

New York University

Computer Science Department

Courant Institute of Mathematical Sciences

Course Title: Software Engineering Course Number: g22.2440-001

Instructor: Jean-Claude Franchitti Session: 6

(Individual) Assignment #3 – Design Modeling and Architectural

Analysis

I. Due

 Monday April 2 2018, at the beginning of class.

II. Objectives

1. Learn how to approach modeling using UML 2.0/3.0.

2. Learn how to perform an architectural evaluation and approach architectural

analysis and design

3. Learn how to use architectural, design, and implementation patterns.

4. Learn how to perform architectural analysis.

Disclaimer: The artifacts created in this assignment will be used to drive forward

subsequent technical planning in terms of deliverables, and most importantly the

actual form of the object model you will use to represent the architecture. It is

therefore important to create and record the artifacts as formally as possible.

III. References

1. Slides and handouts posted on the course Web site.

IV. Software Required

1. UML 2.0-Compliant Editor (e.g., Sparx Systems's Enterprise Architect, Omondo

UML Eclipse plugin, etc.)

V. Assignment Part I - Design Modeling:

1. Problem Statements:

See Problem Scenarios #1 and #2 outlined in Assignment #2. In addition to the

questions listed in this section, you should make sure that you follow the coverage

and consistency heuristics discussed in class when it comes to using UML 2.0

notations to model your application architectures. Therefore, you should introduce

http://www.nyu.edu/classes/jcf/CSCI-GA.2440-001/handouts/Assignment2.pdf

UML notations as needed in addition to the ones discussed in this section. You

should also create separate analysis and design models as needed and use patterns

and heuristics as appropriate. The next assignment will focus on a more elaborate

use of patterns. Please document how your models are created using coverage and

consistency and other architectural heuristics as this will be taken into account

heavily in the grading process.

2. Brainstorming and CRC Cards:

For each problem scenario in section 1 above, “brainstorm” out a list of object

candidates that model objects you consider key abstractions necessary to solve the

problem. You may want to use 4”x6” index/CRC cards to assist with this

modeling exercise. If you decide to put together a CRC session, it is fine to work

with your group partner(s) as CRC sessions are typically done in groups.

Questions:

a. For each candidate ask the following important “anthropomorphic”

questions :

• “What do I know”? – what data will the object candidate encapsulate?

• “What do I do”? – what methods (functions) will the object support?

b. Assign each of these candidates an index card. In the responsibilities

section document the data/methods you have identified. Using the set of

primary scenarios developed in the previous exercise walk through each

step, identifying how your objects will implement the flow described

within the scenario. Need to add a responsibility as you walk through a

scenario? Go ahead! Need to add a new object? Remove a responsibility?

Remove or combine objects? Again change at this stage is encouraged!

Please document the steps you followed as part of your homework

solution for this question.

3. Class Diagrams:

For each problem scenario in section 1 above, use the set of object candidates

identified in the previous exercise and develop a set of class diagrams that will

document the classes and their relationships in a more formal manner.

Questions:

a. In your diagrams consider the following design issues:

i. For each class what types should the data attributes be?

ii. What are the method signatures for a class i.e. parameters and

return types?

iii. How / should the diagrams be partitioned into packages?

b. What relationships exist between each class, are there Composition?

Aggregation? Generalization-Specialization?

4. Sequence Diagrams:

For each problem scenario in section 1 above, use the flow you have identified at

the use case and CRC level between objects and develop a set of sequence

diagrams to represent the flow of control from a given actor(s) and its execution

of the methods you have identified with your emerging model.

5. Inheritance versus Composition:

Consider the following partitioning of the roles described in the first problem

scenario outlined in section 1:

Assume the following implementations:

Operator

➢ pumpOn – activates the pump (if within min and max water levels)

➢ pumpOff – deactivates the pump (if within min and max water levels)

➢ readMethaneLog – allows the operator to read the methane log for up to

24 hours, with time specified as a parameter

➢ login – user supplies username and password to log in

Supervisor

➢ pumpOn – activates the pump (at any time)

➢ pumpOff – deactivates the pump (at any time)

➢ readPumpWaterLevelLog – allows the supervisor to read the log entries

generated when the pump is switched on or off due to being triggered by

the high of low water sensor, for up to 30 days, with time specified as a

parameter

➢ readPumpSwitchLog – allows the supervisor to read the log entries

generated when the pump is switched on or off by an operator or

supervisor, for up to 30 days, with time specified as a parameter

➢ readMethaneLog – allows the supervisor to read the methane log for up to

30 days, with time specified as a parameter

➢ resetSystem – returns the pump to automatic functionality, switches off

any activated alarms

➢ addNoteToLog – allows the supervisor to add a note to a log, supplied as a

parameter

For the purposes of example let us add two new roles to this model.

Administrator

An administrator is responsible for setting all the configuration parameters in the

system. These include:

a. Adding a user

b. Setting a user role

c. Switching the pump on and off as per the supervisor role

d. Resetting the system

e. Adding a note to the log that captures the details associated with a pump

being switched on or off by a user (to add a maintenance entry)

f. Setting the maximum water level

g. Setting the minimum water level

h. Setting the maximum methane level

i. An administrator may not view any reports

Service Engineer

A service engineer is responsible for maintaining and testing the pumping system

and sensors. This includes the following functions:

a. Switching the pump on and off as per the supervisor role

b. Resetting the system

c. Adding a note to the log that captures the details associated with a pump

being switched on or off by a user (to add a maintenance entry)

Questions:

a. How can the inheritance hierarchy be re-factored to capture these new

roles, does the new hierarchy make sense as an “is-a” typology?

b. Use composition to redesign the role set presented above, Operator,

Supervisor, Administrator, Service Engineer.

c. Discuss the relative advantages and disadvantages of each approach.

d. Come up with a similar context and answer the same questions for the

second scenario outlined in section 1.

6. Architectural Evaluation Discussion:

For each problem scenario in section 1 above, choose an “architecturally

interesting” part of your object model. For the selected set of classes address

the following questions:

a. What alternatives with respect to cohesion and coupling could you have

made with this part of the model? What were the advantages and

disadvantages of each possibility?

b. In your use of inheritance or composition, how would you restructure the

model to use one over the other? What would be the advantages and

disadvantages of each alternative?

c. Critique your model

Note: This part of your homework may be used as a basis for a short

presentation to the instructor and a follow-on discussion with the class.

VI. Assignment Part II – Architectural Analysis:

1. Problem Statements:

See Problem Scenarios #1 and #2 outlined in Assignment #2.

2. Architectural Capabilities (mine pump scenario only):

Fault Detection

Your system relies heavily upon the correct operation of hardware,

specifically pumps sensors and alarms. These need to be closely

monitored to ensure that they are all responsive during normal operations

Questions:

a. Design a “heartbeat” monitor to examine each piece of hardware

in your system – update your class diagrams with the new

architecture, and provide a simple sequence diagram to indicate

how this will operate.

b. Design a “ping” monitor to examine each piece of hardware in

your system– update your class diagrams with the new

architecture, and provide a simple sequence diagram to indicate

how this will operate.

http://www.nyu.edu/classes/jcf/CSCI-GA.2440-001/handouts/Assignment2.pdf

c. Design an exception class hierarchy that captures and propagates

faults for all types of hardware in the system.

d. Should these designs be generic (i.e., for all types of system

hardware? Or specialized to meet individual operating

requirements?)

Fault Recovery

Sensors are typically inexpensive to replace but are prone to failure (Mean

Time Between Failure 8000 hours), as a consequence multiple “instances”

of a given server type can exist within a specific mine shaft.

Questions:

a. Based on one of the detection strategies you designed above,

specify, using class and sequence diagrams build, recovery

strategies using Shadowing, Voting and Replication based

architectures.

b. Report your findings.

Performance and Concurrency

In order to partition and handle the incoming system events, refactor your

architecture to include the presence of “active objects”. These will be

processes/threads that respond to incoming events (such as interrupt

driven sensors) or those that periodically poll resources (such as sensors

that are polled for readings).

Questions:

a. Introduce active objects into your class diagram in order to

handle the dynamic aspects of your system, e.g. sensor input,

alarm triggering, pump actions, user input and so on.

b. Assign each active object a relative priority based on the

following levels:

1. DAEMON – run me in the background if there are spare

CPU cycles.

2. LOW – run me if there are no higher priority events

waiting.

3. MEDIUM – run me if there are no HIGH priority events

waiting.

4. HIGH – run me first!

c. What happens if there are multiple HIGH priority processes

waiting, how should these be handled?

d. What arbitrates who should have priority? Introduce this to your

architecture. What Priority should it run at? How should it

work?

Security

The application provides a role based security model, verified by a simple

user/password access control scheme.

Questions:

a. Add the following to your architecture:

1. Classes to handle the login procedure, this will validate the

user based on a supplied username/password stored in a

database and assign them the appropriate role. Describe the

dynamic behavior using a sequence diagram.

2. Classes to administer the security database, creating,

updating, editing usernames, passwords and role.

3. Classes to encrypt / decrypt usernames and passwords

using an encryption algorithm chosen by the customer from

the following list (Blowfish, DES, Triple-DES).

Validity/Testability

As a safety-critical/mission-critical application your company has decided

to provide architectural hooks into the system to facilitate programmatic

testing. As a consequence you will be required to undertake the

following:

e. Provide a class and illustrate sequence diagram to provide

recording/playback capabilities for the following interface(s):

1. Commands sent to the pump

2. Information sent/polled by each sensor

3. Commands sent to the Evacuation Alarm

f. Provide specialized interfaces for your basic abstractions that

allow access to all private attributes for unit test purposes. Do

not allow these to be accessed by “normal” clients ensuring

system operation (hint : use two UML interfaces, one for normal

operation, one for test purposes only.)

3. Abstract Factory Design Pattern (mine pump scenario only):

After an analysis of the market your company has decided to provide device

drivers for a range of different platforms, to enable your application to

communicate with each type of sensor supported by the application (high water,

low water, methane sensor). These are listed as follows:

1. Linux USB Driver

2. Linux Serial Port Driver

3. Linux Wireless Driver

4. Win32 USB Driver

5. Win32 Serial Port Driver

Questions:

c. Define a class diagram that shows the Abstract Factories and Product

Hierarchies necessary to implement these variations for every type of

Sensor supported. Make sure each factory is also defined as a Singleton

(why? What would be the advantage of this?)

4. Composite Design Pattern (mine pump scenario only):

Your company has decided to provide an “environmental simulator” used to

simulate events that the system may receive in order to test installations and

diagnose outstanding software or hardware problems. As part of this simulator

you will be required to build an object structure used to model expressions in

PSL, the proprietary Pump Simulator Language.

a. This language has the following primitives:

i. High Water Event – represents a maximum water level reading from a

high water sensor

ii. Low Water Event – represents a minimum water level reading from a low

water sensor

iii. Methane Alarm – represents a dangerous methane reading from the

methane sensor

iv. Supervisor Switches Pump On – represents the supervisor switching the

pump on manually

v. Supervisor Switches Pump Off – represents the supervisor switching the

pump off manually

vi. Run for N minutes – runs the pump for N minutes, this must follow an

event from (i)-(iv)

vii. Reset – resets all alarms, switches off the pump

b. These primitives can be combined into higher level constructs called

“workflows”. A workflow is a composite that may hold one or more

primitives, or other workflow objects.

Using the composite pattern, develop the following tactical solutions:

Questions:

a. Develop a class diagram showing the components of the language and

how they interrelate.

b. Develop a number of sequence diagrams that show example PSL

processing scenarios.

In order to handle user interactions in the presentation layer your architecture

team has decided to handle individual user actions in separate action objects. An

action will receive a user request, unpack input variables, call the appropriate

business logic tier interface(s), get back the results and send them as output back

to the user.

a. An Action object must support the following functionality:

i. StartTransaction – will start a transaction every time the action object

is called

ii. endTransaction – will end (and commit) the transaction when output is

returned to the user

iii. onError – will rollback the transaction if an error occurs

iv. doWorkflow – will do the necessary action

b. These actions can be nested, i.e. it is possible to have an action object made up

of smaller action object. These “child” actions are simply executed in

sequence.

Using the composite and template method patterns do the following:

Questions:

a. Develop a class diagram showing the structure you have designed

b. Develop two sequence diagrams

i. Show a normal transaction

ii. Show a transaction where error (and rollback occurs)

c. Hint : For the superclass in the composite you will need an abstract class

not an interface…why?

d. For composite action objects how can I add logic to the execution of

nested “leaf” or “composite” actions i.e. if X then do action Y else action

Z.

5. Adapter Design Pattern (mine pump scenario only):

Many pumps typically run “hot” and require airflow cooling systems to keep them

within safe operating temperatures. These systems are expensive to operate and so

should run “in step” with the operation of the pump.

Questions:

a. Build a class diagram that provides a class/interface for the cooling

system. This interface provides two methods:

i. Switch (on/off), turns the cooling system on or off based on the

parameter, when switched off the pump will run for an additional 20

minutes in order to cool the pump down following operation.

ii. Emergency Off – switches off the cooling system immediately

b. Build an adapter that will operate the pump and cooling system

simultaneously

c. Model the dynamic behavior of the adapter using a sequence diagram,

show scenarios that demonstrate both normal on/off operation and the

behavior exhibited when the methane alarm is activated.

6. Observer Design Pattern (mine pump scenario only):

A pump will generate a diagnostic message every 30 seconds that reports the

following information:

• The current temperature of the pump

• The amount of water pumped (in cubic cm) since the last reading

• The current time

This information is required to be sent to a user interface, a mail message must be

sent to a dedicated email inbox, and it must be placed in a dedicated pump reading

database.

Questions:

a. Make the appropriate changes to your pump class, use an observer pattern

to model the scenario described above using a class diagram. Produce a

sequence diagram to illustrate how this pattern will work when the pump

generates a diagnostic message.

7. Visitor Design Pattern (mine pump scenario only):

Each sensor and pump in the system will also be required to have the following

two data attributes:

a. Last Serviced – the calendar data it was last serviced on

b. Next Service Due – the time by which it must be serviced (an offset of N

months from the Last Serviced date)

In addition a pump will have the following information:

c. Pump Location (e.g. Shaft 6)

d. Logical Pump Name (e.g. “Old Ironsides”)

Using the visitor pattern you are required to build a simple reporting addition that

will…

Questions:

a. Generate a report showing all the sensor and pump information on request

from a supervisor.

8. Architectural Patterns:

For each problem scenario in section 1 above, using the session 8 presentation(s)

on architectural patterns as a “pattern catalog” select one or more architectural

patterns as the basis for your final system. For each pattern selected undertake the

following:

Questions:

a. Using UML packages, partition your existing class diagram(s) to conform

to the architectural configuration suggested by your chosen patterns.

b. What additional classes will your packages require in order to meet the

requirements of this architecture? e.g.: How is distributed communication

managed? How are common resources efficiently shared?

9. JEE Implementation Patterns:

For each problem scenario in section 1 above, using a component technology of

choice (e.g. JEE or .NET), use the presentation as a “pattern catalog” to identify

how the following tactical solutions can be used to facilitate the use of your

existing object model as a basis for a JEE/.NET solution:

Questions:

c. Business Delegate

d. Service Locator

e. Session Façade

f. Intercepting Filter

g. Fast Lane Reader

VII. Deliverables

1. Electronic:

Your assignment files (Assignment3 files) must be emailed to the TA. The files

must be sent by the beginning of class. After the class period, the homework is

late. The email clock is the official clock.

2. Written:

Printout of your assignment solution. The cover page supplied on the next page

must be the first page of your assignment file

 Fill in the blank area for each field.

NOTE:

The sequence of the hardcopy submission is:

1. Cover sheet

2. (Part I) Brainstorming, modeling, and architectural evaluation

documentation for each scenario

3. (Part I) UML 2.0/3.0 analysis and design object model for each

scenario

4. (Part II) Brainstorming, modeling, and architectural analysis

documentation for each scenario as required

5. (Part II) UML analysis/design object models for each scenario

Name ________________________ Username: ______________ Date: ____________

 (last name, first name, username is SID)

Section: ___________

Assignment 3 Assessment

Assignment Layout

o Assignment is neatly assembled on 8 1/2 by 11 paper.

o Cover page with your name (last name first followed by a comma then first name),

email, and section number with a signed statement of independent effort is included.

o (Part I) Brainstorming, modeling, and architectural evaluation documentation is

satisfactory.

o (Part I) UML 2.0/3.0 analysis and design object models are satisfactory.

o (Part II) Brainstorming, modeling, and architectural analysis documentation is

satisfactory.

o (Part II) UML analysis/design object models are satisfactory.

o File names are correct.

(Part I) Brainstorming, Modeling, and Architectural Evaluation

o Word document.

o Completeness of analysis and design for each problem scenario.

o Appropriateness of architectural analysis and design comments for each problem

scenario.

(Part I) UML 2.0/3.0 analysis object models

o XMI file.

o Completeness and conciseness of analysis and design object model for each scenario.

o Appropriateness of modeling choices for each problem scenario.

(Part II) Brainstorming, Modeling, and Architectural Analysis

o Word document.

o Completeness of analysis/design for each problem scenario.

o Proper application of patterns for each problem scenario.

o Appropriateness of architectural analysis comments for each problem scenario.

(Part II) UML analysis object models

o XMI file(s).

o Completeness and conciseness of analysis/design object model(s) for each scenario.

o Appropriateness of modeling choices for each problem scenario.

Total points ___________________

Professor Comments:

Affirmation of my Independent Effort: _____________________________

 (Sign here)

