
1

1

Adaptive Software Engineering
G22.3033-007

Session 3 - Main Theme
Software Development Life Cycles (SDLCs)

Dr. Jean-Claude Franchitti

New York University
Computer Science Department

Courant Institute of Mathematical Sciences

2

Agenda
• Review of SDLC
• Environmental Diagrams
• Traditional Life Cycle Models
• Alternative Techniques
• Architectural Principles
• Use Case Driven Development
• Extreme Programming
• Agile Software Development
• Roles and Types of Standards

• ISO 12207: Life Cycle Standard
• IEEE Standards for Software Engineering Processes and Specifications

• Summary
• Course Assignments
• Course Project (Project #1 extended)
• Readings

2

3

Part I

Review of SDLC

4

What is a SDLC

System Development Life Cycle:
• It is developing a computer system
• It concerns a process which takes from two

months to two years
• This is called a system development life

cycle

3

5

What is a SDLC

There are two forms:
• Rapid (Prototype)

– Plan and Elaborate
– Developmental Cycle 1
– Developmental Cycle 2

• And Waterfall (classical)

6

What is a SDLC

• Waterfall (classical)
– Requirements
– Analysis
– Design
– Construction
– Implementation

4

7

What is a SDLC

Both forms are followed by a maintenance
cycle:

• Maintenance is the most expensive part
• If all the steps are done carefully

maintenance is reduced
• For maintenance to be effective ,

documentation must exist

8

What is a SDLC

The system really consists of two parts:
• Model

– Prototypes
– Diagrams and supporting Documents

• System
– Hardware
– Software

5

9

Definitions

Prototype:
• A first system usually done with a rapid

development tool
• Usually has limited functionality
• Users can see results very quickly

10

Definitions

• Planning
– The process of gathering what is needed to

solve a business problem
– Includes a feasibility study
– Includes project steps

6

11

Definitions

• Analysis
– The process of determining detail requirements

in the form of a model

12

Definitions

• Design
– The process of drawing blueprints for a new

system

7

13

Definitions

• Construction
– The actual coding of the model into a software

package
– Uses one of three languages:

• Java
• Smalltalk
• C++

14

Definitions

• Implementation
– Doing whatever is necessary to startup a system
– Includes:

• Database
• Networks
• Hardware configuration

8

15

Definitions

• Maintenance
– Doing whatever is necessary to keep a system

running
– Includes:

• repairs to correct errors
• enhancements to accommodate changes in

requirements

16

Deliverables

• Deliverables consist mainly of diagrams and
their supporting documentation

• For example:
– Models that emphasize dynamics
– Models that emphasize structure
– Models can be used for specifying the outcome

of analysis
– Models can be used for specifying the outcome

of design

9

17

Deliverables

Planning:
• System Functions
• A simple list of each requirement a system

must do
• For example:

– record video rental
– calculate fine

18

Deliverables

Planning:
• System Attributes
• A simple property describing each

requirement of a system
• For example:

– record video rental under 15 seconds
– calculate fine and return response in 5 seconds

10

19

Deliverables

• Planning:
Environmental Diagram

Rent Video
Pay
Employees

Video Store
Information System

Clerk

20

Deliverables

Planning:
• Prototype
• Recall it is a first system usually done with

a rapid development tool
• Since users can see results very quickly they

will pay attention
• Final product is seldom created in same tool

as the prototype

11

21

Deliverables

Analysis:
• Use case
• Shows the dynamics between the users

(actors) of the system and the system itself
• This is a narrative representation

22

Deliverables

Analysis:
• Conceptual Diagram
• Shows the structure of the objects and their

relationships
• This is a graphical representation

12

23

Deliverables

Analysis:
• System Sequence Diagram
• Shows the dynamics between the users

(actors) of the system and the system itself
• This is a graphical representation

24

Deliverables

Analysis:
• Contracts
• Shows the state of each object before each

action
• This is a narrative representation

13

25

Deliverables

Design:
• Interaction Diagram
• Shows the interaction between objects
• This is a graphic representation
• It is a dynamic blueprint

26

Deliverables

Design:
• Class Diagram
• Shows the structure between objects
• Shows the structure inside objects
• This is a graphic representation
• It is a static blueprint

14

27

Summary

UML provides a standard for the following
artifacts:

• Use Case (Dynamic Analysis Output)
• Conceptual Model (Static Analysis Output)
• Interaction Diagram (Dynamic Design

Blueprint)
• Class Diagram (Static Design Blueprint)

28

Part II

Traditional Life Cycle Models

15

29

Traditional Life Cycle Models

• Waterfall
• V
• Phased
• Evolutionary
• Spiral
• CBSE
• Group Exercise #1 (groups will present in class):

• Research and Put Together a Comparative Write-up

30

Part III

Alternative Techniques

16

31

Alternative Techniques
• Group Exercise #2:

• Research and Document the Main Benefits of the
following techniques and how they relate to traditional life
cycle models

• RUP (Rational Unified Process)
• RAD (Rapid Application Development)
• JAD (Joint Application Development)
• PSP/TSP (Personal/Team Software Process)
• Prototyping

• Structured Application Design
• Support Technologies (e.g., MDA, Aspect-Oriented

Programming, etc.)

32

1. CMM & PSP/TSP
http://www.sei.cmu.edu

• The Capability Maturity Model for Software (SW-
CMM) is used by organization to guide their software
process improvement efforts

• Personal Software Process
• http://www.sei.cmu.edu/tsp/psp.html

• The Team Software Process (TSP) was designed to
implement effective, high-maturity processes for
project teams

• If all projects in an organization are using the TSP, does
the organization exhibit the characteristics of high
process maturity, as described in the SW-CMM?
• http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr008.pdf

17

33

2. SEI’s IDEALModel
• IDEAL is an organizational improvement model

34

3. Business Engineering Methodology
• Business Model/Architecture

• Use Case View/Model

• Application Model/Architecture
• Logical and Process View/Models

• Content, Data, and Process Model (e.g., OIM’s knowledge
management, and database/datawarehousing models)

• Application Infrastructure Model/Architecture
• Implementation View

• Component Model (e.g., OIM’s component and object model)

• Technology Model/Architecture
• Deployment View/Model

• See Session 2 Handout on “Business and Application Architecture
Engineering”

18

35

4. XML-Based Software Development
• Business Engineering Methodology

• Language + Process + Tools
• e.g., Rational Unified Process (RUP)

• XML Application Development Infrastructure
• Metadata Management (e.g., XMI)
• XML APIs (e.g., JAXP, JAXB)
• XML Tools (e.g., XML Editors, XML Parsers)

• XML Applications:
• Application(s) of XML
• XML-based applications/services

• MOM & POP
• Other Services

• Application Infrastructure Frameworks

36

XML Metadata Management
• Issue: UML may not provides enough modeling views and

enough expressive power in each view to represent a complete
application

• Possible Solutions:
• Extend UML:

• Started as the OIM Analysis and Design Model (now OMG’s MDA)

• Use Different Modeling Languages:
• See later handout on “XML Information Modeling” (uses different

models such as UML, XML, and ORM)

• Use a Meta-Model: MOF and XMI
• See later handouts on “UML, MOF, and XMI” and “OMG’s XML

Metadata Interchange Format (XMI)”
• Design XML Schemas using UML:

• http://www-106.ibm.com/developerworks/library/x-umlschem/

19

37

Class Project Addendum
• Project Description

• The project will consist of providing business and application models
in support of custom XML-based services handling various aspects of
a chosen portable application. The actual application can be targeted
to end-users (B2C), businesses (B2B), developers (toolkit). As an
example, you could model an XML-based training studio supporting
VoiceXML, and application-sharing capabilities.

• Sample target applications relevant to the course project must fall in
the category of “multi-channel online community platforms”, and
include applications such as “community-based shopping”. In that
context, examples of useful XML-based services to support these
platforms may include synchronized multimedia presentation viewing,
and “offline” chat capabilities. A sample specification of an online
community platform for a virtual university eBusiness application will
be provided later on during the course for illustration purpose.

38

Generic Architecture Blueprint
+ Architecture Design Methodology + Mgmt

XML Application Infrastructure
(logic)

XML Application Services
(logic)

Applications of XML
(structured content/object data, style information)

Technology Infrastructure
(hardware platforms)

XML Applications
(logic) Logical View Implementation View

Process View Deployment View

Use Case
View

Use Case
View

Applications
of

XML

Structure

Style

XML
Applications

Content

Management

Processing

Querying

Rendering

Application
and

Technology
Infrastructure

Additional
Services

20

39

Sample Conceptual Architecture Diagram
(e.g., virtual classroom environment)

Technology Infrastructure (OS and hardware)

XML Application (logic)

XML Application Infrastructure (logic)

Applications of XML (content/style) XML Application Services (logic)

Legend

Presentation Enabling
(posting, querying, locating, viewing)

SMIL

JSP Engine / SMIL Viewer
(processing, rendering)

Web Community Avatar-Based Chat Platform

Web-Based Infrastructure
(lightweight client machines, server platforms)

Q&A Enabling
(questions capture, integration, viewing)

XLF

3rd Party Tool

SMIL
Authoring

Tool

XLF Processing/Rendering

XML POP Framework
(processing, rendering)

XML
Authoring

Tool

40

5. MVC Review
http://java.sun.com/blueprints/patterns/index.html

• MVC architecture decouples the code to handle user actions
(controller), the data and business logic (Model), and the
presentation (View)

21

41

Implementing the “V” of “MVC” Using JSPs

• When the view is implemented as a JSP, the controller
object (e.g., servlet) forwards processing of the request
and the response to a JSP view

• Controller adds a reference to the model object to the
user’s session or request object

• JSP gets a handle on the model object and constructs
the HTML or other markup to be returned to the client

42

Implementing the “V” of “MVC” Using JSPs
(continued)

22

43

Implementing the “V” of “MVC” Using XSL

• When the view is implemented in XSL, the basic flow
of the transaction remains the same

• The model is represented in an XML format
• Once the model is built, the controller asks for a

stylesheet to transform the XML into the desired
rendition markup language

• XSL view may be implemented on the client rather
than the server, so the controller may return XML to
the client

44

Implementing the “V” of “MVC” Using XSL
(continued)

23

45

6. Service Oriented Architecture

46

Web Services Stack

24

47

Derivative Architecture Patterns

48

Towards Web Services

• Plateaus of adoption
• Integration as an afterthought
• Web services façades
• Managed Web services and, finally
• Paradigm shift

• Industry currently focuses on the second plateau

25

49

Integration as an Afterthought

• The current enterprise conjecture consists of a collection of self-
contained custom or packaged applications

• Packaged applications may expose functions via an API
allowing some level of point-to-point integration

50

Web Services Façades

• Adopting Web services first requires "wrapping" existing
applications with a Web services façade

• The resulting architecture resembles early EAI implementations,
but provides the added benefit of standard protocols

26

51

Managed Web Services

• In most cases, package applications are not designed to enable
the replacement of underlying services

• As a result, the resulting Web architecture remains a hybrid in
which some applications leverage common infrastructure
services while others access their own internal services

52

Paradigm Shift

• In a true service-oriented architecture, all business services use a
common set of business-neutral services for logging, notification
and security

27

53

Challenges

• Evolving standards
• Immature tools
• Semantic mapping
• Network reliability
• Performance
• Application ownership
• Learning curves

54

7. MDA

• OMG's MDA (Model-Driven Architecture)
specification describes:
– a PIM - Platform-Independent Models (i.e.

business design)
– PSMs - the mapping of a PIM to one or more

Platform-Specific Model
• MDA => Model Once, Generate

Everywhere
• Review MDA presentations:

– http://www.io-software.com

28

55

MDA
(continued)

UML Model (PIM)

Auto
Color : String
Door : Integer
Engine : Integer

<Auto>
<Color> Red </Color>
<Door> 4 </Door>
<Engine> 2 </Engine>

</Auto>

XMI Document (PSM)

XMI

<!Element Auto
(Color*,
Door*,
Engine*)>

XMI DTD, Schema (PSM)

X
M

I

M
O

F

interface Auto
{
};

IDL, Java… (PSM)

Class Auto
{public String color;
public int Door;
public int Engine;
}

56

8. Aspect-Oriented Programming
http://www2.parc.com/csl/projects/aop

• Technology for separation of concerns (SOC)
in software development

• AOSD makes it possible to modularize
crosscutting aspects of a system such as
– Design or architectural constraints
– Systemic properties or behaviors (e.g., logging and

error recovery)
– Features
– etc.

29

57

Example: AspectJ
http://aspectj.org

• A seamless aspect-oriented extension to
Java

• Enables the modular implementation of a
wide range of crosscutting concerns

• Compilers
– AspectJ (www.aspectj.org)
– HyperJ

(www.alphaworks.ibm.com/tech/hyperj)

58

AspectJ Example
http://www.voelter.de/data/articles/aop/aop.html

01 aspect DataLog {
02 advise * Worker.performActionA(..), * Worker.performActionB(..) {
03 static after {
04 if (thisResult == true)
05 System.out.println("Executed "+thisMethodName+
06 "successfully!");
07 else
08 System.out.println("Error Executing "+
09 thisMethodName);
10 }
11 }
12 }

30

59

AspectJ – Locking Sample

01 aspect Lock {
03 Data sharedDataInstance;
04 Lock(Data d) {
05 sharedDataInstance = d;
06 }
08 introduce Lock Data.lock;
09
10 advise Data() {
11 static after {
12 thisObject.lock = new Lock(thisObject); }
14 }
17 }

• Creating a new aspect called lock with introduce and advise
cross-cuts

60

AspectJ – Locking Sample
(continued)

15 boolean locked = false;
16
17 advise Worker.perform*(..), AnotherWorker.perform*(..) {
18 before {
19 if (thisObject.sharedDataInstace.lock.locked) // enqueue, wait
20 thisObject.sharedDataInstace.lock.locked = true;
21 }
22 after {
23 thisObject.sharedDataInstace.lock.locked = false;
24 }
25 }
26 }

• Advising classes that work with the data (note that all the
locking code is included in an aspect!)

31

61

9. Refactoring
http://www.refactoring.com/

• Technique to restructure code in a disciplined way
– Small code changes (a.k.a., refactorings) are applied to support

new requirements and/or keep design as simple as possible
• Enables programmers to safely and easily evolve their code to

fulfill new requirements or improve its quality
• Refactoring is a fundamental coding practice of XP and is

orthogonal to Agile Modeling, which does not address
programming-related issues

• See Java refactoring guidelines at
– http://www.cafeaulait.org/slides/javapolis/refactoring/

• Refactoring tools:
– Eclipse supports renaming refactorings that allow you to rename

a compilation unit, type, method, field, or parameter
– Other refactorings allow you to move code, extract methods, and

self encapsulate fields

62

Design Patterns and Refactoring
• Refactoring improves code design without

adding new behavior
• A design pattern is the description of a design

problem and of its solution, which comes with
certain benefits and liabilities
– See http://cs.wwc.edu/~aabyan/PATTERNS/

• Do design patterns drive refactoring or are
design patterns discovered in the refactoring
result?
– See Refactoring to Patterns

http://www.industriallogic.com/papers/rtp016.pdf

32

63

10. Structured Applications Design Tips
• Reuse: should focus on Domain Models/System Family Architectures
• Applications should separate the various information elements (i.e.,

content, logic, style, and architecture/handling schemes)
• Various content formats: presentation, message, storage, etc.
• Application architecture supports:

• Web Enabling (WE), XML Enabling (XE), Data Enabling (DE), Enterprise
System Assurance Enabling (ESAE)

• Various application support services to support:
• Interactions with users via content (content + logic) - WE
• Encoding of user requests as secure (portable) messages (content generation) -

XE/ESAE
• Processing of user requests via logic (content + logic) - XE
• Rendering of content via logic using style (content + style + logic) - WE/XE
• Querying information via logic (content + logic) - XE/DE
• Interactions with back office via content (content + logic) - XE/ESAE

64

Investigating Logging Infrastructure
(e.g., virtual classroom environment)

33

65

Refined Application Architecture Blueprint
(e.g., virtual classroom environment)

Users—

Sales TradiDesk

User
Interfaces

Client
Administrator

Marketing

Client

Support

Phone

PDA

Connectivity
e-Business

Portal e-Business Services

Data Repositories

Legacy
Systems

Web

Visitor

VPN

Facilitator

Facilitator
Administrator

User
Data

Legacy
Databases

XML-Based Application
Data

Back-Office
Systems

Component
Manager

XML/Web
Enabling
Facilities

66

Mapping Application to App. Infrastructure

Business Constraints

Application Model
Content Model

Web Interface

Data Model
Logical Data

Principles
Assumptions

Constraints

Presentation
Navigation

Look and Feel

Business model
Organization

Location

Process

Logical Application Model
Execution &

Market
Systems

EFI
Execution
Systems

FX
Execution
Systems

Market
Systems

Core Components

Services
Events

Externalization

Licensing

Messaging

Naming

Persistence

TransactionSecurity

Common Facilities

Backup /
Recovery

Channels

Error
Handling

XML POP

Help XML MOM

Monitoring

Performance
Tuning

Query / Search

Reporting

System
Admin

Domain Specific
Client API

EFI Execution
Interface

FX Execution
Interface

Market
Instrument

Reference data

Markets

Portal
interfaces

Client Handler

Client to Core
components

Handler

Global Front End
System

Client
Interface

Components

Technology Infrastructure Model

Execution &
Market

Systems

Instrument
Repository

Foreign
Exchange

Market
Systems

Euro
Fixed

Income

Core ComponentsClient Handler

Preferences and
Operating

Constraints

Sun E220/Solaris 2.6
nC

ipher SSL accelerator
W

ebsphere:
- H

TTP svr
- servlet engine
- jsp engine

Web Server
Servlets & JSP

Streaming
Server

(https & http)

Sun E220/Solaris 2.6
TIBC

O
 Stream

ing Svr
nC

ipher SSL accelerator

Global Front End
System

Client Services
Administrator

XML, SWIFT, FIX,
Email, Fax

Client
Workstation

System Admin
& Support

Sun E420/Solaris 2.6
200GB raid5 Disk Array
iPlanet Enterprise Svr
Webtrends

Admin/Reporting
Server

Database Server

Sun E4500/Solaris 2.6
50G

B D
isk Array

Sybase 11.9.2

Security &
Entitlements Srv

Sun E420/Solaris 2.6
enC

om
m

erce G
etAccess

50G
B D

isk ArrayApplication
Server

Sun E420/Solaris 2.6
W

ebsphere
M

Q
series

34

67

Sample Logical Architecture Diagram
(e.g., virtual classroom environment)

U
ni

ve
rs

ity
 In

te
rn

et
 L

A
N

U
ni

ve
rs

ity
 In

tra
ne

t W
A

N

University Intranet LAN

Professor

Facilitators

Clients

Students

Presentation Enabling:
Authoring
Posting

Q&A Enabling:
Authoring
Posting

Business
Functions Users

NT &
Unix

Win
2000

IVR

University
Internet or

Intranet LANs

University
Internet LAN

PBX-Based Service

Connectivity

Facilitator Interfaces

Call Forwarding,
Teleconferencing, etc.

Front Office Apps

Ft Off. & Web Apps

Portal Mgmt.
Interface

Maintenance Apps

Web-Enabled
Applications

Client Interfaces

Telephony-Based
Services

Web-Enabled
Applications

"Lights Out" Svcs

XML, Email, Fax

e-Business
Portal

Integrated Data Architecture Layer

e-Business Services

Front Office Apps

Data Mining

Educational Applications
(Custom Java Applications)

Facilitator Application,
Channel, and Client/

System Admin Interfaces

Business Intelligence
(Customer Analysis, Course Planning)

Customer Care Services
(Call Center Support: Educational & Systems)

Personalization Interface

Channels Interface
(Browsers, PDAs, WAPs)

Remote Training Interface

Customer Calls Handling
(ACD, Flex-Routing, Call Center Mgmt.)

CSR Assisted Services
(Product Support, Issue Resolution, Proactive

Account Mgmt.)

Email XML
Interfaces Fax

Internet-Based Services
(XML interfaces, Email, Browser)

Collaborative Applications
(2D Avatars, Classroom Navigation, Chat, Events)

Real Time Services
(Web Channels, Chat, TV Events, etc.)

Collaborative Applications
(2D Avatars, Classroom Navigation, Chat, Events)

Voice/Data Integration
Teleweb / Web Integration Services

(Consolidated Messaging, Telephone-Based Web
Services, Video Conf., etc.)

(via VPN)

Software / Global Content
Monitoring / Backup

PBX-Based Services

Teaching
Assistant

Presentation Enabling:
Authoring

Q&A Enabling:
Integration

System Support:
Monitoring
System Admin.
Help Desk

FaxbackIVR

Telephony Svcs

NT &
Unix

Win
2000

University
Interne or

Intranet LANs

Front Office Apps

Ft Off. & Web Apps

"Lights Out" Services

Telephony Svcs

PDA/WAP Applications

Win
2000

Web Applications Client Interface
(Presentation querying, locating, and viewing -

Questions capture and Q&A viewring)

Self Care Services
(tutorials, online help)

In scope

Out of scope

Legend:

WAP Server

(via VPN)

Third Party Data

Content-Mgmt Repository

XML-based presentation
oriented publishing

templates

Component Manager
Application Server Back-Office SystemsXML/Web Enabling Facilities

Client Request Handler
Subnet (within DMZ)

Web Server

Servlet Engine

Client Request Handler
Firewall

Component Manager
Firewall

Servlets/JSPs:
 session hdlr
 SMIL presentation hdlr
 Q&A hdlr
 XML MOM/POP hdlr
 etc.

Facilitator/Client Admin. Servlets

System Administration Servlets

Legacy Systems

Chat Platform
Application Logic

Chatroom Component

ChatUser Component

Client & System
Administration Component

Entitlement & Security
Component

Connectors
Course Production Systems)

Support Services

Process Automation &
Dynamic Content Mgmt.

Session/State Mgmt.

Site Development Svc.

XML Core Services
(Doc Hdlr, Version Manager)

DataWarehouse-Driven
Processing

Legacy Operational Data

Desktop
Filesystems

In Memory Database

Customer Profiles
Time Critical
Information

Global Application Data Replicas

Business Information Warehouse

Operational Data Store
Client Knowledge Engine

Metadata Repository

XML
MOM & POP
Templates

Educational Research
Educational News

etc.

SMIL Data
XLF Data

Operational Data

Local Account Data
Entitlement/Security Data

etc.

JSP Engine

Client Request Handler API

University Systems
Firewall

Client Administration

Login, Authentification,
Non-Repudiation

Router

Presentation Enabling:
Querying
Locating
Viewing

Q&A Enabling:
Capture
Viewing

Registration Systems

Accounting Systems

Sales/Marketing Systems

Internal Administration

Course Development Systems

Human Resources Systems

Payroll Systtems

Course Production Systems

Proxy Server

Support Systtems

Client Support Systtems
(carreer management, alumni
relations, library support, etc.)

Database Management Systems (DBMS)

68

Sample Logical Architecture Diagram
(e.g., virtual classroom environment)

Facilitators, and Production Interfaces

Component Manager

XML/Web Enabling Facilities

Firewall

Database Server

Application
Server

U
ni

ve
rs

ity
 In

tra
ne

t L
A

N
 (d

ua
l)

Firewall

Firewall

Router

Router

Firewall / IIOP Proxy Server

Tape Silo
Veritas Network
Backup (shared service)

University Mgmt. Firewall

University Systems & Network Management Environment

Intrusion
Detection

Connects to
all devices below

Security &
Entitlements Srv

Intrusion
Detection

Intrusion Detection

Internet

University
Intranet LAN Professor/TA

HSRP

Sun E220/Solaris 2.6
nC

ipher SSL accelerator
Apache H

TTP sever
Tom

C
at servlet engine

Tom
C

at jsp engine

Alteon AC3

Sun E220/Solaris 2.6
Checkpoint Firewall-1
Stonebeat
IONA Wonderwall Proxy Server

Sun E220/Solaris 2.6
C

heckpoint Firew
all-1

Stonebeat

Sun E420/Solaris 2.6
W

ebLogic

Sun E4500/Solaris 2.6
50G

B D
isk Array

Sybase 11.9.2

Sun E420/Solaris 2.6
enC

om
m

erce G
etAccess

50G
B D

isk Array

Web-Enabled
Applications

Facilitator
Application and
Client/System
Administration

Interfaces

Students, Professor, and TA Interfaces

Web-Enabled
Applications

Clients/Facilitators
Application/Admin

Interfaces
(e.g.,SOJA Applet)XML, Email, Fax

Collaborative
Applications

(e.g., Chat Applet)

Channels Interface

Sun E420/Solaris 2.6
200GB raid5 Disk Array
iPlanet Enterprise Svr
Webtrends

Admin/Reporting
Server

Load
Balancers

Web Server
Servlets & JSP

Engines

Intrusion Detection

Sun E220/Solaris 2.6
Checkpoint Firewall-1
Stonebeat

N
FR

 Flight R
ecorder

R
em

ote-1
N

FR
 Flight R

ecorder
R

em
ote-1

Client Request Handler

Servlets/JSPs:
- session handler
- SMIL presentation handler
- Q&A handler
- Cocoon 2 XML POP handler

NFR Flight Recorder
Remote-1

Client
Workstation

Professor/TA
Workstation

Back-Office Systems

Client Administration

Internal Administration

Program
Administrator

U
ni

ve
rs

ity
 In

te
rn

et
 L

A
N

 (d
ua

l)

Support Services

XML Core Services

Session/State/EOD Mgmt

Dynamic Content Mgmt

Chat Platform
Application Logic

ChatUser Component

ChatRoom Component

Global Application Data

SMIL Data
XLF Data

Operational Data

Content Mgmt. Repository

XML POP
Templates

35

69

Part IV

Architectural Principles

70

What is “Architecture”?

• The art or practice of designing structures
• Formation or construction as part of a

conscious act
• Architectural product or work
• A method or style of building

– [Webster's Dictionary]

36

71

Definition

“The software architecture of a program
or computing system is the structure or
structures of the system, which
comprise software elements, the
externally visible properties of those
elements, and the relationships among
them” - [Bass et al 2003]

72

Software Elements

• Architecture defines Software Elements
• Defines how elements interact
• Elements interact by means of public interfaces
• The private aspects of an element are the province

of design and implementation
• Architecture suppresses information that does not

relate to how elements use, are used by, or relate
to other elements

37

73

Multiple Structures

• There is no definitive structure that defines
an architecture

• Structures can be used to:
– Define static partitioning and assign

functionality
– Represent snapshots of dynamic behavior
– Support allocation such as process to processor

mappings

74

It’s Everywhere! It’s Everywhere!

• Every system has an architecture
• It can always be reasoned about as external

interaction between elements
• However the architecture may be obscured,

or simply not known
• It is possible for architecture to exist

independently of its documentation!

38

75

Its Not Just Boxes & Lines

• Static diagrams are typically passed off as
architecture

• The definition of architecture includes both
static and dynamic structures

• Architecture includes defining element
behavior insofar that it is part of the visible
inter-element process of interaction

76

The Good, The Bad & The Ugly

• The definition of architecture is indifferent
to whether it is good, bad, or simply
adequate

• An architecture that prevents the system
from meeting its functional and non-
functional requirements is still an
architecture!

39

77

Why is Architecture Important? (1)

• Intellectual Control and Complexity Management
It lets you establish a strategic framework to provide a
holistic view of the system
It provides a foundation for recording all the “tactical
decisions” made in each iteration
It provides a “reference” for future enhancements
It facilitates a basis for communication by establishing
a common vocabulary for strategic and tactical design
decisions

78

Why is Architecture Important? (2)

• It is an effective basis for large-scale reusability
Partitioning identifies opportunities for “design with
reuse” activities, these represent

What abstractions already exist that can be leveraged in the
emerging architecture?

Architecture facilitates “design for reuse” activities
Are there components we can extract and reuse in future
projects?
Have we designed and built “similar” things before?

40

79

Why is Architecture Important? (3)

• Project Management
Resources and personnel can be organized
along component lines
A team can be allocated to produce one or more
subsystems

The architecture defines the basis of integration at
the interface level

80

Architecture and Software

• An abstract representation of a systems
components and behaviors

• Represents a solution synthesis, addressing both
functional and non-functional requirements

• It typically does not include implementation
details, that behavior is addressed by the developer

• Architecture may be:
– Product
– Style

41

81

Architectural Types

• System Architecture
– Architecture as a Product

• Reference Architecture
– Architecture as a Method or Style

82

System Architecture
• Architecture as product
• Addresses the identification of:

– Components
– Component Interfaces
– Component Interactions
– Component Constraints

• Provides a high level static and dynamic model to
be used as a basis for detailed design and
implementation

• Typically specified as a UML model (or
something more informal for customer
consumption)

42

83

Architectural Standards

• Establishes vital system components and
constructs that need to be retained when
new features are added

• Violating these standards prevents the
architecture adapting gracefully in the
presence of change

84

System Views

• System architecture can be represented using
multiple views

• Each view emphasizes a specific aspect of the
system

• Descriptive Views
– A formal arrangement of design elements
– Typically used to illustrate to the customer that

requirements are being met
• Prescriptive Views

– Specifies how the system will be built

43

85

Technology Influences

• Architecture and Technology have a basic synergy
• Technology is often an enabler for certain types of

system architecture
• N-Tier Internet applications - rely on browser

standards, application servers, distributed
protocols, fast networking capabilities … not
possible without these technology components in
place

86

Reference Architecture

• An architectural style or method
• The architect selects elements from a reference

architecture and uses them as a basis for producing
a given system architecture

• For example
– J2EE is a reference architecture that provides support

for component abstractions, such as Servlets or EJB,
and a range of abstract services for managing concerns
ranging from persistence to transaction management

44

87

Reference Elements

• Defines a standard terminology
• Provides standard template components
• Describes the responsibilities of basic

abstractions (e.g. session versus entity
EJB’s)

• May support a development methodology

88

Advantages

• Standard, unified terminology and concepts
• Provides simple, easy to use abstractions
• A proven reference architecture transfers quality

and reliability to subsequent system architectures
• Higher degree of reusability across projects
• Traceability from architecture through to

implementation

45

89

Reference Architecture
Specification

• Organization-wide standards and guidelines
– Interface specifications
– Use of frameworks
– Use of design patterns

• Must be rigorously enforced
• $$ Investment required

Architecture

90

Architecture and Design
• Architecture

– Operates at a higher level of abstraction than design
– Emphasizes structuring principles, partitioning

subsystems, assigning functionality to components,
specifying interfaces, communication and concurrency
protocols, process to processor allocation, non-
functional capabilities….

• Design
– Addresses detailed concerns required for

implementation
– Interface signatures, I/O, algorithms, data structures
– Represents a detailed refinement of an established

architecture

46

91

Key Characteristics

• Abstraction
• Encapsulation
• Partitioning and Decomposition
• Layering
• Views
• Capabilities

92

Abstraction
• Simplifies the complicated
• Separates relevant characteristics from irrelevant

– Selectively ignores some details in favour of others.
• Allows us to ‘see the wood for the trees’
• Data Abstraction - create an interface to some data which is not

dependent on the storage of that data.
– In a list “getNextItem” is more abstract than “add 1 to index;

read(index)”
– “Strong black coffee, no milk” is more abstract than “number 52,

please”
• ‘Vehicle’ is more abstract than ‘Car’.

47

93

Encapsulation
• Distinguish what an object does from how it does it

– interface vs. implementation; public vs. private; external vs. internal
• An object supports:

– ‘visible’ operations which form its external interface
– ‘hidden’ data and operations defined inside the object boundary

• Operations provide high-level services
• Objects invoke each others’ public operations

– Each class is simpler
– Can change internals with no impact
– Avoids code duplication
– Better integrity
– More maintainable

94

Partitioning and Decomposition

• The main structuring principle is “divide and
conquer’

• Strategies
– Decomposition : Break the system down hierarchically

into compositional structures, moving from the general
to the specific

– Partitioning : divide the software into units, such as
functions, modules or classes at a given level of
abstraction

48

95

Layering

96

Layering (2)

• Example Strategies:
– Layering By Generality - domain independent

layers at the bottom of the “layer stack”,
domain-specific at the top

– Layering by Abstraction - specific “small
grain” detailed functionality at the bottom of
the stack, high level services at the top

49

97

Architectural Views

• Each role requires a “view” of the system designed to
emphasize certain relevant characteristics and de-
emphasize or remove others

• A View is an abstraction of the system from a particular
perspective, it contains:

A description of the vantage point – what concerns does it
emphasize and to which group of stakeholders is it relevant?
View Elements – what elements and their relationships does it
document?
Organization – how is the view structured?
How is it interconnected or interrelated to other views?
How is the view created?

98

The “4 + 1” View Model

Logical View

Process View

Implementation View

Deployment View

Use Case View

50

99

The Logical View

• An abstraction of the design model
• Emphasizes functional requirements

The view is constructed using major design
packages, subsystems and classes

A Logical View

C h e c k i n g A c c o u n t

c a l c u l a t e s e r v i c e c h a r g e ()
c a l c u l a t e i n t e r e s t ()

T r a n s a c t i o n
D a t e
a m o u n t
t y p e o f t r a n s a c t i o n
c o n t r o l n u m b e r

T r a n s a c t ()
R e v e r s e ()

S a v i n g s A c c o u n t

c a lc u la t e s e rv i c e c h a r g e ()
c a lc u la t e i n t e re s t ()

L i n e o f C r e d i t

c a l c u l a t e s e r v i c e c h a r g e ()
c a l c u l a t e i n t e r e s t ()

C u s t o m e r

A c c o u n t
c u s t o m e r
/ b a l a n c e

d e p o s i t ()
w i th d r a w ()
< < p o l y m o r p h ic > > c a l c u l a t e in t e r e s t ()
c a l c u l a t e b a l a n c e ()
< < p o l y m o r p h ic > > c a l c u l a t e s e r v i c e c h a rg e s ()

0 . . *

1 . . *1 . . *

B i l l
c r e d i t o r
d a t e
a m o u n t

p a y ()

0 . . *0 . . *

0 . . *

A c c o u n t
H o m e

C r e a t e ()
R e le a s e ()

A c c o u n t In t e r fa c e

d e p o s i t ()
w i th d r a w ()
c a lc u la t e in te r e s t ()
c a lc u la t e b a l a n c e ()
c a lc u la t e s e r v ic e c ha r g e s ()

A c c o u n t D B In te r fa c e

s to r e ()
g e t d e t a il s ()
g e t s u m m a r y ()

B i l l

c r e d i t o r
d a t e
a m o u n t

p a y ()

(f ro m A n a l y s i s)

C u s t o m e r
(f ro m A n a l y s i s)

A c c o u n t

c u s t o m e r
/ b a la n c e

d e p o s i t ()
w i t h d r a w ()
< < p o l y m o r p h i c > > c a l c u l a t e i n t e r e s t ()
c a lc u la t e b a l a n c e ()
< < p o l y m o r p h i c > > c a l c u l a t e s e r vi c e c h a r g e s ()

(f ro m A n a l y s i s)

0 . . *0 . . *

1 . . *1 . . *

100

The Implementation View

• Describes the organization of static software
“modules”
– e.g. source code, data files, components

• Describes packaging and layering

• Addresses configuration management
– E.g. the release number, the business and

development owners

51

101

Process View

• Addresses dynamic and concurrent behavior

Activities of processes and/or lightweight
threads
Deadlock, livelock, race conditions, mutual
exclusion
Scalability
Performance
Fault Tolerance

102

Deployment View

• Describes how runtime components are
mapped to the underlying hardware and
software environment

• Addresses issues such as deployment,
installation, system-level optimization and
performance

52

103

Use-Case View
• A “binding” view, used to drive and

validate all other views in the model
• Initially used to formulate other views
• Later, scenarios will be used to validate and

test these views

Use Case Model

104

Architectural Capabilities
• Non-functional, observable system characteristics

– Availability
– Reliability
– Manageability
– Performance
– Scalability
– Extensibility
– Validity
– Reusability
– Security

53

105

Availability

• The degree to which a system is operable
when called upon at an unknown or random
time

• Expressed as a ratio of:
– 1 minus unavailability e.g. 0.965

• Applications often require a degree of
“downtime” for maintenance, bookkeeping
etc, typically governed by an SLA (Service
Level Agreement)

106

Reliability

• Ability of a system to perform its required
functionality under stated conditions for a
given period of time

• Typically measured as MTBF (Mean Time
Between Failure)

54

107

Manageability

• The set of services required to ensure the
continued correctness and integrity of the
architecture
– e.g. security and server management

• May be addressed by the reference
architecture (e.g. JMX for Java/J2EE
systems)

108

Performance

• Ability of a system to execute functions within a given
temporal “window”
– Not necessarily running “fast enough”

• Architect should target performance criteria before
implementation
– Architect required to make “informed estimation” regarding

performance of models

• Two key measurements
– Response Time
– Response Ratio (response time to time it actually takes to execute

the function)

55

109

Scalability

• Two basic types of hardware scalability
– Horizontal, adding new servers to distribute

load
– Vertical, adding more CPUs and memory to

handle a greater load

110

System Scalability

• A system can scale to handle more users and
transactions in the following ways:
– Throw more hardware at the problem!
– Improve communication efficiency e.g. pool

communication resources, make a single instead of
multiple calls to the same distributed component…

– Transparent load balancing across application servers /
application instances

– Efficient resource management, connection pooling,
caching

56

111

Scalability Characteristics

• Capability to dynamically add more
hardware capacity without incurring
downtime

• The provision for “gracefully degrading”
functionality up to 100% capacity

• The ability to suspend less critical work at
times of peak load

112

Extensibility

• Capability of an architecture to be extended
to facilitate the graceful addition of new
requirements

57

113

Validity

• Also known as testability
• Architect must establish empirical and

repeatable criteria for what constitutes a
valid system

• Validity tested at boundaries between
system layers
– Presentation to Business Logic Layers
– Business Logic to Persistence Layers

114

Reusability

• Two key factors to address:
– Design for Reuse, genericizing and packaging

software for reuse in multiple contexts
– Design with Reuse, leveraging existing reusable

software as part of an emerging system
architecture

• Things to reuse : Code, Frameworks,
Interfaces, Patterns, Heuristics, Design
Artifacts, Analysis Models, Requirements…

58

115

Security

• Protection of resources and assets from loss:
– Privacy, preventing disclosure to unauthorized

persons
– Integrity, preventing illegal corruption or

modification of data
– Authenticity, has the system correctly identified

a user? Has data been transmitted successfully?
– Availability, are my services all available for

utilization?

116

Security Services
• Standard security services include:

– Identification and authorization
– Access control
– Accountability and auditing
– Data confidentiality
– Data integrity and recovery
– Secure data exchange
– Non-repudiation of data origins and delivery
– Reliability

• The implementation of these services are defined
by a security policy

59

117

Part V

Use Case Driven Development

118

Learning Objectives
• Introduce use case modelling and

specification
• Outline the basis of use-case driven

development
• Distinguish between Real and Essential

modeling
• Examine the use case driven process

from requirements through to test

60

119

What is a Use Case?

• A Use Case is a modelling entity used to describe the
functional requirements of a system.

• A Use Case describes a “complete functionality”. This is
one general usage of the system.

“A description of a set of sequences of actions,
including variants, that a system performs that yields an

observable result of value to an actor” [Booch 1999]

120

Boundary Notation

Ordering System

61

121

System Boundaries

• This simple notation describes the boundary
of the system.

• Note that the system may not be a software
system; it could be a business or a hardware
device for example.

• Determining the boundary can be a design
activity.

• Note also that for simple systems, showing
a system boundary might not be necessary.

122

Notation

• A Use Case is simply represented as an
“oval”, annotated with a name.

Make
Faux Pas

62

123

Communication Notation

Watch Movie

Critic Communication association

124

Communication Semantics

• The communication may be directional
(using an arrow) or bi-directional

• The relationship may hide extremely
complex patterns of interaction between
actor and use case!

63

125

An Example Use Case Model

Check
Status

Make
Order

Fulfill
Orders

Establish
Credit

Order System

Credit Supervisor

Customer

Service Representative

Shipping Clerk

126

Identifying Use Cases

• What functions will a given actor want from the system?
• What measurable value does an actor require from the

system?
• Given an actor role, what sort of business event may they

wish to initiate?
• Does the system use transient or persistent data? What

actors will Create, Read, Update and Delete that data?
• What notifications does the system send to its actors?

64

127

Use Case Templates

• The real detail is not shown on a use case diagram
• A use case diagram must be supplemented with a

use case description.
• The use case descriptions are usually created in a

standard format.
• There are various published templates to follow

for this activity.
• If you adopt this technology you will have to

adopt a template or develop your own.

128

What do we need to capture?

• Goals
• Preconditions and Postconditions
• Initial Description
• Scenarios
• Non-functional requirements

65

129

Goals

• A use case should have a well defined goal,
and one or more backup goals.

• An actor has a set of responsibilities.
• To fulfil those responsibilities it formulates

goals.
• These goals are carried out by actions.

130

Why Goals?

• Goals tend to be tracked informally –
responsibilities are typically mapped directly to
actions

• At the use case level we can set a goal that will
– Meet one or more actor responsibilities
– Are realized by the scenarios within the use case

• Goals are reflected in the use case name, and a
specific goal-capture section.

66

131

Goal Example

• A Customer actor has a responsibility to
make and pay for an order.

• A use case may have the goal “allow
Customer to make electronic payment”

• The use case will include a flow of events
(scenario) to meet that goal.

132

Preconditions and Postconditions
• No use case is an island. It may have dependencies on

other use cases that change system state.
• Precondition – what system state must be true in order for

the use case to execute?
• Success Postcondition – what will be the state of the

system after successful use case completion?
• Failure Postcondition - what will be the state of the

system after unsuccessful use case completion?
• These are predicates, based on system state that all

stakeholders should be able to understand

67

133

Scenarios

• These represent the actual “meat” of a use
case specification

• A scenario is a flow of events demonstrated
by a given use case instance.

• Two types:
– Primary Scenario
– Secondary or Variant Scenarios

134

Primary Scenario

• The primary scenario represents a flow of
events where everything goes as expected.

• It is also known as the “Happy Day
Scenario”.

• A use case typically has a single Primary
Scenario.

68

135

Secondary Scenarios

• These represent a flow that deviates from the
Primary Scenario.

• This includes:
– Less probable decisions based on state or use input
– Incomplete or erroneous user input
– Exceptional conditions in the system or environment

• These are typically invoked as variation points
from the primary scenario.

136

Use Case Detail Levels
• While use cases can be used in different ways there are

two basic levels of detail
• Essential – to capture the essence of the requirements in a

usage centered, technology and implementation-
independent manner.
– Also known as Abstract or Business use cases.
– Designed to meet non-technical stakeholder needs

• Real – to capture the behavioural requirements in a fashion
that references, user interface components, implementation
details and technical constraints
– Also known as Concrete or System uses cases
– Designed to meet technical stakeholder needs.

69

137

Essential Scenario Example
Ordering a Pizza Online Workflow
• The customer inputs a pizza crust, classic, deep pan or stuffed.
• The customer inputs a base size of 10”, 15” or 17”
• The customer selects one or more toppings from our daily selection.
• The system calculates the combined price of crust, base and

topping(s).
• The customer submits the order to the system
• The system verifies if the combination of crust, base size and toppings

is legal (according to Business Rule #5)
• If the order is legal the system will return a confirmation and delivery

time.
• If the order is not legal the system will ask the user to rebuild their

pizza go to (1).

138

Real Scenario Example

Ordering a Pizza Online Workflow
• The customer selects a pizza crust, classic, deep pan or stuffed from a drop

down menu.
• The customer selects a single checkbox indicating a base size of 10”, 15” or

17”
• The customer customer goes through an interative process, adding toppings

dynamically from our daily selection. This will not result in a page submit
and should be done using a scripting language directly on the page.

• The system dynamically calculates the combined price of crust, base and
topping(s), again using a page-centered scripting language.

• The customer presses the “Process Order” submit button.
• The system verifies if the combination of crust, base size and toppings is legal

(according to Business Rule #5)
• If the order is legal the system will return a confirmation and delivery time.
• If the order is not legal the system will ask the user to rebuild their pizza go to

(1).

70

139

Compromise

• The favored approach is to maintain two
different sets of documentation.

• This has negative implications for time,
budget and maintainability.

• A possible compromise is to merge three
levels of detail into a single document.

140

Compromise Example

• Example Use Case #1
• Description – this should provide a

comprehensive executive summary of the
purpose, focusing on what it will do and
what results of value it will provide to the
Actors.

• Workflow
– Provide an essential description of the step.
– Follow it with any required real information.

71

141

How much Depth of Detail?

• What depth of detail do I need to specify my use
cases at?

• External or “White Box” Detail
– Focuses on activities that are directly visible to the

actor
– The system is a black box that simply produces outputs

• Internal or “Black Box” Detail
– Focuses on both user and system level requirements.
– Opens up the system focusing on What versus How.

142

White Box Specification

• Advantages
– Does not make a premature commitment to design detail.
– Does not require the analyst to understand the underlying object

model.
– Allows the analyst to focus on user interaction not implementation

detail.

• Disadvantages
– It will not completely model the system requirements. Who will fill

in the gaps?
– Difficult to validate user-centric requirements against an emerging

object architecture

72

143

Black Box Specification

• Advantages
– Teases out those hidden system requirements that are

not visible to the user
– Gives guidance on how to partition the emerging object

architecture

• Disadvantages
– Use Cases are not objects – this may lead to functional

decomposition!
– Users may not understand how objects and

implementation mix

144

Use Case Based Requirements

• The use case model is an artifact of the requirements
process

• It elicits what the system should do from the users point of
view

• The model represents a common basis of communication
between developers, management, stakeholders and user

• It determines:
– What to build.
– When to build it (through use case prioritization)

73

145

Requirements to Code : Problems
“two cultures divided by a common language”
• Requirements often address “real-world” abstractions and

items – this does not integrate well with an algorthmic
view of the world.

• A given requirement may be distributed through an
architecture, rather than centrally located.

• Requirements may often address issues such as
performance, which come from good design practice but
are not enforced algorithmically.

• System design isnt purely driven by user requirements!
What about constraints? What about system requirements?

146

Use Cases and Development

Use Case Model

Object Model

C he c k in g A c c o un t

c a lc u la t e s ervic e c h arge ()
c a lc u la t e in t ere s t ()

Tran s a c t io n
D at e
a m o unt
t y pe o f t rans ac tio n
c on t ro l n um b er

T ran s ac t ()
R evers e ()

S aving s A c c ou nt

c a lc u la t e s ervic e c har g e()
c a lc u la t e in t e res t ()

L in e of C red it

c a lc u la t e s e rvic e c ha rg e()
c a lc u la t e in t eres t()

C u s t om er

A c c o unt
c u s tom e r
/ ba lan c e

de p os i t()
w i th draw ()
< < p oly m orp h ic > > c a l cu l a te in t er es t ()
c a lc u la t e b a lan c e ()
< < p oly m orp h ic > > c a l cu l a te se rvic e c ha rge s ()

0. .*

1 . . *1 . . *

B i ll
c re d i to r
da t e
am oun t

pa y ()

0 .. *0 .. *

0 . .*

Ac count
Home

Create()
Releas e()

Acc ount Interface

deposit ()
withdraw()
calcu late in teres t()
calcu late balance()
calcu late s ervice c harges ()

Acc ount DB In terfac e

s tore()
get details ()
get s ummar y()

Bill

creditor
date
amount

pay ()

(fro m A na lysis)

Customer
(fro m Ana lysis)

Ac count

c ustomer
/ balance

deposit()
withdraw ()
< <poly morphic> > c alcu la te interest()
c alculate ba lanc e()
< <po ly morphic> > c alcu la te service charges ()

(fro m Ana lysis)

0. .*0. .*

1 ..*1 ..*

Data Model

Source Code

UI Design
Test Cases

74

147

Architectural Views
• Each role requires a “view” of the system designed to

emphasize certain relevant characteristics and de-
emphasize or remove others

• A View is an abstraction of the system from a particular
perspective, it contains:

A description of the vantage point – what concerns does it
emphasize and to which group of stakeholders is it relevant?
View Elements – what elements and their relationships does it
document?
Organization – how is the view structured?
How is it interconnected or interrelated to other views?
How is the view created?

148

The “4 + 1” View Model

Logical View

Process View

Implementation View

Deployment View

Use Case View

75

149

The Logical View

• An abstraction of the design model

• Emphasizes functional requirements
The view is constructed using major design
packages, subsystems and classes

A Logical View

C h e c k in g A c c o u n t

c a l c u l a t e s e r v i c e c h a r g e ()
c a l c u l a t e in t e r e s t ()

T r a n s a c t i o n
D a t e
a m o u n t
t y p e o f t r a n s a c t i o n
c o n t r o l n u m b e r

T r a n s a c t ()
R e v e r s e ()

S a vi n g s A c c o u n t

c a lc u la t e s e rv ic e c h a r g e ()
c a lc u la t e i n t e re s t ()

L i n e o f C r e d i t

c a l c u l a t e s e r v i c e c h a r g e ()
c a l c u l a t e in t e r e s t ()

C u s t o m e r

A c c o u n t
c u s to m e r
/ b a l a n c e

d e p o s i t ()
w i t h d r a w ()
< < p o l y m o r p h ic > > c a l c u l a te in t e r e s t ()
c a lc u l a t e b a l a n c e ()
< < p o l y m o r p h ic > > c a l c u l a te s e r v ic e c h a rg e s ()

0 . . *

1 . . *1 . . *

B i l l
c r e d i t o r
d a t e
a m o u n t

p a y ()

0 . . *0 . . *

0 . . *

A c c o u n t
H o m e

C re a t e ()
R e le a s e ()

A c c o u n t In t e rfa c e

d e p o s i t ()
w i th d ra w ()
c a lc u la t e i n t e re s t ()
c a lc u la t e b a la n c e ()
c a lc u la t e s e rvic e c h a rg e s ()

A c c o u n t D B In te r fa c e

s to r e ()
g e t d e t a il s ()
g e t s u m m a r y ()

B i l l

c re d it o r
d a t e
a m o u n t

p a y ()

(fro m A n a l y si s)

C u s t o m e r
(f ro m A n a l y si s)

A c c o u n t

c u s t o m e r
/ b a la n c e

d e p o s it ()
w i t h d ra w ()
< < p o l y m o rp h ic > > c a l c u la t e i n t e re s t ()
c a l c u la t e b a la n c e ()
< < p o l y m o rp h ic > > c a l c u la t e s e rvi c e c h a rg e s ()

(f ro m A n a l y si s)

0 . . *0 . . *

1 . . *1 . . *

150

The Implementation View

• Describes the organization of static software
“modules”
– e.g. source code, data files, components

• Describes packaging and layering
• Addresses configuration management

– E.g. the release number, the business and
development owners

76

151

Process View

• Addresses dynamic and concurrent behavior

Activities of processes and/or lightweight
threads
Deadlock, livelock, race conditions, mutual
exclusion
Scalability
Performance
Fault Tolerance

152

Deployment View

• Describes how runtime components are
mapped to the underlying hardware and
software environment

• Addresses issues such as deployment,
installation, system-level optimisation and
performance

77

153

Use-Case View

• A “binding” view, used to drive and
validate all other views in the model

• Initially used to formulate other views
• Later, scenarios will be used to validate and

test these views

Use Case Model

154

Use Case Driven Development
• Use cases can, and are used to drive forward the software

development process
• They are a common point of reference and agreement

between stakeholders.
• Use cases specify the functional requirements from a user-

centered perspective, addressing the functional behaviours
they actually require

• They provide a ideal basis for classic validation and
verification (V&V) activities, against requirements:
– Validation : Are we building the right system?
– Verification : Are we building the system right?

78

155

V&V Activities

• Validation
– A use case model is realized by a design model
– A use case model is implemented by an

implementation model
• Verification

– A use case model is verified by a test suite.

156

Analysis and Design

• Use cases are realized using Object-
Oriented architectural models

• The use case maps to a conceptual construct
called a Collaboration.

collaboration

classes

Use case

<<realizes>>

<<trace>>

79

157

Collaborations
• A collaboration is a UML™ construct that

represent a “society” of classes, objects,
packages and other modeling elements that
realize the use case.

• The collaboration encapsulates:
– Static modeling elements – these specify how

the system is actually partitioned.
– Dynamic modeling elements – this specifies

how the architecture behaves in order to meet
the requirements specified in the use case.

158

Collaboration Issues

• Paradigm Mismatch : use cases are primarily
functional requirements, how does this map
cleanly to an object model?

• Inexperienced analysts/designers may translate use
cases into systems with “functional stripes” not
object-oriented ones!

• Requires a body of guidelines to facilitate and
guide the mapping process

• e.g. CRC cards, Anthropomorphism,
Brainstorming, Verb-Noun finding

80

159

Implementation

• The object architecture is then mapped to
executable artifacts that will compose the actual
running system

• Typically there is a strong correspondence
between the object architecture and the code (and
hence traceability back to the use cases).

• Other issues that may also effect the mapping:
– Deployment configuration
– Vendor and Environmental Constraints
– Performance, Capacity, Security, Availability

160

Testing

• Use cases drive the development of functional test cases
• A single use case is used to create a suite of test cases
• Each scenario maps to a specific test case:

– The primary scenario represents the “ideal outcome”, the probable
path of success

– This is typically modelled as a positive test case
– The secondary scenarios capture variant, exceptional and error

based event flows
– These may be used to model variant positive or negative test cases

81

161

Test Case Generation

• To generate a test case, we reason specifically
about use case instances (i.e. a specific
behavioural path through the use case type)

• Type-based information, such as preconditions
based on state, and actor input have to be realized
with specific values.

• All the abstract information in the use case must
be realized with actual concrete values (using
classic data ranging techniques) and behaviour
from the implementation model.

162

Stepwise Testing

• Each step in a test case, corresponds to a
step in a scenario

• A step, when used in a test procedure is
typically assigned a value of:
– Pass : the step completed as expected
– Warning : the step completed but there are

results that require further analysis
– Fail : the step failed, and the test case was

halted at that point

82

163

A Simple Test Template
• Test Case Name: <This is a name assigned to a primary or

secondary scenario>
• Use Case : <The originating use case>
• Setup : <describe the environmental setup steps>
• Teardown : <describe how to “clean up” the environment

after the test>
• Step : For Each Step, describe the following

– Step ID : <the test id for the step>
– Description : <the behaviour that the step should exhibit>
– Status : <Pass | Warning | Fail>

• Overall Status : <Pass | Warning | fail>

164

Test Case Interactions

• Testing all the possible interactions of test cases is
next to impossible within any normal human
lifespan

• Common patterns of interaction (usually
determined by preconditions on a use case or
shared data in the object model) should be
captured

• These can be tested by combining test cases
derived from different use cases into a single test
suite.

83

165

What is Requirements
Traceability?

• The ability to track relationships between
requirements and their realizations in other
parts of the development process such as
design, implementation and test cases.

• These relationships are utilized to manage
change effects by establishing a traceable
relationship between a requirements and its
realizations

166

IEEE Definitions (1990)
• "The degree to which a relationship can be established between two or

more products of the development process, especially products having
a predecessor-successor or master-subordinate relationship to one
another; for example, the degree to which the requirements and design
of a given software component match." (IEEE 610.12-1990 §3)

• "The degree to which each element in a software development product
establishes its reason for existing; for example, the degree to which
each element in a bubble chart references the requirement it satisfies."
(IEEE 610.12-1990 §3)

84

167

Use Case Traceability

• Use cases “bind” the core workflows :
Requirements, Analysis, Design, Implementation
and Test, through a “trace” dependency

• A use case in the requirements is traceable to a
collaboration of classes in the analysis and design
models.

• These in turn are trace to actual implementation
components.

168

Types of Traceability

• There are two main Traceability Types
• Explicit Traceability – a dependency explicitly

established by the development team
– e.g. “Customer wants to pay with credit card” is an

elicited requirement that can be traced to the Make
Payment use case.

• Implicit Traceability – an implicit consequence of
an explicit traceability relationship or a
consequence of the modeling / development
paradigm
– e.g. A society of uml modeling elements can be traced

to a Collaboration. A collaboration can be traced to a
use case.

85

169

Other Traceable Properties

• Action Items

• References

• Assumptions

• Glossary Terms

170

What Should be Traced?

Here are some key examples:

• Stakeholder requirements to use cases
• Use cases to design and implementation

models
• Use cases to test suites
• Implementation models to test suites

86

171

Part VI

Extreme Programming
and

Agile Modeling

http://www.agilemodeling.com/essays/agileModelingXP.htm

172

eXtreme Programming (XP)
http://www.extremeprogramming.org/

• A lightweight software methodology
– Few rules and practices or ones which are easy to

follow
– Emphasizes customer involvement and promotes

team work
– See XP’s rules and practices at

http://www.extremeprogramming.org/rules.html

87

173

XP Project Lifecycle

174

eXtreme Programming (XP) Map
http://www.extremeprogramming.org

88

175

XP Iteration Planning

176

XP Unit Testing

89

177

Agile Modeling & XP
http://www.agilemodeling.com/, http://www.agilemodeling.com/resources.htm

• Practices-based software process whose scope is to describe
how to model and document in an effective and “agile”
manner

• One goal is to address the issue of how to apply modeling
techniques on software projects taking an agile approach such
as:
– eXtreme Programming (XP)
– Dynamic Systems Development Method (DSDM)
– SCRUM
– etc.

• Using modeling throughout the XP lifecycle
– http://www.agilemodeling.com/essays/agileModelingXPLifecycl

e.htm

178

Part VII

Agile Software Development

90

179

“Agile” Methodologies

See Agile Project Development Methodology at Work:
http://www.thoughtworks.com/library/agileEAIMethods.pdf
http://www.thoughtworks.com/library/newMethodology.pdf

180

Part VIII

Roles and Types of Standards

91

181

Standards

ISO 12207
http://www.acm.org/tsc/lifecycle.html
http://www.12207.com/

IEEE Standards for Software Engineering Processes
and Specifications

http://standards.ieee.org/catalog/olis/se.html
http://members.aol.com/kaizensepg/standard.htm

182

Part IX

Conclusion

92

183

Course Assignments
• Individual Assignments

• Reports based on case studies

• Project-Related Assignments
• All assignments (other than the individual assessments) will

correspond to milestones in the team project.
• As the course progresses, students will be applying various

methodologies to a project of their choice. The project and related
software system should relate to a real-world scenario chosen by each
team. The project will consists inter-related deliverables which are
due on a (bi-) weekly basis.

• There will be only one submission per team per deliverable and all
teams must demonstrate their projects to the course instructor.

• A sample project description and additional details will be available
under handouts on the course Web site.

184

Course Project
• Project Logistics

• Teams will pick their own projects, within certain constraints: for instance,
all projects should involve multiple distributed subsystems (e.g., web-based
electronic services projects including client, application server, and
database tiers). Students will need to come up to speed on whatever
programming languages and/or software technologies they choose for their
projects - which will not necessarily be covered in class.

• Students will be required to form themselves into "pairs" of exactly two (2)
members each; if there is an odd number of students in the class, then one
(1) team of three (3) members will be permitted. There may not be any
"pairs" of only one member! The instructor and TA(s) will then assist the
pairs in forming "teams", ideally each consisting of two (2) "pairs", possibly
three (3) pairs if necessary due to enrollment, but students are encouraged to
form their own 2-pair teams in advance. If some students drop the course,
any remaining pair or team members may be arbitrarily reassigned to other
pairs/teams at the discretion of the instructor (but are strongly encouraged to
reform pairs/teams on their own). Students will develop and test their
project code together with the other member of their programming pair.

93

185

Readings
• Readings

• Slides and Handouts posted on the course web site
• Documentation provided with Rational RequisitePro
• Documentation provided with business and application modeling tools

(e.g., Popkin Software Architect)
• SE Textbook: Chapters 3-8 & 18

• Project Frameworks Setup (ongoing)
• As per references provided on the course Web site

• Individual Assignment
• See Session 3 Handout: “Assignment #2”

• Team Assignment
• See Session 2 Handout: “Team Project Specification” (Part 1)

186

Next Session:
Risk Management in Software Engineering Projects

• Project Planning and Estimation
• Cooperative Roles of Software Engineering

and Project Management
• Developing Risk Response Strategies
• Risk Management in Agile Processes
• Agile Project Planning

