Control Structures:
Loops, Conditionals, and Case Statements

Programming Languages
Session 3 - Main Theme

Dr. Jean-Claude Franchitti

e
=

New York University
Computer Science Department
Courant Institute of Mathematical Sciences

2
A2
e
LT 7 77 A
7o .

s 0 7 25 7
e T T

A e s 2 P 77 7

e
. . ’ \\\S\\\“\‘“\“\w‘\\\““““““ﬁn
\\\.\\\\\\\\i\ =<z Iy e
77 7 5
Z L7

L

Adapted from course textbook resources
Programming Language Pragmatics (3¢ Edition)

i

Michael L. Scott, Copyright © 2009 Elsevier

¢_
Vv,
X

Ay
XX
...(.).‘.”.’4.‘»’
SRR R
OSRRS

3 Conclusion

What is the course about?

» Course description and syllabus:
» http://www.nyu.edu/classes/jcf/g22.2110-001
» http://www.cs.nyu.edu/courses/fall10/G22.2110-001/index.html

= Textbook:

» Programming Language Pragmatics (3" Edition)
Michael L. Scott

W Morgan Kaufmann

ISBN-10: 0-12374-514-4, ISBN-13: 978-0-12374-514-4, (04/06/09)

= Additional References:

» Osinski, Lecture notes, Summer 2008
» Barrett, Lecture notes, Fall 2008

» Gottlieb, Lecture notes, Fall 2009

» Grimm, Lecture notes, Spring 2010

Session Agenda

= Session Overview
= Control Structures: Loops, Conditionals, and Case Statements

= Conclusion

Icons / Metaphors

3

(&)
-& Information
Common Realization

e
i Knowledge/Competency Pattern

S5

Governance

r~
>

e

Alignment

~ Solution Approach

Session 2 Review

= Use of Types

= Name, Scope, and Binding

= Names

= Binding

= Early vs. Late Binding Time Advantages Detailed
= Lifetimes

= Lifetime and Storage Management

= Garbage Collection

= Scopes

= Scope Rules

= Scope Rules — Example: Static vs. Dynamic
= The Meaning of Names within a Scope

= Bindings of Referencing Environments

= Separate Compilation

= Conclusions

N

3 Conclusion

= Control Flow

= Control Structures

= Statement Grouping

= Expression Evaluation
= Sequencing

= Semicolons

= Selection

= Lists / lteration

= Recursion

= Conclusions

Control Flow (1/3)

» Basic paradigms for control flow:
» Sequencing
» Selection
» |teration
» Procedural Abstraction
» Recursion
» Concurrency
» Exception Handling and Speculation
» Nondeterminacy

A\

Control Flow (2/3)

= Structured vs. Unstructured Flow

» Early languages relied heavily on
unstructured flow, especially goto’s.

» Common uses of goto have been captured
by structured control statements.

 Fortran had a DO loop, but no way to exit early
except goto

» C uses break for that purpose

Control Flow (3/3)

= The Infamous Goto

» In machine language, there are no if statements or loops
» We only have branches, which can be either unconditional or
conditional (on a very simple condition)
» With this, we can implement loops, if statements, and case
statements. In fact, we only need
* 1. increment
» 2. decrement
» 3. branch on zero
+ to build a universal machine (one that is Turing complete).
» We don’t do this in high-level languages because unstructured

use of the goto can lead to confusing programs. See “Go To
Statement Considered Harmful” by Edgar Dijkstra

Control Structures (1/2)

= A control structure is any mechanism that departs from
the default of straight-line execution.
» selection
« if statements
* case statements
» iteration
» while loops (unbounded)
« for loops
« iteration over collections
» other
* goto
« call/return
* exceptions
» continuations

==

Control Structures (2/2)

» |n assembly language, (essentially) the only
control structures are:

» Progression: Move to the next statement (increment
the program counter).

» Unconditional jump:
JMP A Jump to address A
» Conditional jump:
JMZ R,A If (R==0)thenjumpto A

Possible forms of conditions and addresses
vary.

A\]

Statement Grouping

» Many languages provide a way to group several
statement together

= PASCAL introduces begin-end pair to mark sequence

= C/C++/JAVA abbreviate keywords to { }

= ADA dispenses with brackets for sequences, because
keywords for the enclosing control structure are
sufficient

= forJin 1..N loop ... end loop

» More writing but more readable

= Another possibility — make indentation significant (e.g.,
ABC, PYTHON, HASKELL)

Expression Evaluation (1/15)

= Languages may use various notation:
» prefix : (+ 1 2) — Scheme
» postfix : 0 0 moveto — Postscript
»infix : 1+ 2 - C/C++, Java

= Infix notation leads to some ambiguity:

» associativity : how operators of the same
precedence are grouped
e —X+ty-z=(X+y)-zorx+(y-z)?
» precedence : the order in which operators are
applied

s —X+y*z=(X+y)*zorx+(y*z)?

eu
Expression Evaluation (2/15) :

= Infix, prefix operators

» Precedence, associativity (see Figure 6.1)
» C has 15 levels - too many to remember

» Pascal has 3 levels - too few for good
semantics

» Fortran has 8

» Ada has 6
* Ada puts and & or at same level

» Lesson: when unsure, use parentheses!

A=)
Expression Evaluation (3/15) :

Fortran Pascal (o) Ada

++, - (post-inc., dec.)

=+ not ++, == (pre-inc,, dec.), abs (absolute value),
+, = (unary), not, ==
&, * (address, contents of),
1, = (logical, bit-wise not)

=/ * 7/, = (binary), /, *,/,mod, Tem
div, mod, and % (modulo division)
+, - (unary +, - (unary and +, - (binary) +, - (unary)
and binary) binary), or
<<, 3> +, = (binary),
(left and right bit shift) & (concatenation)
.eq., .ne., .1t., <, <=, >, 5=, <, <=, >, 5= = /=, <=, 0, 0=
le.,.gt.. .ge. = <, I (inequality tests)
(camparisons)
.not. ==, != (equality tests)

& (bit-wise and)

= (bit-wise exclusive or)

| (bit-wise inclusive or)

.and. && (logical and) and, er, xer
(logical operators)

Lor. Il (logical or)

_eqv., .neqv. ?: (if...then. .. else)

(logical comparisons)

=, +=, =, w=, = e
3=, <<=, &=, 7=, |=
(assignment)

, (sequencing)
Figure 6.1 Operator precedence levels in Fortran, Pascal, C, and Ada. The operator s at the top of the figure group most tightly.

17

ou
Expression Evaluation (4/15) :

= Ordering of operand evaluation (generally
none)

= Application of arithmetic identities
» distinguish between commutativity, and
(assumed to be safe)

» associativity (known to be dangerous)
(a + b) + cworksif a~=maxint and b~=minint and c<0
a + (b + c) does not

» inviolability of parentheses

A=)
Expression Evaluation (5/15) :

= Short-circuiting
»Consider (a < b) && (b < c):

« If a >= b there is no point evaluating
whether b < c because (a < b) && (b
< c¢) is automatically false

» Other similar situations

if (b !'= 0 && a/b == c)

if (*p && p->foo)

if (£ || messy())

Expression Evaluation (6/15) Fy
= Variables as values vs. variables as
references
» value-oriented languages
» C, Pascal, Ada

» reference-oriented languages
» most functional languages (Lisp, Scheme, ML)
* Clu, Smalltalk

» Algol-68 kinda halfway in-between

» Java deliberately in-between
* built-in types are values
+ user-defined types are objects - references

20

Expression Evaluation (7/15)

= Expression-oriented vs. statement-
oriented languages
» expression-oriented:
« functional languages (Lisp, Scheme, ML)
* Algol-68
» statement-oriented:
* most imperative languages

» C kinda halfway in-between (distinguishes)
« allows expression to appear instead of statement

21

Expression Evaluation (8/15)

= Orthogonality
» Features that can be used in any

combination
* Meaning is consistent
if (if b != 0 then a/b == ¢ else false) then ...
if (if £ then true else messy()) then ...

= Aggregates

» Compile-time constant values of user-defined
composite types

22

A=)
Expression Evaluation (9/15) :

= |nitialization
» Pascal has no initialization facility (assign)
» Assignment statements provide a way to set a value of a
variable.
» Language may not provide a way to specify an initial value.
This can lead to bugs.
» Some languages provide default initialization.
» Cinitializes external variables to zero
» System may check dynamically if a variable is uninitialized
 |IEEE floating point uses special bit pattern (NaN)
» Requires hardware support and expensive software checking
» Compiler may statically check — Java, C#
* May be overly conservative

> OO-languages use constructors to initialize dynamically
allocated variables

A

23

eu
Expression Evaluation (10/15) :

= Assignment
» statement (or expression) executed for its side effect

» assignment operators (+=, -=, etc)
* handy
+ avoid redundant work (or need for optimization)
+ perform side effects exactly once

» C -, ++

* postfix form

24

A=)
Expression Evaluation (11/15) :

= Side Effects
» often discussed in the context of functions

» a side effect is some permanent state change
caused by execution of function
» some noticable effect of call other than return
value

* in a more general sense, assignment statements
provide the ultimate example of side effects

— they change the value of a variable

— Side effects change the behavior of subsequent
statements and expressions.

25

eu
Expression Evaluation (12/15) :

» SIDE EFFECTS ARE FUNDAMENTAL
TO THE WHOLE VON NEUMANN
MODEL OF COMPUTING

» In (pure) functional, logic, and dataflow
languages, there are no such changes

» These languages are called SINGLE-
ASSIGNMENT languages

26

A=)
Expression Evaluation (13/15) :

» Several languages outlaw side effects for
functions
» easier to prove things about programs
» closer to Mathematical intuition
» easier to optimize
» (often) easier to understand
= But side effects can be nice
» consider rand()

27

Expression Evaluation (14/15) Fy

» Side effects are a particular problem if
they affect state used in other parts of the
expression in which a function call
appears

» It's nice not to specify an order, because it
makes it easier to optimize

» Fortran says it's OK to have side effects
* they aren't allowed to change other parts of the
expression containing the function call

» Unfortunately, compilers can't check this
completely, and most don't at all

28

Expression Evaluation (15/15)

» There is a difference between the container for a value
("memory location”) and the value itself.
» |-value refers to the locations. (They are on the left hand side.)
» r-value refers to the values.
« 3=x+1-lllegall "3” Can’t be an I|-value
* x=x+* 1—xis both an I-value and an r-value
= Imperative languages rely on side effects
» Some languages introduced assignment operators.
» Consider a[f(i)] += 4
* More convenient than a[f(i)] = a[f(i)] + 4
» Ensures that f(i) is evaluated once
= Some languages allow multiway assignment:
» a,b,c = getabc() — Python, Perl

29

eu
Sequencing :

= Sequencing

» specifies a linear ordering on
statements

* one statement follows another

»very imperative, Von-Neuman

30

Sequencing ke
= Pascal: begin ... end
» C,C++, Java: { ... }

» Ada: Brackets for sequence are
unnecessary. Keywords for control
structures suffice.

fordin1..Nloop ... end loop

= ABC, Python: Indicate structure by
indentation.

31

ou
Semicolons ;

= Pascal: Semicolons are separators
= C etc.: Semicolons are terminators

begin X :=1; {X=1;

Y =2 Y =2;
end }

32

A\ |

Selection (1/13)
= Selection
»sequential if statements
if ... then ... else
if ... then ... elsif ... else
(cond
(Cl) (EI1)
(C2) (E2)
(Cn) (En)
(T) (Et)
)
ou
Selection (2/13) ;

» if Condition then Statement — PASCAL, ADA
» if (Condition) Statement — C/C++, JAVA
» To avoid ambiguities, use end marker: end if, “}”

» To deal with multiple alternatives, use keyword or

bracketing:

if Condition then
Statements

elsif Condition then
Statements

else
Statements

end if;

34

A\ |

Selection (3/13)

» Nesting and the infamous “dangling else” problem:

if Condition1 then
if Condition2 then
Statements1
else
Statements2

= The solution is to use end markers. In Ada:

if Condition1 then
if Condition2 then
Statements1
end if;
else
Statements2
end if;

35

==

Selection (4/13)

= Selection
» Fortran computed gotos

» jump code
« for selection and logically-controlled loops
* no point in computing a Boolean value into a
register, then testing it
* instead of passing register containing Boolean out of
expression as a synthesized attribute, pass inherited

attributes INTO expression indicating where to jump
to if true, and where to jump to if false

36

A\ |

Selection (5/13)

= Jump is especially useful in the presence
of short-circuiting

= Example (section 6.4.1 of book):

if ((A > B) and (C > D)) or (E <> F) then
then clause
else

else clause

37

==

Selection (6/13)

» Code generated w/o short-circuiting

(Pascal)

rl := A -- load
r2 := B
rl :=rl > r2
r2 :=C
r3 :=D
r2 := r2 > r3
rl :=rl & r2
r2 :=E
r3 :=F
r2 := r2 $<>$ r3
rl :=rl $|$ r2
if rl = 0 goto L2

Ll: then_clause -- label not actually used
goto L3

L2: else_clause

L3:

38

A\ |

Selection (7/13)

» Code generated w/ short-circuiting (C)

rl := A

r2 := B

if rl <= r2 goto L4

rl :=C

r2 :=D

if rl > r2 goto L1
L4: rl := E

r2 :=F

if rl = r2 goto L2
L1: then clause

goto L3
L2: else clause
L3:

39

==

Selection (8/13)

= Short-Circuit Evaluation
if (xly>5){z=..}//whatify==07?
if(y==0||xly>5){z=..}

» But binary operators normally evaluate both
arguments. Solutions:
» a lazy evaluation rule for logical operators (LISP, C)

C1 && C2 // don’t evaluate C2 if C1 is false
C1]| C2// don’t evaluate C2 if C1 is true

» a control structure with a different syntax (ADA)
-- don’t evaluate C2
if C1 and then C2 then -- if C1 is false
if C1 or else C2 then -- if C1 is true

40

A\ |

Selection (9/13)

= Multi-way Selection

» Case statement needed when there are many
possibilities “at the same logical level” (i.e. depending
on the same condition)

case Next_Charis

when '’ => Val ;= 1;

when 'V’ =>Val :=5;

when X’ => Val := 10;

when 'C’ => Val := 100;

when 'D’ => Val := 500;

when 'M’ => Val := 1000;

when others => raise lllegal_Roman_Numeral;
end case;

» Can be simulated by sequence of if-statements,
but logic is obscured

41

==

Selection (10/13)

= Ada Case Statement:
» no flow-through (unlike C/C++)

» all possible choices are covered

» mechanism to specify default action for choices not given
explicitly

» no inaccessible branches:
* no duplicate choices (C/C++, ADA, JAVA)
» choices must be static (ADA, C/C++, JAVA, ML)

» in many languages, type of expression must be
discrete (e.g. no floating point)

42

A\ |

Selection (11/13)

» |Implementation of Case:

» A possible implementation for C/C++/JAVA/ADA style
case (if we have a finite set of possibilities, and the
choices are computable at compile-time):

« build table of addresses, one for each choice

» compute value

+ transform into table index

» get table element at index and branch to that address
* execute

 branch to end of case statement

» This is not the typical implementation for a
ML/HASKELL style case

43

==

Selection (12/13)

= Complications

case (x+1)is
when integer’first..0) Put_Line ("negative");
when 1) Put_Line ("unit");
when 3| 5| 7|11) Put_Line ("small prime");
when 2|4 |6|8]|10) Put_Line ("small even");
when 21) Put_Line ("house wins");
when 12..20 | 22..99) Put_Line ("manageable");
when others) Put_Line ("irrelevant");

end case;

* |Implementation would be a combination of tables and if
statements

44

A\ |

Selection (13/13)
= Unstructured Flow (Duff's Device)

void send (int *to, int *from, int count) {
int n = (count +7)/8;
switch (count % 8) {
case 0: do { *to++ = *from++;
case 7: *to++ = *from++;
case 6: *to++ = *from++;
case 5: *to++ = *from++;
case 4: *to++ = *from++;
case 3: *to++ = *from++;
case 2: *to++ = *from++;
case 1: *to++ = *from++;
} while (--n > 0);
}

45

Iteration / Loops (1/14)

= Enumeration-controlled

»Pascal or Fortran-style for loops
* scope of control variable
 changes to bounds within loop
 changes to loop variable within loop
» value after the loop

46

A\ |

Iteration / Loops (2/14)

= |ndefinite Loops
» All loops can be expressed as while-loops
+ good for invariant/assertion reasoning
» condition evaluated at each iteration
» if condition initially false, loop is never executed
while condition loop ... end loop;
is equivalent to
if condition then
while condition loop ... end loop
end if;
if condition has no side-effects

47

Iteration / Loops (3/14)

= Executing While at Least Once

» Sometimes we want to check condition at end instead of at
beginning; this will guarantee loop is executed at least once.
* repeat ... until condition; (PASCAL)
* do { ... } while (condition); (C)
» while form is most common can be simulated by while + a
boolean variable:

first := True;
while (first or else condition) loop

first := False;
end loop;

48

A\ |

Iteration / Loops (4/14)

= Breaking Out

» A more common need is to be able to break out of
the loop in the middle of an iteration.
* break (C/C++, JAVA)
* last (PERL)
+ exit (ADA)
loop
... part A ...
exit when condition;
.. partB ...

end loop;

49

Iteration / Loops (5/14)

= Breaking Way Out
» Sometimes, we want to break out of several levels of a nested
loop
» give names to loops (ADA, PERL)
» use a goto (C/C++)
* use a break + lable (JAVA)

Outer: while C1 loop ...
Inner: while C2 loop ...
Innermost: while C3 loop ...
exit Outer when Major_Failure;
exit Inner when Small_Annoyance;

end loop Innermost;
end loop Inner;
end loop Outer;

50

A\ |

Iteration / Loops (6/14)

= Definite Loops
» Counting loops are iterators over discrete domains:

* forJin 1..10 loop ... end loop;
s for(inti=0;i<n;i++){..}

» Design issues:

+ evaluation of bounds (only once, since ALGOL 60)
+ scope of loop variable

* empty loops

* increments other than 1

* backwards iteration

* non-numeric domains

51

Iteration / Loops (7/14)

= Evaluation of Bounds

for Jin 1..N loop

N:=N+1;
end loop; -- terminates?

» Yes —in ADA, bounds are evaluated once before iteration starts. Note:
the above loop uses abominable style. C/C++/JAVA loop has hybrid
semantics:

for (intj=0; j < last; j++) {

last++; -- terminates?

}

» No — the condition “j < last” is evaluated at the end of each iteration

52

Iteration / Loops (8/14)

» The Loop Variable
» is it mutable?
» what is its scope? (i.e. local to loop?)

= Constant and local is a better choice:

» constant: disallows changes to the variable, which can affect the
loop execution and be confusing
» local: don’t need to worry about value of variable after loop exits

Count: integer := 17;
for Countin 1..10 loop

end loop;
.. - Count is still 17

53

Iteration / Loops (9/14)

= Different Increments
ALGOL 60:
for j from exp1 to exp2 by exp3 do ...

» too rich for most cases; typically, exp3 is +1 or -1.
» what are semantics if exp1 > exp2 and exp3 < 0?

C/C++:
for (int j = exp1; j <= exp2; j += exp3) ...
ADA:

for Jin 1..N loop ...
for J in reverse 1..N loop ...

Everything else can be programmed with a while loop

54

Iteration / Loops (10/14)

= Non-Numeric Domains
ADA form generalizes to discrete types:
for M in months loop ... end loop;
Basic pattern on other data types:

» define primitive operations: first, next, more_elements
» implement for loop as:

iterator = Collection.lterate();

element thing = iterator first;

for (element thing = iterator first;
iterator.more_elements();
thing = iterator.next()) {

}

55

Iteration / Loops (11/14)

» List Comprehensions

» PYTHON calls them “generator expressions”
» Concise syntax for generating lists
» Example:
1=01,2,3,4]
t="a,’b
cl=[xforxinlifx % 2==0]
c2 =[(x,y) forxinlifx <3 foryinft]
print str(c1) # [2,4]
print str(c2) #[(1, 'a’),(1, 'b"),(2, 'a’),(2, 'b’)]

¥

Shorthand for:

c2=[]
forxinl:
if x <3:
foryint:
c2.append((x,y))

56

Iteration / Loops (12/14)

Pre- and Post-conditions

How can we prove that a loop does what we want? pre-conditions and
post-condifions:

{P}s{q}

If proposition P holds before executing 5, and the execution of S
terminates, then proposition) holds afterwards.

Meed to formulate:
¢ pre- and post-conditions for all statement forms

¢ syntax-directed rules of inference
[Pand C} S {F}
{P and C'} while C' do § endloop {P and not C'}

57

Iteration / Loops (13/14)

» Efficient Exponentiation

function Exp (Base: Integer;
Expon: Integer) return Integer is
N: Integer := Expon; -- successive bits of exponent
Res: Integer := 1; -- running result
Pow: Integer := Base; -- successive powers: Base2l
begin
while N > 0 loop
if N mod 2 = 1 then
Res := Res * Pow;
end if;
Pow := Pow * Pow;
N:=N/2;
end loop;
return Res;
end Exp;

58

Iteration / Loops (14/14)

Adding invariants
function Exp (Base: Integer;
Expon: Integer) return Integer is
N: Integer := Expon; -- successive bits of exponent
Res: Integer := 1; -- running result
Pow: Integer := Base; -- SUCCESSiVe DOWSIrs: Bnmjj
begin {i=0} -- count iterations
while N > 0 loop {i: =i+1}
if Nmod 2 = 1 then -- ith bit of Expon from left
Res := Res » Pow; {Res := BaselEzpon mod 2°)}
end if;
Pow := Pow * Pow; {Pow := Base®)
N :=N/ 2; {N = Expon/(2')}
end loop;
return Res; {i = lg Expon; Res = Base®*P"; N =0}
end Exp;
59

eu
Recursion (1/3) :
= Recursion

»equally powerful to iteration

»mechanical transformations back and
forth

»often more intuitive (sometimes less)
» naive implementation less efficient

* no special syntax required

« fundamental to functional languages like
Scheme

60

Recursion (2/3)

= Tail recursion

» No computation follows recursive call

* In this case we do not need to keep multiple copies of the local
variables since, when one invocation calls the next, the first is
finished with its copy of the variables and the second one can
reuse them rather than pushing another set of local variables on
the stack. This is very helpful for performance.

int gcd (int a, int b) {
/* assume a, b > 0 */
if (a == b) return a;
else if (a > b) return gcd (a - b,b);

else return gcd (a, b — a);

A\ |

61

Recursion (3/3)

= |terative version of the previous program:

int gcd (int a, int b) {

/* assume a, b > 0 */

start:
if (a == b) return a;
if (a > b) {
a = a-b;
goto start;
}
b = b-a;

goto start;

==

62

Appendix

History {i

» Developed by Kenneth lverson in the early
1960’s
» Tool for mathematicians
» Tool for thought
» Way of thinking
» Very high level language for matrix
manipulation
» Widely used by actuaries in Insurance

» Use restricted by special character set
including greek letters and other symbols

Typing and Scope

= Dynamic Scope
= Two Types — Numbers and Characters

» Automatic conversion between floating point and
integer

» Strings are character vectors

» Boolean values are 0 and 1

» Type associated with Values, not names

» Tagged types
» Run-time checking

65

Examples

OARGUSE &<§em 9% §8c 08

1@ &%k &

[] E@Dw

[] B =R E
[] %) <K

] K

@

(A =¢ i O=dsl2d SPYLYOk=Le
Txhe ¥ ek ULd

e & @ & o ¢

m DOBeH£SDIH 4

L@

66

= Simple syntax
» Right to left evaluation
» infix operators and functions

» modifiers (verbs and adverbs)
» Modifiers are operators that modify the operation of other operators
» Can be parsed with only 3 states (Zaks)

= Expression Language
» No selection or looping statements
» Only goto
» Scalar operators automatically extend to
matrices
» Loops are unusual in APL

67

Operations on numbers

Monadic
» @, © - grade up/down
X @X [@X] returns indices of elements in sorted order
" ¥, 50 -- ceiling/floor
3.4 =4
Dyadic
" X, % -- max, min
X @y returns maximumof xory 2 3=3

68

Operations on Arrays

-- interval
n returns a vector of integers from origin to n
D4=1234

-- size ©0123=4
Dyadic
-- shape

reshapes an array

2200123 creates a 2 x 2 array

X -- Transpose

Rotates an array along the major diagonal
8 -- Domino

Does matrix inversion and division

69

Operators on Operators

.+ -- outer product
12#.+34
+.< -- inner product

1 2 +.< 3 4 — matrix multiplication

+/ -- reduction +/234=9

equivalentto2 + 3 +4

+\ -- scan +\234=259

like reduction, but with intermediate results
M00101=00111--turns on all bits after first 1
Any dyadic operator can be used for + or <

70

Appendix

Ada95 zi

Overview of Ada95

» http://cs.nyu.edu/courses/fall01/G22.2110-
001/pl.lec3.ppt

Ada Summary

» http://www.nyu.edu/classes/jcf/g22.2110-
001/handouts/Adalntro.html

Notes on Ada

» http://www.nyu.edu/classes/jcf/g22.2110-
001/handouts/AdaNotes.html

Syntax of Ada95:

» http://www.cs.nyu.edu/courses/fall05/G22.2110-
001/RM-P.html

Appendix

= See

» http://www.nyu.edu/classes/jcf/g22.2110-
001/handouts/JDictionary.pdf

Appendix

Perl {i

= See

» http://www.nyu.edu/classes/jcf/g22.2110-
001/handouts/PrototypingInPerl.pdf

Appendix

Python {i

» |ntroduction to Python

» http://www.nyu.edu/classes/jcf/g22.2110-
001/handouts/Pythonintro.pdf

» Python Summary

» http://www.nyu.edu/classes/jcf/g22.2110-
001/handouts/PythonSummary.pdf

= Notes on Python

» http://www.nyu.edu/classes/jcf/g22.2110-
001/handouts/PythonNotes.html

Assignments & Readings

= Readings
il ~ Chapter Sections 6.1-6.5
= Assignment #2
» See Assignment #2 posted under “handouts” on the course Web site
» Due on October 11, 2010

79

Next Session:

= Subprograms:
» Functions and Procedures
» Parameter Passing
» Nested Procedures
» First-Class and Higher-Order Functions

80

