
1

Data Communications & Networks

Session 3 – Main Theme
Data Encoding and Transmission

Dr. Jean-Claude Franchitti

New York University
Computer Science Department

Courant Institute of Mathematical Sciences

Adapted from course textbook resources
Computer Networking: A Top-Down Approach, 5/E

Copyright 1996-2009
J.F. Kurose and K.W. Ross, All Rights Reserved

2

22 Data Encoding and TransmissionData Encoding and Transmission

Agenda

11 Session OverviewSession Overview

33 Summary and ConclusionSummary and Conclusion

3

What is the class about?

Course description and syllabus:
»http://www.nyu.edu/classes/jcf/g22.2262-001/

»http://www.cs.nyu.edu/courses/spring10/G22.2262-
001/index.html

Textbooks:
» Computer Networking: A Top-Down Approach (5th Edition)

James F. Kurose, Keith W. Ross
Addison Wesley
ISBN-10: 0136079679, ISBN-13: 978-0136079675, 5th Edition (03/09)

4

Course Overview

Computer Networks and the Internet
Application Layer
Fundamental Data Structures: queues, ring buffers, finite state machines
Data Encoding and Transmission
Local Area Networks and Data Link Control
Wireless Communications
Packet Switching
OSI and Internet Protocol Architecture
Congestion Control and Flow Control Methods
Internet Protocols (IP, ARP, UDP, TCP)
Network (packet) Routing Algorithms (OSPF, Distance Vector)
IP Multicast
Sockets

5

Data Transmission and Encoding Concepts
ADTs and Protocol Design
Summary and Conclusion

Data Transmission and Encoding Session in Brief

6

Icons / Metaphors

6

Common Realization

Information

Knowledge/Competency Pattern

Governance

Alignment

Solution Approach

7

22 Data Encoding and TransmissionData Encoding and Transmission

Agenda

11 Session OverviewSession Overview

33 Summary and ConclusionSummary and Conclusion

8

ADTs and Protocol Design

Data Encoding and Transmission - Roadmap

Data Encoding and Transmission Concepts

22 Data Encoding and TransmissionData Encoding and Transmission

9

Simplified Data Communications Model

10

S(t) = A sin(2πft + Φ)

11

Terminology (1/3)

Transmitter
Receiver
Medium

Guided medium
E.g., twisted pair, optical fiber

Unguided medium
E.g., air, water, vacuum

12

Terminology (2/3)

Direct link
No intermediate devices

Point-to-point
Direct link
Only 2 devices share link

Multi-point
More than two devices share the link

13

Terminology (3/3)

Simplex
One direction

e.g., television

Half duplex
Either direction, but only one way at a time

e.g. police radio

Flux duplex
Both directions at the same time

e.g., telephone

14

Analog and Digital Data Transmission

Data
Entities that convey meaning

Signals
Electric or electromagnetic representations of
data

Transmission
Communication of data by propagation and
processing of signals

15

Data

Analog
Continuous values within some interval

e.g., sound, video

Digital
Discrete values

e.g., text, integers

16

Signals

Means by which data are propagated

Analog
Continuously variable

Various media
e.g., wire, fiber optic, space

Speech bandwidth 100Hz to 7kHz

Telephone bandwidth 300Hz to 3400Hz

Video bandwidth 4MHz

Digital
Use two DC components

17

Data and Signals

Usually use digital signals for digital data and
analog signals for analog data

Can use analog signal to carry digital data
Modem

Can use digital signal to carry analog data
Compact Disc audio

18

Analog Transmission

Analog signal transmitted without regard to
content

May be analog or digital data

Attenuated over distance

Use amplifiers to boost signal

Also amplifies noise

19

Digital Transmission

Concerned with content

Integrity endangered by noise, attenuation etc.

Repeaters used

Repeater receives signal

Extracts bit pattern

Retransmits

Attenuation is overcome

Noise is not amplified

20

Advantages/Disadvantages of Digital

Cheaper

Less susceptible to noise

Greater attenuation
Pulses become rounded and smaller

Leads to loss of information

21

Attenuation of Digital Signals

22

Interpreting Signals

Need to know
Timing of bits - when they start and end

Signal levels

Factors affecting successful interpreting of
signals

Signal to noise ratio

Data rate

Bandwidth

23

Encoding Schemes

Non-return to Zero-Level (NRZ-L)

Non-return to Zero Inverted (NRZI)

Bipolar –AMI

Pseudoternary

Manchester

Differential Manchester

B8ZS

HDB3

24

Non-Return to Zero-Level (NRZ-L)

Two different voltages for 0 and 1 bits

Voltage constant during bit interval
No transition (i.e. no return to zero voltage)

e.g., Absence of voltage for zero, constant
positive voltage for one

More often, negative voltage for one value
and positive for the other

This is NRZ-L

25

Non-Return to Zero Inverted

Nonreturn to zero inverted on ones

Constant voltage pulse for duration of bit

Data encoded as presence or absence of signal
transition at beginning of bit time

Transition (low to high or high to low) denotes a
binary 1

No transition denotes binary 0

An example of differential encoding

26

NRZ

27

Differential Encoding

Data represented by changes rather than
levels

More reliable detection of transition rather
than level

In complex transmission layouts it is easy to
lose sense of polarity

28

Summary of Encodings

29

NRZs Pros and Cons

Pros
Easy to engineer

Make good use of bandwidth

Cons
DC component

Lack of synchronization capability

Used for magnetic recording

Not often used for signal transmission

30

Biphase

Manchester
Transition in middle of each bit period

Transition serves as clock and data

Low to high represents one

High to low represents zero

Used by IEEE 802.3

Differential Manchester
Mid-bit transition is clocking only

Transition at start of a bit period represents zero

No transition at start of a bit period represents one

Note: this is a differential encoding scheme

Used by IEEE 802.5

31

Biphase Pros and Cons

Con
At least one transition per bit time and possibly two

Maximum modulation rate is twice NRZ

Requires more bandwidth

Pros
Synchronization on mid bit transition (self clocking)

No dc component

Error detection

Absence of expected transition

32

Asynchronous/Synchronous Transmission

Timing problems require a mechanism
to synchronize the transmitter and
receiver

Two solutions
Asynchronous

Synchronous

33

Asynchronous

Data transmitted on character at a time
5 to 8 bits

Timing only needs maintaining within
each character

Resync with each character

34

Asynchronous (Diagram)

35

Asynchronous - Behavior

In a steady stream, interval between characters is uniform
(length of stop element)

In idle state, receiver looks for transition 1 to 0

Then samples next seven intervals (char length)

Then looks for next 1 to 0 for next char

Simple

Cheap

Overhead of 2 or 3 bits per char (~20%)

Good for data with large gaps (keyboard)

36

Synchronous – Bit Level

Block of data transmitted without start or stop bits

Clocks must be synchronized

Can use separate clock line
Good over short distances

Subject to impairments

Embed clock signal in data
Manchester encoding

Carrier frequency (analog)

37

Synchronous – Block Level

Need to indicate start and end of block

Use preamble and postamble
e.g. series of SYN (hex 16) characters

e.g. block of 11111111 patterns ending in
11111110

More efficient (lower overhead) than
async

38

Synchronous (diagram)

39

ADTs and Protocol Design

Data Encoding and Transmission - Roadmap

Data Encoding and Transmission Concepts

22 Data Encoding and TransmissionData Encoding and Transmission

40

Common Issues in Design

When building protocol software, there are
two common problems that designers face:

1) How to handle data that arrives from two
independent sources

Down from the higher layer

Up from the lower layer

2) How to implement the protocol

41

Data from Two Sources

Down from the Higher Layer (HL)
Higher layer (HL) sends requests (control and data)

Cannot always process the request immediately, so we
need a place to hold the request

We may get “many” HL users (e.g., many TCP, only
one IP)

Requests may need to be processed out of order (out
of band, QOS, etc)

42

Data from Two Sources

Up from the Lower Layer (LL)
Lower layer sends data and indications

Data must be separated from indications

Read requests from HL may use different data
boundaries than LL

LL may be providing data at same time as HL
wants to read it

43

Ring Buffer of Size N

.

.

.

0
1
2

N-1

Inititial State

Input: 0

Output: 0

44

Ring Buffer of Size N

.

.

.

0
1
2

N-1

New Element
Arrives

Input: 1

Output: 0

Element 0

45

Ring Buffer of Size N

.

.

.

0
1
2

N-1

New Element
Arrives

Input: 2

Output: 0

Element 0

Element 1

46

Ring Buffer of Size N

.

.

.

0
1
2

N-1

Read next
(element 0)
Input: 2
Output: 1

Element 0

Element 1

Read next
(element 1)
Input: 2
Output: 2

47

Ring Buffer of Size N

.

.

.

0
1
2

N-1

After Nth
input:
Input: 0
Output: 2

Element 0

Element 1

How many more
input elements can we
accept?

Element 2

Element N-1

48

Ring Buffer Spec (1/3)

Let B be a buffer.
Let S be the size of the buffer B in bytes.
Let I be an index into the buffer where the producer will store

the next new byte of data.
Let O be the index of the next byte that the consumer should

remove from the buffer.
Let N be the number of unconsumed bytes in the buffer.
Define % as the modulus operator.
Initially, I = O = N = 0.
The buffer is full (has no room for new data) when N == S.
The available space (for new data) A = S - N

49

Ring Buffer Spec (2/3)

To Add m bytes of data from buffer D to the buffer B the
producer will:

(1) Check that m <= A (if not an error has occurred)
(2) put bytes into the buffer using this model:

int j = I;
I = (I+m)%S
N += m;

for (int q = 0; q < m; q++)
B[(j+q)%S] = D[q]

50

Ring Buffer Spec (3/3)

To remove r bytes from the buffer B to buffer D, the
consumer will:

(1) Check that r <= N. If not, adjust r (r = N) or signal error.
(2) take bytes from the buffer using this model:

int j = O;
O = (O+r)%S
N -= r

for (int q = 0; q < r; q++)
D[q] = B[(j+q)%S]

51

Ring Buffer: Making it Safe

So, you see that the idea is that the input (I) and output
(O) pointers change continuously from the beginning of
the buffer to the end and then wrap around back to the
beginning again. Conceptually, it appears as if the end of
the buffer is connected back the front of the buffer as if to
form a ring (or circle). We enforce that the input pointer
never tries to overtake the output pointer!

To make these two methods thread safe, we need only to
protect the 3 lines of code that update the class variables
O, N, I: NOT the loops that move data! This is a better
real-time approach than serializing access to the loop
itself, or worse, the entire object.

52

Ring Buffer Characteristics

Elements are all same size and type
Elements are typically primitives (byte, int, etc) but can be pointers
or even structures

Finite
Fixed space must be allocated a priori

Low overhead
No “per element” costs like we have in a Queue

Elements MUST be processed in order.

53

Queue

Elements are linked together in a list

List can be single (forward) or double (forward
and backward) linked

Queue Control Block contains (as a minimum)
pointer to first element (head) and last element
(tail)

Queues are almost always used as FIFOs, but
can support iteration, random access, and reverse
(LIFO) processing

54

Queue (Singly Linked)

head

tail

Queue Control Block
a

z

b z null

element a element b element z

Forward link

Payload

Payload can be ANY object or structure.
Elements need not contain similar payloads.

55

Queue (Doubly Linked)

head

tail

Queue Control Block
a

z

b z null

element a element b element z

banull
Forward link

Payload

Backward link

56

Queue Operations

Required Operations
Put (add to tail)

Get (get from head)

Nice to Have Operations
Remove (remove specific element)

Insert (add element after a specific element)

Deluxe Operations
Peek (non-destructive Get)

Put to head

Get from tail

Iterate (head to tail or tail to head)

57

Queue Characteristics

Not fixed in length (“unlimited” in length)

Does not require pre-allocated memory

Allows processing of elements in arbitrary
order

Can accommodate elements of different
type

Additional per element cost (links)

58

Queue or Ring Buffer

Stream data: Use a ring buffer
Arriving elements are primitives that make up a
data “stream” (no record boundaries)

TCP data is an example

Service requests: Use a queue
Arriving elements are requests from a user
layer (or clients) and must be processed
individually.

59

What is a FSM?

Let’s define the idea of a “machine”
Organism (real or synthetic) that responds to a
countable (finite) set of stimuli (events) by
generating predictable responses (outputs)
based on a history of prior events (current
state)

A finite state machine (fsm) is a
computational model of a machine

60

FSM Elements

States represent the particular configurations that
our machine can assume

Events define the various inputs that a machine
will recognize

Transitions represent a change of state from a
current state to another (possibly the same) state
that is dependent upon a specific event

The Start State is the state of the machine before
is has received any events

61

Machine Types

Mealy machine
one that generates an output for each transition

Moore machine
one that generates an output for each state

Moore machines can do anything a Mealy
machine can do (and vice versa)

In my experience, Mealy machines are more
useful for implementing communications protocols

The fsm that I’ll provide is a Mealy machine

62

State Diagram

63

From State Diagram to FSM

Identify
States

Events

Transitions

Actions (outputs)

Program these elements into an FSM

Define an event classification process

Drive the events through the FSM

Example ….

64

22 Application LayerApplication Layer

Agenda

11 Session OverviewSession Overview

33 Summary and ConclusionSummary and Conclusion

65

Assignments & Readings

Readings

» Chapters 1 and 5

66

Next Session: Data Link Control

