Data Communication & Networks G22.2262-001

Session 10 - Main Theme Performance in Queuing Systems

Dr. Jean-Claude Franchitti

New York University Computer Science Department Courant Institute of Mathematical Sciences

Queuing Analysis: Characterization

Dispatching Discipline

- When a server is done serving a customer, it must pick the next customer out of some queue. Algorithm used to do so is called the dispatching discipline. Examples are FCFS, FIFO, SJF, EDF, etc.
- Distribution of Arrivals
 - When do customers arrive? We will restrict our analysis to a Poisson process for the arrival of customers to the system.
- Distribution of Service Time
 - How long does it take a server to service a customer's request? The service time may be the same for all customers or, more realistically, the service time is likely to be variable.

Little's Formulas

The following two relationships are true of any "steady state" queuing system (i.e. a queuing system in equilibrium).

$$\mathbf{r} = \lambda \mathbf{T}_{\mathbf{r}}$$
$$\mathbf{w} = \lambda \mathbf{T}_{\mathbf{w}}$$

In a queuing system, a customer's time is spent either waiting for service or getting service.

$$\mathbf{T}_{\mathbf{r}} = \mathbf{T}_{\mathbf{w}} + \mathbf{T}_{\mathbf{s}}$$

Multiplying the above equation by the arrival rate λ and applying Little's formula, we get:

 $r = w + \lambda T_s = w + \lambda / \mu$

Remember, $\rho = \lambda / \mu$, so ...

 $r = w + \rho$

Assignment & Readings

Readings:

 Queuing Analysis paper by William Stallings (recommended):

 $\underline{ftp://shell.shore.net/members/w/s/ws/Support/QueuingAnalysis.pdf}$

- Tom Slater's Queuing Theory Tutor http://www.dcs.ed.ac.uk/home/jeh/Simjava/queueing/
- Myron Hlynka's Queueing Theory Page http://www2.uwindsor.ca/~hlynka/queue.html

