SCAMPI) — provides a five step process assessment model that
incorporates five phases: initiating, diagnosing, establishing, acting and
learning.

= CMM-Based Appraisal for Internal Process Improvement (CBA
IPI)—provides a diagnostic technique for assessing the relative maturity of
a software organization; uses the SEI CMM as the basis for the assessment
[Dun01]

=  SPICE—The SPICE (ISO/IEC15504) standard defines a set of
requirements for software process assessment. The intent of the standard is
to assist organizations in developing an objective evaluation of the efficacy
of any defined software process. [ISO08]

= IS0 9001:2000 for Software—a generic standard that applies to any
organization that wants to improve the overall quality of the products,
systems, or services that it provides. Therefore, the standard is directly
applicable to software organizations and companies. [Ant06]

109

Other Standards

= [SO 12207

= http://www.acm.org/tsc/lifecycle.html
= http://www.12207.com/

» [EEE Standards for Software Engineering Processes

and Specifications

= http://standards.ieee.org/catalog/olis/se.html

= http://members.aol.com/kaizensepg/standard.htm

110




‘/ . Summary and Conclusion

111

Course Assignments

= Individual Assignments
= Reports based on case studies / class presentations
= Project-Related Assignments
= All assignments (other than the individual assessments) will
correspond to milestones in the team project.
= As the course progresses, students will be applying various
methodologies to a project of their choice. The project and related
software system should relate to a real-world scenario chosen by each
team. The project will consist of inter-related deliverables which are
due on a (bi-) weekly basis.
= There will be only one submission per team per deliverable and all
teams must demonstrate their projects to the course instructor.
= A sample project description and additional details will be available
under handouts on the course Web site

112




Team Project

= Project Logistics

= Teams will pick their own projects, within certain constraints: for instance,
all projects should involve multiple distributed subsystems (e.g., web-
based electronic services projects including client, application server, and
database tiers). Students will need to come up to speed on whatever
programming languages and/or software technologies they choose for their
projects - which will not necessarily be covered in class.

= Students will be required to form themselves into "pairs" of exactly two (2)
members each; if there is an odd number of students in the class, then one
(1) team of three (3) members will be permitted. There may not be any
"pairs" of only one member! The instructor and TA(s) will then assist the
pairs in forming "teams", ideally each consisting of two (2) "pairs", possibly
three (3) pairs if necessary due to enrollment, but students are encouraged
to form their own 2-pair teams in advance. If some students drop the
course, any remaining pair or team members may be arbitrarily reassigned
to other pairs/teams at the discretion of the instructor (but are strongly
encouraged to reform pairs/teams on their own). Students will develop and
test their project code together with the other member of their programming
pair.

113

Team Project Approach - Overall i

* Document Transformation methodology driven
approach

» Strategy Alignment Elicitation

» Equivalent to strategic planning
— i.e., planning at the level of a project set

» Strategy Alignment Execution

+ Equivalent to project planning + SDLC

— i.e., planning a the level of individual projects + project
implementation

= Build a methodology Wiki & partially implement the
enablers

= Apply transformation methodology approach to a
sample problem domain for which a business solution
must be found

= Final product is a wiki/report that focuses on

» Methodology / methodology implementation / sample
business-driven problem solution

114




Team Project Approach - Initial Step

» Document sample problem domain and
business-driven problem of interest
» Problem description
» High-level specification details
» High-level implementation details
» Proposed high-level timeline

115

Assignments & Readings

= Readings
» Slides and Handouts posted on the course web site
i » Textbook: Chapter 1 & Part One-Chapters 2-4

= Team Project

» Team Project proposal (format TBD in class)

= Team Exercise #1

» Presentation topic proposal (format TBD in class)

= Project Frameworks Setup (ongoing)

» As per reference provided on the course Web site

116




Next Session: Software Development Lifecycles (SDLCs)

17

Any Questions?

118




Next Session: Planning and Managing Requirements

119




