
1

1

Data Communication & Networks
G22.2262-001

Session 9 - Main Theme
The Internet Transport Protocols: TCP, UDP

Dr. Jean-Claude Franchitti

New York University
Computer Science Department

Courant Institute of Mathematical Sciences

2

Agenda
Internet Transport Protocols
Transport Layer Addressing
Standard Services and Port Numbers
TCP Overview
Reliability in an Unreliable World
TCP Flow Control
Why Startup / Shutdown Difficult?
TCP Connection Management
Timing Problem
Implementation Policy Options
UDP: User Datagram Protocol
Conclusion

2

3

Part I

Internet Transport Protocols

4

Internet Transport Protocols

Two Transport Protocols Available
Transmission Control Protocol (TCP)

connection oriented
most applications use TCP
RFC 793

User Datagram Protocol (UDP)
Connectionless
RFC 768

3

5

Part II

Transport Layer Addressing

6

Transport Layer Addressing

Communications endpoint addressed by:
IP address (32 bit) in IP Header
Port number (16 bit) in TP Header1

Transport protocol (TCP or UDP) in IP
Header

1 TP => Transport Protocol (UDP or TCP)

4

7

Part III

Standard Services and Port Numbers

8

Standards Services and Port Numbers
s e r v ic e t c p u d p
e c h o 7 7
d a y t im e 1 3 1 3
n e t s t a t 1 5
f t p - d a t a 2 0
f t p 2 1
t e ln e t 2 3
s m t p 2 5
t im e 3 7 3 7
d o m a in 5 3 5 3
f in g e r 7 9
h t t p 8 0
p o p - 2 1 0 9
p o p 1 1 0
s u n r p c 1 1 1 1 1 1
u u c p - p a t h 1 1 7
n n t p 1 1 9
t a lk 5 1 7

5

9

Part IV

TCP: Overview

10

TCP: Overview
RFCs: 793, 1122, 1323, 2018, 2581

point-to-point:
one sender, one receiver

reliable, in-order byte
steam:

no “message boundaries”

pipelined:
TCP congestion and flow
control set window size

send & receive buffers

full duplex data:
bi-directional data flow in
same connection
MSS: maximum segment
size

connection-oriented:
handshaking (exchange of
control msgs) init’s sender,
receiver state before data
exchange

flow controlled:
sender will not overwhelm
receiver

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

6

11

TCP Header

12

TCP Segment Structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

rcvr window size
ptr urgent datachecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

7

13

Part V

Reliability in an Unreliable World

14

Reliability in an Unreliable World

IP offers best-effort (unreliable) delivery
TCP uses IP
TCP provides completely reliable transfer
How is this possible? How can TCP realize:

Reliable connection startup?
Reliable data transmission?
Graceful connection shutdown?

8

15

Reliability Data Transmission

Positive acknowledgment
Receiver returns short message when data arrives
Called acknowledgment

Retransmission
Sender starts timer whenever message is transmitted
If timer expires before acknowledgment arrives,
sender retransmits message
THIS IS NOT A TRIVIAL PROBLEM! – more on this
later

16

Part VI

TCP Flow Control

9

17

TCP Flow Control

Receiver
Advertises available buffer space
Called window
This is a known as a CREDIT policy

Sender
Can send up to entire window before ACK arrives

Each acknowledgment carries new window information
Called window advertisement
Can be zero (called closed window)

Interpretation: I have received up through X, and can
take Y more octets

18

Credit Scheme

Decouples flow control from ACK
May ACK without granting credit and vice versa

Each octet has sequence number
Each transport segment has seq number, ack
number and window size in header

10

19

Use of Header Fields

When sending, seq number is that of first octet in
segment
ACK includes AN=i, W=j
All octets through SN=i-1 acknowledged

Next expected octet is I

Permission to send additional window of W=j
octets

i.e. octets through i+j-1

20

Credit Allocation

11

21

TCP Flow Control
receiver: explicitly

informs sender of
(dynamically
changing) amount of
free buffer space
– RcvWindow field

in TCP segment
sender: keeps the amount

of transmitted,
unACKed data less
than most recently
received RcvWindow

sender won’t overrun
receiver’s buffers by

transmitting too much,
too fast

flow control

receiver buffering

RcvBuffer = size of TCP Receive Buffer

RcvWindow = amount of spare room in Buffer

22

TCP Seq. #’s and ACKs
Seq. #’s:

– byte stream
“number” of first
byte in segment’s
data

ACKs:
– seq # of next byte

expected from
other side

– cumulative ACK
Q: how receiver handles

out-of-order segments
– A: TCP spec

doesn’t say, - up to
implementor

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

12

23

TCP ACK Generation
[RFC 1122, RFC 2581]

Event

in-order segment arrival,
no gaps,
everything else already ACKed

in-order segment arrival,
no gaps,
one delayed ACK pending

out-of-order segment arrival
higher-than-expect seq. #
gap detected

arrival of segment that
partially or completely fills gap

TCP Receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single
cumulative ACK

send duplicate ACK, indicating seq. #
of next expected byte

immediate ACK if segment starts
at lower end of gap

24

TCP: Retransmission Scenarios
Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

time lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

Host A

Seq=100, 20 bytes data

ACK=100

Se
q=

92
 t

im
eo

ut

time premature timeout,
cumulative ACKs

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Se
q=

10
0

ti
m

eo
ut

ACK=120

13

25

Part VII

Why Startup / Shutdown Difficult?

26

Why Startup / Shutdown Difficult?

Segments can be
Lost
Duplicated
Delayed
Delivered out of order
Either side can crash
Either side can reboot

Need to avoid duplicate ‘‘shutdown’’ message
from affecting later connection

14

27

Part VIII

TCP Connection Management

28

TCP Connection Management

• Recall: TCP sender, receiver
establish “connection” before
exchanging data segments

• initialize TCP variables:
– seq. #s
– buffers, flow control info (e.g.

RcvWindow)
• client: connection initiator

Socket clientSocket = new
Socket("hostname","port
number");

• server: contacted by client
Socket connectionSocket =
welcomeSocket.accept();

Three way handshake:
Step 1: client end system sends TCP

SYN control segment to server
– specifies initial seq #

Step 2: server end system receives SYN,
replies with SYNACK control
segment

– ACKs received SYN
– allocates buffers
– specifies server-> receiver initial

seq. #

15

29

TCP Connection Management (OPEN)

client

SYN

server

SYNACK

ACK

opening

opening

closed

established

30

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close
();

Step 1: client end system
sends TCP FIN control
segment to server

Step 2: server receives FIN,
replies with ACK. Closes
connection, sends FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t

16

31

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

– Enters “timed wait” -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed
ti

m
ed

 w
ai

t

closed

32

TCP Connection Management (cont.)

TCP client
lifecycle

TCP server
lifecycle

17

33

Part IX

Timing Problem

34

Timing Problem!

The delay required for data to reach a destination and an
acknowledgment to return depends on traffic in the internet as
well as the distance to the destination. Because it allows
multiple application programs to communicate with multiple
destinations concurrently, TCP must handle a variety of delays
that can change rapidly.

How does TCP handle this

18

35

Solving Timing Problem

Keep estimate of round trip time on each
connection
Use current estimate to set retransmission timer
Known as adaptive retransmission
Key to TCP’s success

36

TCP Round Trip Time & Timeout

• Q: how to set TCP
timeout value?

• longer than RTT
– note: RTT will vary

• too short:
premature timeout
– unnecessary

retransmissions

• too long: slow
reaction to segment
loss

Q: how to estimate RTT?
• SampleRTT: measured time

from segment transmission until
ACK receipt
– ignore retransmissions,

cumulatively ACKed
segments

• SampleRTT will vary, want
estimated RTT “smoother”
– use several recent

measurements, not just
current SampleRTT

19

37

TCP Round Trip Time & Timeout
EstimatedRTT = (1-x)*EstimatedRTT + x*SampleRTT

• Exponential weighted moving average
• influence of given sample decreases exponentially

fast
• typical value of x: 0.1

Setting the timeout
• EstimatedRTT plus “safety margin”
• large variation in EstimatedRTT -> larger safety

margin
Timeout = EstimatedRTT + 4*Deviation

Deviation = (1-x)*Deviation +
x*|SampleRTT-EstimatedRTT|

38

Part X

Implementation Policy Options

20

39

Implementation Policy Options

Send
Deliver
Accept
Retransmit
Acknowledge

40

Send

If no push or close TCP entity transmits at its
own convenience (IFF send window allows!)
Data buffered at transmit buffer
May construct segment per data batch
May wait for certain amount of data

21

41

Deliver (to application)

In absence of push, deliver data at own
convenience
May deliver as each in-order segment received
May buffer data from more than one segment

42

Accept

Segments may arrive out of order
In order

Only accept segments in order
Discard out of order segments

In windows
Accept all segments within receive window

22

43

Retransmit

TCP maintains queue of segments transmitted
but not acknowledged
TCP will retransmit if not ACKed in given time

First only
Batch
Individual

44

Acknowledgement

Immediate
as soon as segment arrives.
will introduce extra network traffic
Keeps sender’s pipe open

Cumulative
Wait a bit before sending ACK (called “delayed ACK”)
Must use timer to insure ACK is sent
Less network traffic
May let sender’s pipe fill if not timely!

23

45

Part XI

UDP: User Datagram Protocol

46

UDP: User Datagram Protocol [RFC 768]

• “no frills,” “bare bones”
Internet transport protocol

• “best effort” service, UDP
segments may be:
– lost
– delivered out of order to

app

• connectionless:
– no handshaking between

UDP sender, receiver
– each UDP segment handled

independently of others

Why is there a UDP?
• no connection

establishment (which can
add delay)

• simple: no connection
state at sender, receiver

• small segment header
• no congestion control:

UDP can blast away as
fast as desired

24

47

UDP: more

• often used for streaming
multimedia apps
– loss tolerant
– rate sensitive

• other UDP uses
– DNS
– SNMP

• reliable transfer over
UDP: add reliability at
application layer
– application-specific error

recover!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

48

UDP Uses

Inward data collection
Outward data dissemination
Request-Response
Real time application

25

49

Part XII

Conclusion

50

Assignment & Readings

Assignment #5 (due 04/15/10)
Assigned at the completion of Session 9

Readings
Chapter 3 (3.5)
RFC 793 (introduction, sections 1 and 2)

26

51

Next Session:
Network Congestion

