
1

Introduction to Patterns

2

Outline

• Patterns origins and history

• Definitions

• Properties

• Types of patterns

• Design patterns

• Pattern language, system, catalog, etc.

• Usage Example: Reorganizing an object-oriented

application using design patterns

3

Patterns origins and history

• Writings of architect Christopher Alexander
(coined this use of the term "pattern" ca. 1977-1979)

• Kent Beck and Ward Cunningham, Textronix, OOPSLA'87
(used Alexander's "pattern" ideas for Smalltalk GUI design)

• Erich Gamma, Ph. D. thesis, 1988-1991
• James Coplien, Advanced C++ Idioms book, 1989-1991
• Gamma, Helm, Johnson, Vlissides (("Gang of Four"Gang of Four““ -- GoF)GoF)

Design Patterns: Elements of Reusable Object-Oriented
Software, 1991-1994

• PLoP Conferences and books, 1994-present
• Buschmann, Meunier, Rohnert, Sommerland, Stal, Pattern -

Oriented Software Architecture: A System of Patterns
((““POSA bookPOSA book””))

• PDEAFs – Pattern Driven EAFs (today)

4

Definitions
• … a fully realized form, original, or model accepted or

proposed for imitation…[dictionary]

• ... describes a problem which occurs over and over again in
our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice [Alexander]

• … the abstraction from a concrete form which keeps
recurring in specific non-arbitrary contexts [Riehle]

• …both a thing and the instructions for making the thing
[Coplien]

• ...a literary format for capturing the wisdom and experience
of expert designers, and communicating it to novices

5

Properties

Patterns do...Patterns do...
• provide common vocabulary
• provide “shorthand” for effectively communicating complex

principles
• help document software architecture
• capture essential parts of a design in compact form
• show more than one solution
• describe software abstractions

Patterns do not...Patterns do not...
• provide an exact solution
• solve all design problems
• only apply for object-oriented design

6

Patterns can be

• non-generative (Gamma patterns)
– observed in a system
– descriptive and passive

• generative
– generate systems or parts of systems
– perspective and active

7

Ingredients
Pattern

Solution

Problem

Context
a design situation giving rise to a design problem

a form or rule that can be applied to resolve these forces

a set of forces occuring in that context

Example Example –– window placewindow place
• forces

– he wants to sit down and be comfortable
– he is drawn toward the light

• solution
– in every room, make at least one window into a “window place”

8

Types of software patterns

• design patterns (software design)
[Buschmann-POSA]
– architectural (systems design)
– design (micro-architectures) [Gamma-GoF]
– idioms (low level)

• analysis patterns (recurring & reusable analysis models) [Flower]
• organization patterns (structure of organizations/projects)
• process patterns (software process design)
• domain-specific patterns
• etc.

9

Alexandrian form (canonical form)

Name
meaningful name

Problem
the statement of the problem

Context
a situation giving rise to a problem

Forces
a description of relevant forces and constraints

Solution
proven solution to the problem

Examples
sample applications of the pattern

Resulting context (force resolution)
the state of the system after pattern has been applied

10

Alexandrian form (canonical form)

Rationale
explanation of steps or rules in the pattern

Related patterns
static and dynamic relationship

Known use
occurrence of the pattern and its application within existing
system

11

GoF format

Pattern name and classification
Intent

what does pattern do / when the solution works
Also known as

other known names of pattern (if any)
Motivation

the design problem / how class and object structures solve
the problem

Applicability
situations where pattern can be applied

Structure
a graphical representation of classes in the pattern

Participants
the classes/objects participating and their responsibilities

Collaborations
of the participants to carry out responsibilities

12

GoF format

Consequences
trade-offs, concerns

Implementation
hints, techniques

Sample code
code fragment showing possible implementation

Known uses
patterns found in real systems

Related patterns
closely related patterns

13

Pattern templates
[PATTERN-NAME]
Author
[YOUR-NAME] ([YOU@YOUR.ADDR]).
Last updated on [TODAY'S-DATE]
Context
[PARAG-1]
[PARAG-2]
Problem

[ONE-ASPECT]
[ANOTHER-ASPECT]

Examples
Forces

1.[FORCE-1]
2.[FORCE-2]

Design
[PARAG-1]
[PARAG-2]
An Implementation

[SOME-CODE]
Examples
Variants

[VARIANT]
[ANOTHER-VARIANT]

See Also
[ANOTHER-REF]

http://hillside.net/patterns/Writing/Lea.html

•http://hillside.net/patterns/template.html
•http://www.patterndepot.com/pages (Templates)

More pattern templates:More pattern templates:

IF you find yourself in CONTEXT
for example EXAMPLES,
with PROBLEM,
entailing FORCES

THEN for some REASONS,
apply DESIGN FORM AND/OR RULE
to construct SOLUTION
leading to NEW CONTEXT and OTHER PATTERNS

http://g.oswego.edu/dl/pd-FAQ/pd-FAQ.html

14

Pattern language

[Coplien][Coplien]
• …is a structured collection of patterns that build on each

other to transform needs and constraints into an
architecture [Software Design Patterns: Common Questions and Answers]

• …defines collection of patterns and rules to combine them
into an architectural style…describe software frameworks or
families of related systems [Patterns Home Page ->Patterns Definitions]

15

Pattern catalogs and systems

[Buschmann, POSA][Buschmann, POSA]
• pattern catalog

…a collection of related patterns, where patterns are
subdivided into small number of broad categories…

• pattern system
…a cohesive set of related patterns, which work together to

support the construction and evolution of hole
architectures...

…e.g., pattern hierarchy

16

Design pattern catalog - GoF

Purpose

Creational Structural Behavioral

Class • Factory Method • Adapter • Interperter

Scope
Object

• Abstract
Factory

• Builder
• Prototype
• Singleton

• Adapter
• Bridge
• Composite
• Decorator
• Facade
• Flyweight
• Proxy

• Chain of Responsibility
• Command
• Iterator
• Mediator
• Momento
• Observer
• State
• Strategy
• Vistor

17

Reorganization using patterns

• Experiences using Design Patterns to Reorganize an Object-
Oriented Application, Walter Zimmer

• hypermedia application
– developed by the European Museum Network (EMN)
– on top of MacApp
– 50 classes

• goal of reorganization
– eliminate deficiencies in the design and implementation

Existing
hypermedia
application

MacApp MacApp

Reorganized
hypermedia
application

Reusable
framework

layer
Generic, Generic,

reusable partsreusable parts

Application Application
specific partsspecific parts

18

Steps in reorganization

PRELIMINARY STEPS
1 documentation
2 finding staring points

– identification of classes / subsystems
with design goals similar to ones of
design patterns

– experiences and future scenarios
– metrics / design rules
– analyzing the application for

existing patterns
REOGANIZATIONAL STEPS
1 finding and exploring suitable design patterns
2 reconstructing and documentation

– application classes corresponding to the design pattern
– incorporate names of the application classes to the classes in the

design pattern (e.g., LinkStrategy, HyperMediaDecorator)

design patterns design patterns
parts of the systemparts of the system

critical application partscritical application parts
and their deficienciesand their deficiencies

19

Results and experiences

RESULTS
• drastic reduction of dependencies between subsystems
• short design documentation

EXPERIENCES
• common vocabulary - main advantage
• reorganization is time-intensive task
• good knowledge of design patterns needed
• combination of several design patterns required

