
Copyright Rational Software 2003 http://www.therationaledge.com/content/jun_03/f_umlintro_db.jsp

UML basics: An introduction to the Unified
Modeling Language

by Donald Bell

IBM Global Services

Way back in the late twentieth century -
- 1997 to be exact -- the Object
Management Group (OMG) released
the Unified Modeling Language (UML).
One of the purposes of UML was to
provide the development community
with a stable and common design
language that could be used to develop
and build computer applications. UML
brought forth a unified standard
modeling notation that IT professionals
had been wanting for years. Using
UML, IT professionals could now read
and disseminate system structure and
design plans -- just as construction
workers have been doing for years
with blueprints of buildings.

It is now the twenty-first century --
2003 to be precise -- and UML has
gained traction in our profession. On 75 percent of the resumes I see,
there is a bullet point claiming knowledge of UML. However, after speaking
with a majority of these job candidates, it becomes clear that they do not
truly know UML. Typically, they are either using it as a buzz word, or they
have had a sliver of exposure to UML. This lack of understanding inspired
me to write this quick introduction to UML 1.4. When you are finished
reading you will not have enough knowledge to put UML on your resume,
but you will have a starting point for digging more deeply into the
language.

A little background

As I mentioned, UML was meant to be a unifying language enabling IT
professionals to model computer applications. The primary authors were

http://bronze.rational.com:8169/content/jun_03/rdn.jsp

Jim Rumbaugh, Ivar Jacobson, and Grady Booch, who originally had their
own competing methods (OMT, OOSE, and Booch). Eventually, they joined
forces and brought about an open standard. (Sound familiar? A similar
phenomenon spawned J2EE, SOAP, and Linux.) One reason UML has
become a standard modeling language is that it is programming-language
independent. (UML modeling tools from IBM Rational are used extensively
in J2EE shops as well in .Net shops.) Also, the UML notation set is a
language and not a methodology. This is important, because a language,
as opposed to a methodology, can easily fit into any company's way of
conducting business without requiring change.

Since UML is not a methodology, it does not require any formal work
products (i.e., "artifacts" in IBM Rational Unified Process® lingo). Yet it
does provide several types of diagrams that, when used within a given
methodology, increase the ease of understanding an application under
development. There is more to UML than these diagrams, but for my
purposes here, the diagrams offer a good introduction to the language and
the principles behind its use. By placing standard UML diagrams in your
methodology's work products, you make it easier for UML-proficient people
to join your project and quickly become productive. The most useful,
standard UML diagrams are: use case diagram, class diagram, sequence
diagram, statechart diagram, activity diagram, component diagram, and
deployment diagram.

It is beyond the scope of this introductory article to go into great detail
about each type of diagram. Instead, I will provide you with enough
information for a general understanding of each one and then supply more
details in later articles.

Use-case diagram

A use case illustrates a unit of functionality provided by the system. The
main purpose of the use-case diagram is to help development teams
visualize the functional requirements of a system, including the
relationship of "actors" (human beings who will interact with the system)
to essential processes, as well as the relationships among different use
cases. Use-case diagrams generally show groups of use cases -- either all
use cases for the complete system, or a breakout of a particular group of
use cases with related functionality (e.g., all security administration-
related use cases). To show a use case on a use-case diagram, you draw
an oval in the middle of the diagram and put the name of the use case in
the center of, or below, the oval. To draw an actor (indicating a system
user) on a use-case diagram, you draw a stick person to the left or right of
your diagram (and just in case you're wondering, some people draw
prettier stick people than others). Use simple lines to depict relationships
between actors and use cases, as shown in Figure 1.

Figure 1: Sample use-case diagram
Click to enlarge

A use-case diagram is typically used to communicate the high-level
functions of the system and the system's scope. By looking at our use-
case diagram in Figure 1, you can easily tell the functions that our
example system provides. This system lets the band manager view a sales
statistics report and the Billboard 200 report for the band's CDs. It also
lets the record manager view a sales statistics report and the Billboard
200 report for a particular CD. The diagram also tells us that our system
delivers Billboard reports from an external system called Billboard
Reporting Service.

In addition, the absence of use cases in this diagram shows what the
system doesn't do. For example, it does not provide a way for a band
manager to listen to songs from the different albums on the Billboard 200 -
- i.e., we see no reference to a use case called Listen to Songs from
Billboard 200. This absence is not a trivial matter. With clear and simple
use-case descriptions provided on such a diagram, a project sponsor can
easily see if needed functionality is present or not present in the system.

Class diagram

The class diagram shows how the different entities (people, things, and
data) relate to each other; in other words, it shows the static structures of
the system. A class diagram can be used to display logical classes, which
are typically the kinds of things the business people in an organization talk

about -- rock bands, CDs, radio play; or loans, home mortgages, car
loans, and interest rates. Class diagrams can also be used to show
implementation classes, which are the things that programmers typically
deal with. An implementation class diagram will probably show some of
the same classes as the logical classes diagram.The implementation class
diagram won't be drawn with the same attributes, however, because it will
most likely have references to things like Vectors and HashMaps.

A class is depicted on the class diagram as a rectangle with three
horizontal sections, as shown in Figure 2. The upper section shows the
class's name; the middle section contains the class's attributes; and the
lower section contains the class's operations (or "methods").

Figure 2: Sample class object in a class diagram

In my experience, almost every developer knows what this diagram is, yet
I find that most programmers draw the relationship lines incorrectly. For a
class diagram like the one in Figure 3,you should draw the inheritance
relationship1 using a line with an arrowhead at the top pointing to the
super class, and the arrowhead should a completed triangle. An
association relationship should be a solid line if both classes are aware of
each other and a line with an open arrowhead if the association is known
by only one of the classes.

Figure 3: A complete class diagram,
including the class object shown in Figure 2

Click to enlarge

In Figure 3, we see both the inheritance relationship and two association
relationships. The CDSalesReport class inherits from the Report class. A
CDSalesReport is associated with one CD, but the CD class doesn't know
anything about the CDSalesReport class. The CD and the Band classes
both know about each other, and both classes can be associated to one or
more of each other.

http://bronze.rational.com:8169/content/jun_03/f_UMLintro_db.jsp (4 of 11) [6/13/2003 12:58:48 PM]

A class diagram can incorporate many more concepts, which we will cover
later in this article series.

Sequence diagram

Sequence diagrams show a detailed flow for a specific use case or even
just part of a specific use case. They are almost self explanatory; they
show the calls between the different objects in their sequence and can
show, at a detailed level, different calls to different objects.

A sequence diagram has two dimensions: The vertical dimension shows
the sequence of messages/calls in the time order that they occur; the
horizontal dimension shows the object instances to which the messages
are sent.

A sequence diagram is very simple to draw. Across the top of your
diagram, identify the class instances (objects) by putting each class
instance inside a box (see Figure 4). In the box, put the class instance
name and class name separated by a space/colon/space " : " (e.g.,
myReportGenerator : ReportGenerator). If a class instance sends a
message to another class instance, draw a line with an open arrowhead
pointing to the receiving class instance; place the name of the
message/method above the line. Optionally, for important messages, you
can draw a dotted line with an arrowhead pointing back to the originating
class instance; label the return value above the dotted line. Personally, I
always like to include the return value lines because I find the extra details
make it easier to read.

Reading a sequence diagram is very simple. Start at the top left corner
with the "driver" class instance that starts the sequence. Then follow each
message down the diagram. Remember: Even though the example
sequence diagram in Figure 4 shows a return message for each sent
message, this is optional.

http://bronze.rational.com:8169/content/jun_03/f_UMLintro_db.jsp (5 of 11) [6/13/2003 12:58:48 PM]

Figure 4: A sample sequence diagram
Click to enlarge

By reading our sample sequence diagram in Figure 4, you can see how to
create a CD Sales Report. The aServlet object is our example driver.
aServlet sends a message to the ReportGenerator class instance named
gen. The message is labeled generateCDSalesReport, which means that
the ReportGenerator object implements this message handler. On closer
inspection, the generateCDSalesReport message label has cdId in
parentheses, which means that aServlet is passing a variable named cdId
with the message. When gen instance receives a generateCDSalesReport
message, it then makes subsequent calls to the CDSalesReport class, and
an actual instance of a CDSalesReport called aCDReport gets returned.
The gen instance then makes calls to the returned aCDReport instance,
passing it parameters on each message call. At the end of the sequence,
the gen instance returns aCDReport to its caller aServlet.

Please note: The sequence diagram in Figure 4 is arguably too detailed for
a typical sequence diagram. However, I believe it is simple enough to
understand, and it shows how nested calls are drawn. Also, with junior
developers, sometimes it is necessary to break down sequences to this
explicit level to help them understand what they are supposed to do.

Statechart diagram

The statechart diagram models the different states that a class can be in
and how that class transitions from state to state. It can be argued that
every class has a state, but that every class shouldn't have a statechart
diagram. Only classes with "interesting" states -- that is, classes with
three or more potential states during system activity -- should be
modeled.

As shown in Figure 5, the notation set of the statechart diagram has five
basic elements: the initial starting point, which is drawn using a solid
circle; a transition between states, which is drawn using a line with an
open arrowhead; a state, which is drawn using a rectangle with rounded
corners; a decision point, which is drawn as an open circle; and one or
more termination points, which are drawn using a circle with a solid circle
inside it. To draw a statechart diagram, begin with a starting point and a
transition line pointing to the initial state of the class. Draw the states
themselves anywhere on the diagram, and then simply connect them
using the state transition lines.

Figure 5: Statechart diagram showing the various states
that classes pass through in a functioning system

Click to enlarge

The example statechart diagram in Figure 5 shows some of the potential
information they can communicate. For instance, you can tell that loan
processing begins in the Loan Application state. When the pre-approval
process is done, depending on the outcome, you move to either the Loan
Pre-approved state or the Loan Rejected state. This decision, which is
made during the transition process, is shown with a decision point -- the
empty circle in the transition line. By looking at the example, a person can
tell that a loan cannot go from the Loan Pre-Approved state to the Loan in
Maintenance state without going through the Loan Closing state. Also, by
looking at our example diagram, a person can tell that all loans will end in
either the Loan Rejected state or the Loan in Maintenance state.

Activity diagram

Activity diagrams show the procedural flow of control between two or
more class objects while processing an activity. Activity diagrams can be
used to model higher-level business process at the business unit level, or
to model low-level internal class actions. In my experience, activity
diagrams are best used to model higher-level processes, such as how the
company is currently doing business, or how it would like to do business.
This is because activity diagrams are "less technical" in appearance,
compared to sequence diagrams, and business-minded people tend to
understand them more quickly.

An activity diagram's notation set is similar to that used in a statechart
diagram. Like a statechart diagram, the activity diagram starts with a solid
circle connected to the initial activity. The activity is modeled by drawing a
rectangle with rounded edges, enclosing the activity's name. Activities can
be connected to other activities through transition lines, or to decision
points that connect to different activities guarded by conditions of the
decision point. Activities that terminate the modeled process are
connected to a termination point (just as in a statechart diagram).

Optionally, the activities can be grouped into swimlanes, which are used to
indicate the object that actually performs the activity, as shown in Figure
6.

Figure 6: Activity diagram, with two swimlanes to indicate control
of activity by two objects: the band manager, and the reporting

tool

In our example activity diagram, we have two swimlanes because we have
two objects that control separate activities: a band manager and a
reporting tool. The process starts with the band manager electing to view
the sales report for one of his bands. The reporting tool then retrieves and
displays all the bands that person manages and asks him to choose one.
After the band manager selects a band, the reporting tool retrieves the
sales information and displays the sales report. The activity diagram
shows that displaying the report is the last step in the process.

Component diagram

A component diagram provides a physical view of the system. Its purpose
is to show the dependencies that the software has on the other software
components (e.g., software libraries) in the system. The diagram can be

shown at a very high level, with just the large-grain components, or it can
be shown at the component package level.2

Modeling a component diagram is best described through an example.
Figure 7 shows four components: Reporting Tool, Billboard Service,
Servlet 2.2 API, and JDBC API. The arrowed lines from the Reporting Tool
component to the Billboard Service, Servlet 2.2 API, and JDBC API
components mean that the Reporting Tool is dependent on those three
components.

Figure 7: A component diagram shows interdependencies of
various software components the system comprises

Click to enlarge

Deployment diagram

The deployment diagram shows how a system will be physically deployed
in the hardware environment. Its purpose is to show where the different
components of the system will physically run and how they will
communicate with each other. Since the diagram models the physical
runtime, a system's production staff will make considerable use of this
diagram.

The notation in a deployment diagram includes the notation elements used
in a component diagram, with a couple of additions, including the concept
of a node. A node represents either a physical machine or a virtual
machine node (e.g., a mainframe node). To model a node, simply draw a
three-dimensional cube with the name of the node at the top of the cube.
Use the naming convention used in sequence diagrams: [instance name] :
[instance type] (e.g., "w3reporting.myco.com : Application Server").

Figure 8: Deployment diagram. Because the Reporting Tool
component is drawn inside of IBM WebSphere, which in turn is
drawn inside of the node w3.reporting.myco.com, we know that

users will access the Reporting Tool via a browser running on their
local machine, and connecting via HTTP over their company's

intranet.
Click to enlarge

The deployment diagram in Figure 8 shows that the users access the
Reporting Tool by using a browser running on their local machine and
connecting via HTTP over their company's intranet to the Reporting Tool.
This tool physically runs on the Application Server named
w3reporting.myco.com. The diagram shows the Reporting Tool component
drawn inside of IBM WebSphere, which in turn is drawn inside of the node
w3.reporting.myco.com. The Reporting Tool connects to its reporting
database using the Java language to IBM DB2's JDBC interface, which then
communicates to the actual DB2 database running on the server named
db1.myco.com using native DB2 communication. In addition to talking to
the reporting database, the Report Tool component communicates via
SOAP over HTTPS to the Billboard Service.

Conclusion

Although this article provides only a brief introduction to Unified Modeling
Language, I encourage you to start applying the information you have
learned here to your own projects and to dig more deeply into UML. There
are several software tools that help you to integrate UML diagrams into
your software development process, but even without automated tools,
you can use markers on a whiteboard or paper and pencils to draw your
UML diagrams and still achieve benefits.

Notes

1 For more information on inheritance and other object-oriented principles, see
http://java.sun.com/docs/books/tutorial/java/concepts/inheritance.html

2 The phrase component package level is a programming language-neutral way of referring
to class container levels such as .Net's namespaces (e.g., System.Web.UI) or Java's
packages (e.g., java.util).

Resources

http://www.uml.org -- The official UML Web site.
http://www.rational.com/uml/resources/documentation/index.jsp --Offers
several different versions of the actual UML specification.
http://www.rational.com/rose --Information on IBM Rational Rose,® A
commercial UML modeling tool.
http://www.rational.com/xde --Information on IBM Rational XDE,® a
commercial UML modeling tool that is integrated with IBM's Eclipse
development platform.
http://argouml.tigris.org --Information on Argo UML, an .open source UML
modeling tool built in Java.
http://uml.sourceforge.net/index.php -- Information on Umbrello UML
Modeller, an open source UML modeling tool for KDE.

For more information on the products or services discussed in this
article, please click here and follow the instructions provided.
Thank you!

Copyright Rational Software 2003 | Privacy/Legal Information

	UML basics: An introduction to the Unified Modeling Language

