
1

1

Software Engineering
G22.2440-001

Session 7 – Sub-Topic 2
UML Review

Dr. Jean-Claude Franchitti

New York University
Computer Science Department

Courant Institute of Mathematical Sciences

2

Diagrams Reviewed ...

• A review of the various notations (use-case,
activity, class, sequence, collab, component,
etc…)

• And a close look at more “exotic” notations

2

3

Use Cases: Scenario based
requirements modeling

• Recommended: UML distilled...

4

Use Cases

Use case
• specifies the behavior of a system
• sequence of actions to yield an observable result

of value to an actor
• Capture the intended behavior (the what) of the

system omitting the implementation of the
behavior (the how)

• customer requirements/ early analysis

3

5

What is a use case?

• Description of a sequence of actions, including
variants (specifies desired behavior)

• Represents a functional requirement on the system
• Use case involves interaction of actors and the

system

Market Analysis

Financial Officer

6

Use cases: terms and concepts

• Unique name
• Sequence of actions (event flows)

– textual (informal, formal, semi fomal)
Main flow of events: The use case starts when the system

prompts the Customer for a PIN number. The Customer can
now enter a pin number...

– interaction diagrams

4

7

Actors

• Role that a user plays with respect to the
system

• Actors carry out use cases
– look for actors, then their use cases

• Actors do not need to be humans!
• Actors can get value from the use case or

participate in it

8

Actors

• Actors can be specialized

• connected to use cases only by association
• association = communication relationship (each

one sending, or receiving messages)

Officer

Financial Officer

5

9

Use case description

• Generic, step-by-step written description of
a use case’s event flow

• Includes interactions between the actor(s)
and a use case

• May contain extension points
• Clear, precise, short descriptions

10

Example use case description

• Capture deal
1. Enter the user name & bank account
2. Check that they are valid
3. Enter number of shares to buy & share ID
4. Determine price
5. Check limit
6. Send order to NYSE
7. Store confirmation number

6

11

Organizing Use Cases

• Generalization
• Use/Include
• Extend

12

Generalization relationship

• child use case inherits
behavior and meaning of the
parent use case

• child may add or override the
parent’s behavior

• child may substitute any
place the parent appears

Validate user

Check password Retinal scan

7

13

Extends relationship

• Allows to model the part of a use case the
user may see as optional

• Allows to model conditional subflows
• Allows to insert subflows at a certain

point, governed by actor interaction

• represented by an extend dependency
• extension points (in textual event flows)

Limit exceeded

Capture deal

<<extend>>

14

Extends relationship

• Allows to model the part of a use case the user
may see as optional

• Allows to model conditional subflows
• Allows to insert subflows at a certain point,

governed by actor interaction
Capture the base use case
For every step ask

what could go wrong
how might this work out differently

Plot every variation as an extension of the
use case

Limit exceeded

Capture deal

<<extends>>

8

15

Example: extension points

• Capture deal
1. Enter the user name & bank account
2. Check that they are valid
extension point: reenter data in case they are invalid
3. Enter number of shares to buy & share ID
4. Determine price
5. Check limit
6. Send order to NYSE
7. Store confirmation number

16

Uses/Includes relationship

• Used to avoid describing
the same flow of events several times, by putting the
common behavior in a use case of its own

• Avoids copy-and-paste of parts of use case
descriptions

ValuationAnalyze risks

<<uses>>

Price details

<<uses>

9

17

Comparing extends/uses

• Different intent
– extends

• to distinguish variants
• set of actors perform use case and all extensions
• actor is linked to “base” case

– uses/includes
• to extract common behavior
• often no actor associated with the common use case
• different actors for “caller” cases possible

18

A use case diagram

Valuation

Limit exceeded

Analyze risks

<<uses>>

Trader
Price details

<<uses>

Capture deal

<<extends>>

Sales system

10

19

Use Case Diagrams (Functional)

Diagram: UML Distilled, Martin Fowler, Kendall Scott, 1997, Addison-Wesley, Copyright 1997, Addison-Wesley

20

Properties of use cases

• Granularity: fine or course
• Achieve a discrete goal
• Use cases describe externally required

functionality
• Often: Capture user-visible function

11

21

When and how

• Requirements capture - first thing to do
• Use case: Every discrete thing your

customer wants to do with the system
– give it a name
– describe it shortly (some paragraphs)
– add details later

22

Class diagrams

• Overview
• Class diagram essentials
• Generalization

12

23

Class diagram

• Central for OO modeling
• Shows static structure of the system

– Types of objects
– Relationships

• Association
• Subtypes

24

Perspectives

• Conceptual
– Shows concepts of the domain
– Independent of implementation

• Specification
– Interfaces of software (types)
– Often: Best perspective

• Implementation
– Structure of the implementation
– Most often used

13

25

Class

• Set of objects
• Defines

– name
– attributes
– operations

Task
startDate
endDate

setStartDate (d : Date = default)
setEndDate (d : Date = default)
getDuration () : Date

26

Class versus type

• OO type
= protocol understood by an object
= set of methods that are implemented

• Class =
implementation oriented construct
– implements one or more types

• Type: Used for specification

14

27

Association

• Relationship between instances of classes
A student is registered for a course
A professor is teaching the course

28

Class diagram example

*

Light

off()
on()

1

1

Heater

1

1
Cooler

1

Environmental Controller

Define_climate()
Terminate_climate()

*

1

1

1

1

1

SystemLog

Display()
RecordEvent()

Actuator

startUp()
shutDown()

Temperature

15

29

Rules of thumb

• One class can be part of several diagrams
• Diagrams shall illustrate specific aspects

– Not too many classes
– Not too many associations
– Hide irrelevant attributes/operations

• Several iterations needed to create
diagram

30

Class diagrams

• Overview
• Class diagram essentials
• Generalization

16

31

Association
• Relationship between classes

• Order comes from one customer
Customer may make several orders

Order
dateReceived
isPrepaid
number :
String
price : Money

dispatch()

Customer
name
address

creditRating()
1** 1

hasCustomer

32

Naming associations

• Avoid meaningless names
– associated_with
– has
– is_related_to

• Name is often a verb phrase
– has_part
– is_contained_in

17

33

Roles

• Association has two roles
• Role is a direction on the

association
• Role

– Explicit labeled
– Implicitly named after the

target class

Order
dateReceived
isPrepaid
number :
String
price : Money

dispatch()

OrderLine
quantity
price
isSatisfied

*

1

*

1

line item

34

Role names

• Role = identifies one end of an association

• Role name is obligatory for associations between
objects of the same class

Name
Address

Company
Works for

Name
Insurance no.
Address

Person

employer employee

Name
Insurance no.
Address

Person
Manager

Supervises Salesperson

18

35

Multiplicity

• Indicates how many object can participate
in the relationship

Order
dateReceived
isPrepaid
number :
String
price : Money

dispatch()

Customer
name
address

creditRating()
1** 1

36

Multiplicity (2)

• *: 0..infinity
• 1: 1..1
• 0..1
• 1..100
• 2,4,5

19

37

• Association represents responsibilities

• Method in Customer returning Orders
Method in Order that returns the Customer that made the
order

Specification perspective

Customer

name
address

creditRating()
* 1

Order

date
Received
isPrepaid
number :
String
price : Money

1*

38

Navigability

• Arrows indicate navigability

• Order has to be able to determine the
Customer

• Customer does not know Orders
• Bi-directional association: Navigability in

both directions (inverse roles)

Customer
name
address

creditRating()
* 1

Order
date
Received
isPrepaid
number :
String
price : Money

1*

20

39

Summary: Basic notation for
associations

Class B Class B
Association name

role_Arole_B

Order Part
Contains

included_inmade_up_of

40

Naming conventions

• Naming conventions allow
often to infer the names of
messages from the diagram

class Order {
public Enumeration
orderLines();
public Customer customer();
}

Order
dateReceived
isPrepaid
number :
String
price : Money

dispatch()

OrderLine
quantity
price
isSatisfied

*

1

*

1

line item

21

41

Example: Hockey statistics

Class

42

Association classes

• Useful if
– attributes don’t belong to any one class but to

the association

Priority
Access rights

User
Authorized on Workstation

Authorization

Start session

Directory

22

43

Contents

• Attributes and operations
• Aggregation
• Inheritance
• Interfaces and abstract classes
• Advanced association concepts
• When and how

44

Classes and objects

Task
startDate : Date = 1.1.98
endDate : Date = 1.1.98

setStartDate (d : Date = default)
setEndDate (d : Date = default)

Assignment 1: Task
startDate = 1.2.98
endDate = 23.2.98

Assignment 1: Task
startDate = 1.2.98
endDate = 23.2.98

Assignment 1: Task
startDate = 1.2.98
endDate = 23.2.98

•Objects show
•Object name
•Class name (optional)
•Attribute value (optional)

23

45

Example

OrderSalesperson

line2:

Line

CustInfo

line1:

line3:

line2:

line4:

line1:

ace furniture:

order121:

harmon assoc:

order122:

curtisClyde:

Includes

ContainsGenerates

Object diagrams:

Class diagram:

46

Attributes

• Conceptual: Indicates that customer
have names

• Specification: Customer can tell you
his/her name and set it

• Implementation: An instance variable
is available

• UML syntax:
<attribute name>: <Data type>

Customer
name
address

creditRating

24

47

Difference between
attribute and association

• Conceptual perspective
– not much of a difference!

• Specification/implementation perspective
– Attribute stores values NOT references

• no sharing of attribute values between instances!

• Often: Stores simple objects
– Numbers, Strings, Dates, Money objects

48

Operations

• Processes that can be carried out on instances
• Correspond to messages of the class
• Conceptual perspective

– principal responsibilities
• Specification perspective

– public messages = interface of the class
• Normally: Don’t show operations that manipulate

attributes

25

49

UML syntax for operations

<visibility> <name> (<parameter list>) : <return-type-
expression>

+ assignAgent (a : Agent) : Boolean

– visibility: public (+), protected (#), private (-)
• Interpretation is language dependent
• Not needed on conceptual level

– name: string
– parameter list: arguments (syntax as in attributes)
– return-type-expression: language-dependent specification

50

Types of operations

• Query = returns some value without
modifying the class’ internal state

• Modifier = changes the internal state
• Queries can be executed in any order
• Getting & setting messages

– getting: query
– setting: modifier

26

51

Contents

• Attributes and operations
• Inheritance
• Aggregation
• Interfaces and abstract classes
• Advanced association concepts
• When and how

52

Subclassing

• Class inherits features from (more than) one
superclass vehicle

land vehicle water vehicle

car amphibian
vehicle

ship

27

53

Subclassing

• Attributes & operations of an ancestor class are
inherited to the subclass

• Extension: adding of new attributes or operations
• Restriction: additional restrictions on ancestor

attributes

54

Perspectives

• Conceptual: Subset relationship
• Specification: Subtype conforms to

supertype interface
• Implementation: Implementation

inheritance, subclassing

28

55

Contents

• Attributes and operations
• Inheritance
• Aggregation
• Interfaces and abstract classes
• Advanced association concepts
• When and how

56

Aggregation

• Special form of association
• Components are parts of aggregated object

– Car has an engine and wheels as its part

• Typical example:
– parts explosion
– organizational structure of a company

29

57

Notation for aggregation

Class A

Class CClass B Class C

Class B

Class A

or

58

Example: Aggregation

Person

Company DepartmentUnit Group

works for

30

59

Aggregation and composition
• Composition

– Components belong only to one
whole

– Parts live and die with the whole
• cascading delete
• also needed for 1..1 associations

– The players can be aggregated to the
Flames
BUT
they are not killed when the Flames
disappear

Order

Customer
Adress

* 1

*1

Aggregation Composition

LineItem

60

Aggregation association

• Transitive
• Antisymmetric: Object may not be directly

or indirectly part of itself

31

61

Recursion

• Directed path of aggregation associations
from a class to itself

• Variable aggregation: finite number of
levels, number of parts variable (example:
company)

62

Example: recursive aggregation

Item

Icon Container

Class diagram: Object diagram:

a: Container

b: Icon

d: Icon e: Icon

c: Container

32

63

Example: Recursive aggregation

Program

Class

Inner class

*

64

Rules for using aggregation

• Distinction between association and aggregation
often rather matter of taste than difference in
semantics

• Aggregation IS association
• Aggregate is inherently sum of its parts
• Chains of aggregate links may not form cycles
• Composition is appropriate when each part is

owned by one object, part has not have an
independent life from its owner

33

65

Chaining of operations

• Chaining: Applying an operation to a net of
objects

• Often for: copy, save, redo, delete, print

Person Document

copy

Paragraph

copy

Character

copy

owns
copy copy

66

Delegation & aggregation

vehicle

land vehicle water vehicle

car amphibian
vehicle

ship

vehicle

VehicleFeature

LandFeature WaterFeature

34

67

Most important feature &
aggregation

vehicle

land vehicle big vehicle

car train ship

vehicle

Size

land vehicle

car train

68

Generalization based on
different dimensions

vehicle

land vehicle

car train

small car

……..

big car small train big train

35

69

Contents

• Attributes and operations
• Inheritance
• Aggregation
• Types, interfaces and abstract classes
• Advanced association concepts
• When and how

70

OO types
• Stereotype <<type>> specifies

– domain of objects
– operations (not their implementation) applicable to

the objects of this type
Collection
<<type>>

Set

addElement(Object)
removeElement(Object)
testElement(Object) : Boolean

<<type>> HashTableSet
elements : HashTable

addElement(Object)
removeElement(Object)
tes tElement(Object) : Boolean
setTableSize(Integer)

<<implementation class>>

• Stereotype
<<implementation
class>>

physical data
structures and
methods of an
object

36

71

Types and Roles

• interfaces that belong to a class represent
different roles

• You can explicitly state the role a class
presents to another class:

Employee

getEmploymentHistory()
getCompensation()
getBenefits()

<<interface>>

Person Company

1.. *1..*

e: Employee

72

Static and dynamic types

• Static types: the type of an object doesn’t
change over time, e.g. classes

• Dynamic types: object can gain and lose
types during lifetime

• Example: Candidate, Employee, Retiree

37

73

Abstract class

• has no instances
• organizes attributes & operations
• often: facilitates code reuse
• abstract operation: implementation in

concrete subclasses
• can contain concrete implementations

74

Abstract class in UML

• Name in italic and/or {abstract} constraint
Windows Window

toFront()
toBack()

X11 Window

toFront()
toBack()

Mac Window

toFront()
toBack()

Window

{abstract}
toFront()
toBack()

Text
Editor

Dependency

38

75

Interfaces in UML (1)

• Stereotype <<interface>>
• Lollipops

InputStream
{abstract}

OrderReader
<<interface>>

DataInput

DataInputStream

Generalization

Realization

Dependency

76

Interfaces in UML (2)

OrderReader

DataInputStream
Dependency

DataInput

InputStream

Interface

39

77

Parameterized classes

• Parameterized class = template
• Often used for collections in typed languages
• Not needed in conceptual modeling

– Collections are hidden in multiplicity

Set

insert (newArg : T = default)
remove (arg : T = default)

T

78

Bound element

• Using a parameterized class

Set <Employees>

EmployeeSet

Set

insert(T)
remove(T)

<<bind>>
<Employee>

Bound Element

Refinement

Template Class

Binding for
Parameter

T

40

79

Contents

• Attributes and operations
• Inheritance
• Aggregation
• Interfaces and abstract classes
• Advanced association concepts
• When and how

80

Constraints

• Basic constructs specify important
constraints
– but: can not capture everything

• Additional constraints: in braces { }
{UofC has always to be better than UofA}
{immutable}
{read only}

41

81

Example

Person Committee

1 *

Chair-of

** **

Member-of

1 *

{subset}

82

Collections for multi-valued roles

• Multiplicity > 1
– Set

• no target object appears more than once
• not ordered

• Add constraint to change that
{ordered} {bag}
{ordered bag} {hierarchy}
{dag} Window Screen

{ordered}

Visible on

42

83

Association classes

• Useful if
– attributes don’t belong to any one class but to the

association

Priority
Access rights

User
Authorized on Workstation

Authorization

Start session

Directory

* *

84

Remodeling: association classes

Workstation

Directory

Priority
Access rights

User Authorization

Start session

* 11 1

43

85

Qualified associations (1)

• UML equivalent for Hashtable

– Within a ToDoList, you mustn’t have two tasks
with the same name

class ToDoList {
public Task getTask(String name);
public void addTask(String name, Task aTask);
…}

– Multiplicity *: Multiple task with one name

o1 44
o2 56
o3 87
o4 99

Task ToDoList
name : String

0..1
name : String

0..1

86

Qualified association (2)

• Improves semantic accuracy
• Makes navigation paths understandable

Stock
exchange

Company

StockID

Stock
exchange

StockID

Company

noted

noted

not
qualified

qualified*

44

87

Qualified association (3)

• Qualification splits a set of objects in
disjunctive parts

ABC Inc. President Roger Rabbit
ABC Inc. Vice President Finances Joe Savemoney
ABC Inc. Member of board John Walker
ABC Inc. Member of board Susi Sanssouci
ABC Inc. Member of board Karl Eichbaum
XYZ Inc. President Donald Duck

PersonCompany Function
Organization

88

Derived associations and
attributes (1)

• Calculated based on other attributes and
associations

• Specification: Shows constraint not what is stored
and what is calculated

45

89

Derived associations and
attributes (2)

Account
/balance:Money

Entry
amount:Money

Summary
Account

Detail
Account

Entries role is derived using
components.entries

/ entries
components
{hierarchy} **

10..1

Derived Attribute Derived Role

Note

90

Class
Diagram

(Structural)

Diagram: UML Distilled, Martin Fowler, Kendall Scott, 1997, Addison-Wesley, Copyright 1997, Addison-Wesley

• Use: Describe the
static structure of a
system
– Hierarchy
– Containment
– Inheritance
– Calling
– Object Types

46

91

Contents

• Attributes and operations
• Inheritance
• Aggregation
• Interfaces and abstract classes
• Advanced association concepts
• When and how

92

When to use class diagrams

• Class diagrams are the backbone of OO
development approaches

• Don’t use all the notations
– start with simple stuff

• Take the perspective into account
– not to many details in analysis
– specification often better than implementation

• Concentrate on key areas
– better few up-to-date diagrams than many obsolete

models

47

93

Creating a class diagram

• Start simple
– major classes & obvious associations

• Then add
– Attributes
– Multiplicity
– Operations

94

Rules of thumb

• One class can be part of several diagrams
• Diagrams shall illustrate specific aspects

– Not too many classes
– Not too many associations
– Hide irrelevant attributes/operations

• Several iterations needed to create
diagram

48

95

Avoid “Heavy” classes
• Controller does everything
• Other classes: Data encapsulation only

A

B

D

C

HeavyControler

doIt()

96

Contents

• State diagrams: an example
• Interaction diagrams

– Sequence diagrams
– Collaboration diagrams

49

97

Example

• A zoo consists of a set of cages.
• Every cage is the home of at least 2 animals.
• Cages are located besides each other.
• Every cage has at most one left neighbor and at most one

right neighbor.
• Animals can be reptiles, insects, and mammals.
• Mammals are elephants, monkeys, and tigers.
• Monkeys eat bananas.
• Tigers prefer meat.

98

Traffic lights
• Develop a state transition diagram for the 4 traffic lights at a crossing.

Make sure that the lights never allow traffic to move east to west (or west
to east) at the same time as they allow traffic to move north to south (or
south to north). Give meaningful names to all state transitions.

50

99

Contents

• State diagrams: an example
• Interaction diagrams

– Sequence diagrams
– Collaboration diagrams

100

Interaction diagrams

• describe how groups of objects interact
• typically describe the scenario of a single use case
• show

– example objects
– messages between them
– timeline

51

101

Sequence diagrams

• shows object interactions arranged in time
sequence
– objects (and classes)
– message exchange to carry out the scenarios

functionality
• time line

102

Objects in UML
• Rectangle
• Name (specific or general) of object is underlined

– name
– name & class
– class (anonymous object)

History 101-Section 2
Object Name

History 101-Section 7: CourseOffering
Object Name and Class

: CourseOffering
Class Name

52

103

Timelines

• Messages point from client to supplier
: Professor

CourseManager
Math 101 - Section
1 : CourseOffering

Add professor (Professor)

104

Example: Sequence diagram

course form :
CourseForm

theManager :
CurriculumManager

aCourse :
Course: Registrar

1 : set course info

2 : process
3 : add course

4 : new course

53

105

an Order
Entry window

an Order

an Order
Line

a Stock Item

1: prepare()
2: * prepare()

3: check()

4: [check = true] remove() 5: needsToReorder()

Iteration Condition

Self
delegation

X
Object deletion

Asynchronous
Message

Sequence diagrams: More details

Activation

Object
creation

106

Asynchronous messages

• Do not block the caller
• Can do 3 things:

– Create a new thread
– Create a new object
– Communicate with a thread that is already

running

54

107

Boundary classes

• Handle communication between system and
outside world
– e.g. user interface or other system

• Boundary classes in interaction diagrams:
– capture interface requirements
– do NOT show how the interface will be

implemented

108

Complexity and
sequence diagrams

• KISS
= keep it small and simple

• Diagrams are meant to make things clear
• Conditional logic

– simple: add it to the diagram
– complex: draw separate diagrams

55

109

Contents

• State diagrams: an example
• Interaction diagrams

– Sequence diagrams
– Collaboration diagrams

110

Sequence
Diagram

(Behavioral)

Diagram: UML Distilled, Martin Fowler, Kendall Scott, 1997, Addison-Wesley, Copyright 1997, Addison-Wesley

• Use: Describing
behavior across
several objects of
a use-case or
scenario

56

111

Sequence Diagram with
Concurrency

Diagram: UML Distilled, Martin Fowler, Kendall Scott, 1997, Addison-Wesley, Copyright 1997, Addison-Wesley

112

Collaboration diagrams

• Show objects and messages
• Sequence of messages determined by

numbering
– 1, 2, 3, 4, …..
– 1, 1.1, 1.2, 1.3, 2, 2.1, 2.1.1, 2.2, 3

(shows which operation calls which other
operation)

57

113

Collaboration diagram basics

: ProfessorCourseManager

Math 101 - Section 1 : CourseOffering

1 : Add professor (Professor)

114

Collaboration diagram example

: Registrar

course form : CourseForm

theManager : CurriculumManageraCourse : Course

4 : new course

3 : add course

1 : set course info
2 : process

58

115

Collaboration Diagram
(Behavioral)

Diagram: UML Distilled, Martin Fowler, Kendall Scott, 1997, Addison-Wesley, Copyright 1997, Addison-Wesley

• Use:
Describing
behavior across
several objects
of a use-case or
scenario

116

Comparing sequence &
collaboration diagrams

• Sequence of messages more difficult to
understand in collaboration diagrams

• Layout of collaboration diagrams may show
static connections of objects

• Complex control is difficult to express

59

117

State diagrams

• Design document
• State diagrams

118

Main processes of the team
assignment

requirements
analysis

design
process coding testing

Used technique:
Use cases

Used technique:
UML class diagrams,
UML sequence diagrams,
UML activity diagrams
UML state diagrams

Used language:
Java

requirements
document

problem
description design document

60

119

Refined design processes of the
team assignment

Techniques:
UML class diagrams,
UML sequence
diagrams,
UML state diagrams

requirements
analysis

design
process coding testing

create system
architecture

specify component
interfaces

develop
component design

120

Design document

• System architecture: class diagrams
• Component interfaces

– class diagrams (interfaces, types)
– sequence diagrams

• Component design
– class diagrams
– state diagrams
– sequence diagrams

61

121

Design document - aim

• Basis for implementation
• provides different views

– other developers: architecture, component
interfaces

– implementation: straightforward
• Allows quick overview over the system

structure and main design decisions
• Allows developers to work in parallel

122

Diagram notations

• State diagrams
– describe the behavior of objects

• Activity diagrams
– describe the flow of work
– parallel processing

• Sequence diagrams
– describe time ordering of messages

• Deployment diagrams
– physical relationship of software and hardware

62

123

State diagrams

• Design document
• State diagrams

124

State diagrams

• State diagram: Shows the behavior of one object
– how does it change its state based on the messages it

receives
– narrowly focused, fine-grained

• Other names
– State transition diagram
– Harel diagram (statecharts)

63

125

State diagrams (2)

• State: condition/situation
during lifetime of an object

• State transition: relationship
indicating a state change
– atomic & non-interruptible

• Action:
– atomic & non-interruptible

Over drafted

ok

deposit

withdraw

deposit

withdraw

126

State notation (1)

• Substates: disjoint/concurrent
• Entry/exit actions

– entry: an action that is performed on
entry to the state

– exit: an action performed on exiting the
state

• do: an ongoing activity performed
while in the state (example: display
window)
– interruptible

• on: an action performed as a result
of a specific event

State name

entry: entry action

exit: exit-action

do: activity-A
on: event-A: action-A

state variable(s)

64

127

State-A State-BEvent(arguments)[condition]/action

Transition notation (2)

• Event: significant occurrence that has a location in
time and space
– triggers the transition
– signals, calls, passing of time, change in state

• Guard condition:
• Transition only eligible to fire when guard evaluates to true
• Guards of transition exiting one state are mutually exclusive

• Action: executable atomic computation

128

State diagram notation (3)

• Start state
– No event triggers allowed
– branch conditions allowed
– may not remain in start states

• End state
– Top level end state terminates a state machine

Initial state State-BEvent(attribute)

65

129

State transitions for an order

Checking
do: check item

Dispatching
do: initiate delivery

Waiting

Delivered

/ get first item

Item received[some
items not in stock]

Item received[all items
available]

Delivered

[All items checked && some
items not in stock]

[All items checked &&
all items available]

get next item[not all
items checked]

130

State Diagram (Behavioral)

Diagram: UML Distilled, Martin Fowler, Kendall Scott, 1997, Addison-Wesley, Copyright 1997, Addison-Wesley

• Use: Describing
behavior of a
single object

• Hint: the entire
system is a single
top-level object

66

131

States of a hockey game

playing

break

Boxing

end of game

shootout

penalty

tie[time is up]

win[time is uo]

face off

132

Problem: Cancel the order

• Want to be able to cancel an order at any
time

• Solutions
– Transitions from every state to state “cancelled”
– Superstate and single transition

67

133

Transitions to “cancelled”

Dispatching
do: initiate delivery

Waiting

Delivered

Item received[some
items not in stock]

Item received[all
items available]

Delivered

Cancelled

Checking
do: check item

get next item[not all
items checked]

/ get first item
[All items checked && some

items not in stock]

[All items checked &&
all items available]

cancelled

cancelled

cancelled

134

State diagram notation (4)

Superstate

State-A State-BState-A State-B
Event A

Event B Event C

68

135

State
Diagram

with
Substates

Diagram: UML Distilled, Martin Fowler, Kendall Scott, 1997, Addison-Wesley, Copyright 1997, Addison-Wesley

136

Superstate

Dispatching
do: initiate delivery

Waiting

Delivered

Item received[some
items not in stock]

Item received[all
items available]

Delivered

Cancelled

Checking
do: check item

get next item[not all
items checked]

/ get first item
[All items checked && some

items not in stock]

[All items checked &&
all items available]

Active

cancelled

69

137

Hockey example with superstate

Normal

playing

break

Boxing

end of game

shootout

penalty

face off

win[time is uo]

tie[time is up]

138

Some remarks

• Only one initial state may occur (directly)
within a composite state

• End state represents completion of a
composite

• End state triggers transition with composite
as source

70

139

Orthogonal components and
concurrency

• Unrelated components of objects
combinatorial number of states

• Example: Car states
– engine (started, stopped)
– doors (open, closed)

• What happens when we add one component?
– seat belt (fastened, open)

4 car states:
started_open
started_closed
stopped_open
stopped_closed

8 car states:
started_open_open started_open_fastened
started_closed_open started_closed_fastened
stopped_open_open stopped_open_fastened
stopped_closed_open stopped_closed_fastened

140

Example: Payment
authorization in class Order

Authorizing
do: check payment

Authorized

Delivered

Rejected

[payment ok]

[payment not ok]
2 parallel processes:
- authorization
- order handling

71

141

Concurrent state diagram for
the class Order

Checking

Waiting

Dispatching

Authorizing Authorized

Checking

Waiting

Dispatching

Authorizing Authorized

Cancelled

Delivered

Rejected

142

State Diagram with Concurrency

Diagram: UML Distilled, Martin Fowler, Kendall Scott, 1997, Addison-Wesley, Copyright 1997, Addison-Wesley

72

143

Rules of thumb

• Not every class needs a state diagram
• Often: State diagram not very complex
• State diagrams are often used for UI and

control objects
• Not to many concurrent sets of behavior

occurring in a single object (in that case:
split into separate objects)

144

Activity
Diagrams

(Behavioral)

Diagram: UML Distilled, Martin Fowler, Kendall Scott, 1997, Addison-Wesley, Copyright 1997, Addison-Wesley

• Use: Understanding Work-
Flow

• Use: Analyzing Use-Case
• Use: Dealing with Multi-

Threading
• No: Analyzing Object

Collaboration
– Use Sequence or

Collaboration Diagrams
• No: Analyzing Object

Behavior
– Use State Diagram

73

145

Activity
Diagrams
with Swim

Lanes

Diagram: UML Distilled, Martin Fowler, Kendall Scott, 1997, Addison-Wesley, Copyright 1997, Addison-Wesley

146

Package Diagram (Structural)

Diagram: UML Distilled, Martin Fowler, Kendall Scott, 1997, Addison-Wesley, Copyright 1997, Addison-Wesley

• Use: Large-
Project
Structures

74

147

Deployment
Diagram

Diagram: UML Distilled, Martin Fowler, Kendall Scott, 1997, Addison-Wesley, Copyright 1997, Addison-Wesley

• Use: Describing
System/Hardware/
Software
Relationships

