Software Engineering

— Main Theme

Session 6
Detailed-Level Analysis and Design

7%
7
. \\\\“ AL,

New York University
Computer Science Department

Dr. Jean-Claude Franchitti
Courant Institute of Mathematical Sciences

Presentation material partially based on textbook slides

Software Engineering: A Practitioner’s Approach (7/e)

by Roger S. Pressman
Slides copyright © 1996, 2001, 2005, 2009

e, g - v o
IIS IS TSI TS TITIT I T IS5

7,
IS

|| mm——— >
I \\wv\\\\ww\w\w\\\\ 7774 §\\S\

L7777

- LLLL S 7 7 <
T -
ST e r\.

7

ALLT 7T T,

=

= IS

2 Requirements Analysis

. Sample Analysis and Designh Exercise Using UML

What is the class about?

» Course description and syllabus:

» http://www.nyu.edu/classes/jcf/q22.2440-001/
» http://www.cs.nyu.edu/courses/spring13/G22.2440-001/

= Textbooks:

» Software Engineering: A Practitioner’s Approach

Roger S. Pressman
McGraw-Hill Higher International

ISBN-10: 0-0712-6782-4, ISBN-13: 978-00711267823, 7t Edition (04/09)
» http://highered.mcgraw-hill.com/sites/0073375977/information center view0/

» http://highered.mcgraw-
hill.com/sites/0073375977/information center viewQ/table of contents.html

Detailed-Level Analysis and Design in Brief

» [ntroduction
= Requirements Analysis
= Requirements Modeling
= Design Concepts
= Sample Analysis and Design Exercise (Using UML 1.x)
= Summary and Conclusion
» Readings
= |ndividual Assignment #2 (assigned)
» Team Assignment #1 (ongoing)
= Course Project (ongoing)

Icons / Metaphors

Agenda

2 Requirements Analysis

-

Sample Analysis and Designh Exercise Using UML

Requirements Analysis

= Requirements analysis
» specifies software’s operational characteristics

» indicates software's interface with other system
elements

» establishes constraints that software must meet

» Requirements analysis allows the software
engineer (called an analyst or modeler in this
role) to:

» elaborate on basic requirements established during
earlier requirement engineering tasks

» build models that depict user scenarios, functional
activities, problem classes and their relationships,
system and class behavior, and the flow of data as it
IS transformed.

A Bridge

system
description

analysis
model

Rules of Thumb ﬁ

= The model should focus on requirements that
are visible within the problem or business
domain. The level of abstraction should be
relatively high.

= Each element of the analysis model should
add to an overall understanding of software
requirements and provide insight into the
Information domain, function and behavior of
the system.

» Delay consideration of infrastructure and
other non-functional models until design.

= Minimize coupling throughout the system.

= Be certain that the analysis model provides
value to all stakeholders.

= Keep the model as simple as it can be.

Domain Analysis ﬁ

Software domain analysis is the identification, analysis, and
specification of common requirements from a specific
application domain, typically for reuse on multiple projects
within that application domain . . . [Object-oriented domain
analysis is] the identification, analysis, and specification of
common, reusable capabilities within a specific application
domain, in terms of common objects, classes, subassemblies,
and frameworks . . .

10

Domain Analysis

= Define the domain to be
investigated.

» Collect a representative sample of
applications in the domain.

= Analyze each application in the
sample.

= Develop an analysis model for the
objects.

11

Elements of Requirements Analysis

Scenano-
based
models

Class
models

8.0
class diagrams

collaboration
diagrams

Ergrp
use Cases
user stones

Flow

Models

e.gd.,

DFDs

data models

Behaviaral
modals

e.g.,
state diagrams
Sequence

diagrams

12

Scenario-Based Modeling ﬁ

“[Use-cases] are simply an aid to defining what exists
outside the system (actors) and what should be
performed by the system (use-cases).” lvar Jacobson
(1) What should we write about?
(2) How much should we write about it?
(3) How detailed should we make our description?
(4) How should we organize the description?

13

What to Write About?

—provide you with the

information you'll need to begin writing use cases.

»

»

»

»

»

»

are used to
identify stakeholders
define the scope of the problem
specify overall operational goals
establish priorities
outline all known functional requirements, and

describe the things (objects) that will be manipulated by the
system.

= To begin developing a set of use cases,

14

How Much to Write About?

= As further conversations with the
stakeholders progress, the requirements
gathering team develops use cases for
each of the functions noted.

* |In general, use cases are written first in an
informal narrative fashion.

» |[f more formality is required, the same use
case is rewritten using a structured format
similar to the one proposed.

15

Use-Cases ﬁ

= a scenario that describes a “thread
of usage” for a system

represent roles people or
devices play as the system functions

can play a number of different
roles for a given scenario

16

Developing a Use-Case ﬁ

= What are the main tasks or functions that
are performed by the actor?

= What system information will the the actor
acquire, produce or change?

= Will the actor have to inform the system
about changes in the external
environment?

= What information does the actor desire
from the system?

= Does the actor wish to be informed about
unexpected changes?

17

Use-Case Diagram

/N

homeowner

SafeHome

Access camera
surveillance viathe
Internet

"~/ Configure SafeHome
system parameters

cameras

18

Activity Diagram

enter password
and user ID

valid passwords/ ID invalid passwor ds/ ID

select major functiol

Supplements the use |
case by providing a e
graphical
representation of the
flow of interaction
within a specific
scenario

input triesremain

select surveillance

no input
triesremain

select aspecificcamera

select specific
camera - thumbnailg

select camera icon

view camera outpul
in labelled window,

prompt for
another view

exit this f unction

seeanct her camera

19

Swimlane Diagrams

homeowner camera interface

enter password
and user ID

valid passwords/ ID : :
/ invalid

passwords/ID

prompt for reentry

input tries
remain

Allows the modeler to
represent the flow of

activities described by the et £
use-case and at the same e

time indicate which actor
(if there are multiple

actors involved in a

specific use-case) or DU
analysis class has

responsibility for the Qanj:':f fﬁfniigia9<select camera i09

action described by an | |
activity rectangle

select major function

no input
triesremain

select aspecific camera

generate video
output

prompt for
another view

view camera output
in labelled window

exit this
I f‘nclion
N
another
camera

20

Data Modeling

= examines data objects
independently of processing

= focuses attention on the data
domain

= creates a model at the
customer’s level of abstraction

» indicates how data objects
relate to one another

21

What is a Data Object?

" arepresentation of almost any composite
information that must be understood by software.

» composite information—something that has a number of
different properties or attributes

" can be an (e.g., anything that
produces or consumes information), (e.g.,a
report or a display), (e.g., a telephone
call) (e.g., an alarm), (e.g.,
salesperson), (e.g.,
accounting department), (e.g., a warehouse),
or (e.g., a file).

* The description of the data object incorporates the
data object and all of its attributes.

= A data object encapsulates data only—there 1s no
reference within a data object to operations that act
on the data.

22

Data Objects and Attributes

A data object contains a set of attributes that act as
an aspect, quality, characteristic, or descriptor of
the object

object: automobile

attributes:
make
model

body type
price
options code

23

What is a Relationship?

» Data objects are connected to one another
in different ways.
» A connection is established between

and because the two objects are related.
* A person owns a car

» A person is insured to drive a car
* The relationships and
define the relevant connections
between and

= Several instances of a relationship can
exist

= Objects can be related in many different
ways

24

_|
ERD Notation “'j

One common form:

(0, m)
(1,1)

Another common form:

relationship

25

_|
Building an ERD “'j

—model all data objects
(entities) and their “connections” to one
another

—model all entities and
relationships

—model all entities,
relationships, and the attributes that
provide further depth

26

Customer request_
.10 (1,m) for service
standard
task table

selected

@M1}l work

(1,1)

consists

from
\V

~_

27

Class-Based Modeling

» (Class-based modeling represents:
» that the system will manipulate

» (also called methods or services) that will be
applied to the objects to effect the manipulation

» (some hierarchical) between the objects

» that occur between the classes that are
defined.

= The elements of a class-based model include classes
and objects, attributes, operations, CRC models,
collaboration diagrams and packages.

28

_\ |
Identifying Analysis Classes ﬁ

* Examining the usage scenarios developed as
part of the requirements model and perform a
"erammatical parse" [Abb83]

» Classes are determined by underlining each noun
or noun phrase and entering it into a simple table.

» Synonyms should be noted.

» If the class (noun) 1s required to implement a
solution, then it 1s part of the solution space;
otherwise, 1f a class 1s necessary only to describe a
solution, 1t 1s part of the problem space.

= But what should we look for once all of the
nouns have been 1solated?

29

Manifestations of Analysis Classes

" Analysis classes manifest themselves in one of the
following ways:

e External entities (e.g., other systems, devices, people) that produce
or consume information

» Things (e.g, reports, displays, letters, signals) that are part of the
information domain for the problem

* Occurrences or events (e.g., a property transfer or the completion
of a series of robot movements) that occur within the context of
system operation

* Roles (e.g., manager, engineer, salesperson) played by people who
interact with the system

» Organizational units (e.g., division, group, team) that are relevant
to an application

* Places (e.g., manufacturing floor or loading dock) that establish
the context of the problem and the overall function

e Structures (e.g., sensors, four-wheeled vehicles, or computers) that
define a class of objects or related classes of objects

30

ea
Potential Classes ﬁ

The potential class will be useful during analysis
only if information about it must be remembered so that the system can
function.

The potential class must have a set of identifiable
operations that can change the value of its attributes in some way.

During requirement analysis, the focus should be on
"major" information; a class with a single attribute may, in fact, be useful
during design, but is probably better represented as an attribute of another
class during the analysis activity.

A set of attributes can be defined for the potential class
and these attributes apply to all instances of the class.

A set of operations can be defined for the potential
class and these operations apply to all instances of the class.

External entities that appear in the problem space
and produce or consume information essential to the operation of any
solution for the system will almost always be defined as classes in the
requirements model.

31

®
Defining Attributes i

m Artributes describe a class that has been
selected for inclusion in the analysis model.

» build two different classes for professional

baseball players
name, position,
batting average, fielding percentage, years played,
and games played might be relevant
average salary, credit
toward full vesting, pension plan options chosen,
mailing address, and the like.

32

Defining Operations

* Do a grammatical parse of a processing
narrative and look at the verbs

» Operations can be divided into four broad
categories:

» (1) operations that manipulate data in some way
(e.g., adding, deleting, reformatting, selecting)

» (2) operations that perform a computation

» (3) operations that inquire about the state of an
object, and

» (4) operations that monitor an object for the
occurrence of a controlling event.

33

_|
CRC Models “'j

modeling [W1r90] provides a simple means for
1dentifying and organizing the classes that are

relevant to system or product requirements.
Ambler [Amb93] describes CRC modeling in
the following way:

» A CRC model 1s really a collection of standard
index cards that represent classes. The cards are
divided into three sections. Along the top of the
card you write the name of the class. In the body of
the card you list the class responsibilities on the
left and the collaborators on the right.

34

CRC Modeling

raYl

oYl

Rlanas

ClassfloorPlan

Description:

Responsibility:

Collaborator:

defines floor plan name/type

manages floor plan positioning

scales floor plan for display

scales floor plan for display

incorporates walls, doors and windows

Wall

shows position of video cameras

Camera

35

Class Types ﬁ

, also called or
are extracted dlrectly from the statement of the problem
(e.g., FloorPlan and Sensor).

are used to create the interface (e.g.,
Interactive screen or printed reports) that the user sees
and interacts with as the software is used.

manage a “unit of work” [UMLO3]
from start to finish. That is, controller classes can be
designed to manage
» the creation or update of entity objects;

» the instantiation of boundary objects as they obtain information
from entity objects;

» complex communication between sets of objects;

» validation of data communicated between objects or between
the user and the application.

36

Responsibilities i

= System intelligence should be distributed across
classes to best address the needs of the
problem

= Each responsibility should be stated as
generally as possible

= |nformation and the behavior related to it should
reside within the same class

» |[nformation about one thing should be localized
with a single class, not distributed across
multiple classes.

= Responsibilities should be shared among related
classes, when appropriate.

37

Collaborations

= Classes fulfill their responsibilities in one of two ways:

» A class can use its own operations to manipulate its own
attributes, thereby fulfilling a particular responsibility, or

» a class can collaborate with other classes.
= Collaborations identify relationships between classes

» Collaborations are identified by determining whether a
class can fulfill each responsibility itself

» three different generic relationships between classes

[WIR90]:
» the relationship
» the relationship

» the relationship

38

Composite Aggregate Class

Player

t

PlayerHead

PlayerBody

PlayerArms

PlayerlLegs

39

Associations and Dependencies

= Two analysis classes are often related to one
another in some fashion
» |In UML these relationships are called
» Associations can be refined by indicating
(the term IS used in data modeling

* In many instances, a client-server relationship
exists between two analysis classes.
» In such cases, a client-class depends on the server-

class in some way and a IS
established

40

Multiplicity

Wall
1 1 1
is used to buildp» « is used to build
A
1.* *| isused to build | g *
WallSegment Window Door

41

Dependencies

DisplayWindow

<<access>>

{password

Camera

42

Analysis Packages 'i

» Various elements of the analysis model (e.g.,
use-cases, analysis classes) are categorized in
a manner that packages them as a grouping

= The plus sign preceding the analysis class name
In each package indicates that the classes have
public visibility and are therefore accessible from
other packages.

= Other symbols can precede an element within a
package. A minus sign indicates that an element
is hidden from all other packages and a #
symbol indicates that an element is accessible
only to packages contained within a given
package.

43

Analysis Packages

- -~ package name
Environment -~~~ | // ‘\
\
+Tree //)
+|_ar!bcaB / ‘
+Road '/ “
+Wall / \
+Bxi ‘
+BUi?cgierg // RulesOf TheGame
+VisualEffect /
Vo | +RulesOMov
! +ConstraintsOnAction

Oharacters

+Player
+mmist
+Antagonist

+SupportingRole

44

Reviewing the CRC Model ﬁ

» (Cards that collaborate should be separated (i.e., no reviewer should
have two cards that collaborate).

» As the review leader comes to a named object, she passes a token to
the person holding the corresponding class index card.

» The group determines whether one (or more) of the responsibilities
satisfies the use-case requirement.

» This may include the definition of new classes (and corresponding CRC
index cards) or the specification of new or revised responsibilities or
collaborations on existing cards.

45

Agenda

2 Requirements Analysis

-

Sample Analysis and Designh Exercise Using UML

46

Requirements Modeling Strategies

* One view of requirements modeling, called
considers data and the processes that
transform the data as separate entities.

» Data objects are modeled in a way that defines their
attributes and relationships.

» Processes that manipulate data objects are modeled 1n a
manner that shows how they transform data as data objects
flow through the system.

= A second approach to analysis modeled, called
focuses on

» the definition of classes and

» the manner in which they collaborate with one another to
effect customer requirements.

47

Flow-Oriented Modeling

= Represents how data objects are transformed at they
move through the system

1s the diagrammatic form
that 1s used

= Considered by many to be an “old school” approach,
but continues to provide a view of the system that 1s
unique—it should be used to supplement other
analysis model elements

48

The Flow Model

Every computer-based system 1s an
information transform

- IE -

49

Flow Modeling Notation

. external entity

process

/ data flow

data store

50

External Entity

ducer or consumer of data

Examples: a person, a device, a sensor

Another example: computer-based
system

Data must always originate somewhere
and must always be sent to something

51

Process

ta transformer (changes input
utput)

Examples: compute taxes, determine area,
format report, display graph

Data must always be processed in some
way to achieve system function

52

Data Flow

—— —

Data flows through a system, beginning
as input and transformed into output.

base

\ compute
area

triangle >
area

53

Data Stores

 —
Data is often stored for later use.
 —
sensor #
sensor #, type,

look-up location, age
sensor |G

report required data

—

type,
\ location, age
sensor humber

sensor data

54

Data Flow Diagramming: Guidelines

= all icons must be labeled with meaningful
names

» the DFD evolves through a number of
levels of detall

= always begin with a context level
diagram (also called level 0)

= always show external entities at level 0
= always label data flow arrows
» do not represent procedural logic

55

_\ |
Constructing a DFD—I ﬁ

" review user scenarios and/or the
data model to isolate data objects
and use a grammatical parse to
determine “operations”

= determine external entities
(producers and consumers of data)

= create a level 0O DFD

56

Level 0 DFD Example E\ﬁ{?’ti

processing
request

requested
- video
digital signal

processor

video
source

NTSC
video signal

57

ea
Constructing a DFD—II “j

= write a narrative describing the
transform

= parse to determine next level transforms

= “palance” the flow to maintain data flow
continuity

= develop a level 1 DFD
» use a 1:5 (approx.) expansion ratio

58

The Data Flow Hierarchy

level 0

59

Flow Modeling Notes i

= each bubble is refined until it does just
one thing

» the expansion ratio decreases as the
number of levels increase

= most systems require between 3 and 7
levels for an adequate flow model

» a single data flow item (arrow) may be
expanded as levels increase (data
dictionary provides information)

60

Process Specification (PSPEC)

61

ea
DFDs: A Look Ahead “j

O/Q/@@
analysis model%@\

S

design model !E

Control Flow Modeling

» Represents “cvenis” and the processes
that manage events

= An “event” Is a Boolean condition that can

be ascertained by:
* listing all sensors that are "read" by the software.
* listing all interrupt conditions.

* listing all "switches" that are actuated by an
operator.

* listing all data conditions.

* recalling the noun/verb parse that was applied to
the processing narrative, review all "control items"
as possible CSPEC inputs/outputs.

63

Control Specification (CSPEC)

The CSPEC can be:

[l state diagram
(sequential spec)

[state transition table , ,
combinatorial spec

1] decision tables

] activation tables

64

Behavioral Modeling i

* The behavioral model indicates how
software will respond to external events
or stimuli. To create the model, the
analyst must perform the following
steps:

Evaluate all use-cases to fully understand the
sequence of interaction within the system.

|dentify events that drive the interaction sequence
and understand how these events relate to
specific objects.

Create a sequence for each use-case.
Build a state diagram for the system.

Review the behavioral model to verify accuracy
and consistency.

65

State Representations

* |n the context of behavioral modeling, two
different characterizations of states must be

considered:
»

»

* The state of a class takes on both passive and
active characteristics [CHA93].

> A Is simply the current status of all of an
object’s attributes.
» The of an object indicates the current

status of the object as it undergoes a continuing
transformation or processing.

66

State Diagram for the ControlPanel Class

timer > lockedTime

timer lockedTime

ocked

password = incorrect
& numberOf Tries ¢ maxTries

reading Lbr comparing \J

key hit
. password

—P entered

do: validatePassword

- J

[

I

N

numberOf Tries > maxTries

password = correct

[selecting)

activation successful

N

67

The States of a System

—a set of observable circum-
stances that characterizes the behavior of
a system at a given time

—the movement from one
state to another

—ahn occurrence that causes the
system to exhibit some predictable form
of behavior

—yprocess that occurs as a
consequence of making a transition

68

Behavioral Modeling i

= make a list of the different states of a
system (How does the system behave?)

= indicate how the system makes a
transition from one state to another (How

does the system change state?)
» Indicate event
» Indicate action

= draw a

69

Sequence Diagram

homeowner control panel system sensors

system
ready

password ent ered

result

password = correct

|
|
numberOfTries > maxTries ’D request activation I

I

I

|

I

I

request lookup :
| | |

I

I

1

activation successful

g
8
5
:
!
g
@ -
A

-

Figure 8.27 Sequence diagram (partial) for SafeHome security function

70

Writing the Software Specification

Everyone knew exactly
what had to be done
until someone wrote it

down!

71

Patterns for Requirements Modeling

* Software patterns are a mechanism for capturing
domain knowledge 1in a way that allows it to be
reapplied when a new problem 1s encountered

» domain knowledge can be applied to a new problem within
the same application domain

» the domain knowledge captured by a pattern can be applied
by analogy to a completely different application domain.
* The original author of an analysis pattern does not
“create” the pattern, but rather, discovers it as
requirements engineering work 1s being conducted.

= Once the pattern has been discovered, 1t 1s
documented

72

Discovering Analysis Patterns

* The most basic element in the description of a
requirements model 1s the use case.

= A coherent set of use cases may serve as the
basis for discovering one or more analysis
patterns.

* A semantic analysis pattern (SAP) “is a pattern
that describes a small set of coherent use cases
that together describe a basic generic
application.” [FerOOQ]

73

An Example ;ﬁ

* Consider the following preliminary use case for software
required to control and monitor a real-view camera and
proximity sensor for an automobile:

Use case: Monitor reverse motion

Description: When the vehicle is placed in reverse gear, the
control software enables a video feed from a rear-placed video
camera to the dashboard display. The control software
superimposes a variety of distance and orientation lines on the
dashboard display so that the vehicle operator can maintain
orientation as the vehicle moves in reverse. The control software
also monitors a proximity sensor to determine whether an object is
inside 10 feet of the rear of the vehicle. It will automatically break
the vehicle if the proximity sensor indicates an object within 3 feet

of the rear of the vehicle.

74

An Example o]

= This use case implies a variety of functionality that
would be refined and elaborated (into a coherent set
of use cases) during requirements gathering and
modeling.

= Regardless of how much elaboration 1s accomplished,
the use case(s) suggest(s) a simple, yet widely
applicable SAP—the software-based monitoring and
control of sensors and actuators in a physical system.

* In this case, the “sensors” provide information about
proximity and video information. The “actuator” is the
breaking system of the vehicle (invoked if an object 1s
very close to the vehicle.

* But in a more general case, a widely applicable
pattern 1s discovered -->

75

Actuator-Sensor Pattern—I

Pattern Name: Actuator-Sensor
Intent: Specify various kinds of sensors and actuators in an embedded system.

Motivation: Embedded systems usually have various kinds of sensors and actuators. These sensors and
actuators are all either directly or indirectly connected to a control unit. Although many of the sensors and
actuators look quite different, their behavior is similar enough to structure them into a pattern. The pattern
shows how to specify the sensors and actuators for a system, including attributes and operations. The Actuator-
Sensor pattern uses a pull mechanism (explicit request for information) for PassiveSensors and a push
mechanism (broadcast of information) for the ActiveSensors.

Constraints:
Each passive sensor must have some method to read sensor input and attributes that represent the sensor value.
Each active sensor must have capabilities to broadcast update messages when its value changes.

Each active sensor should send a [ife tick, a status message issued within a specified time frame, to detect
malfunctions.

Each actuator must have some method to invoke the appropriate response determined by the
ComputingComponent.

Each sensor and actuator should have a function implemented to check its own operation state.

Each sensor and actuator should be able to test the validity of the values received or sent and set its operation
state if the values are outside of the specifications.

76

Actuator-Sensor Pattern—lI

Applicability: Useful in any system in which multiple sensors and actuators are present.

Structure: A UML class diagram for the Actuator-Sensor Pattern is shown in Figure 7.8. Actuator,
PassiveSensor and ActiveSensor are abstract classes and denoted in italics. There are four different
types of sensors and actuators in this pattern. The Boolean, integer, and real classes represent the most
common types of sensors and actuators. The complex classes are sensors or actuators that use values that
cannot be easily represented in terms of primitive data types, such as a radar device. Nonetheless, these
devices should still inherit the interface from the abstract classes since they should have basic
functionalities such as querying the operation states.

PassiveSensorl-ge— | Computing bl gemaior
Componant

PassiveBoolean [| | PassiveReal Boolean | | | Real
Sensor Sensor Actuator Actuator
ActiveSensor
Passivelnieger |~ | Passivel ex Integer |1 Complex
Sansor -.sm::p A Actuator Actuator
ActiveBoolean |- ActiveReal
Sensor Sensor
Activelnteger [~ | ActiveComplex
Sensor Sensor

77

Actuator-Sensor Pattern—III

Behavior: Figure 7.9 presents a UML sequence diagram for an example of the Actuator-Sensor Pattern as it
might be applied for the SafeHome function that controls the positioning (e.g., pan, zoom) of a security
camera. Here, the ControlPanel queries a sensor (a passive position sensor) and an actuator (pan control) to
check the operation state for diagnostic purposes before reading or setting a value. The messages Set
Physical Value and Get Physical Value are not messages between objects. Instead, they describe the
interaction between the physical devices of the system and their software counterparts. In the lower part of
the diagram, below the horizontal line, the PositionSensor reports that the operation state is zero. The
ComputingComponent then sends the error code for a position sensor failure to the FaultHandler that will
decide how this error affects the system and what actions are required. it gets the data from the sensors and
computes the required response for the actuators.

Farsoringd SEEER S U Arrimae ke D vwns
| F i Horelley | | Pz T] | oo™ wred | ALl FogloriorEr rarCortrd

T T T] |

I |]

i | T v |

i | i I

i | i |

i

i

b < :

-
-

(=P R

-

S N & S —

)

L

]

§

-
—

78

%

Actuator-Sensor Pattern—II| ey

-_:-l’c(‘ _}g

» See textbook for additional information on:
» Participants
» Collaborations
» Consequences

79

Requirements Modeling for WebApps

The full spectrum of content to be provided by the
WebApp is identified, including text, graphics and images, video,
and audio data. Data modeling can be used to identify and describe
each of the data objects.

The manner in which the user interacts with the
WebApp is described in detail. Use-cases can be developed to
provide detailed descriptions of this interaction.

The usage scenarios (use-cases) created as part
of interaction analysis define the operations that will be applied to
WebApp content and imply other processing functions. All
operations and functions are described in detalil.

The environment and infrastructure in which
the WebApp resides are described in detail.

80

When Do We Perform Analysis?

* |In some WebE situations, analysis and
design merge. However,

» the WebApp to be built is large and/or
complex

» the number of stakeholders is large

» the number of Web engineers and other
contributors is large

» the goals and objectives (determined during
formulation) for the WebApp will effect the
business’ bottom line

» the success of the WebApp will have a strong
bearing on the success of the business

81

®
The Content Model i

are extracted from use-cases

» examine the scenario description for direct and
iIndirect references to content

of each content object are identified

= The among content objects and/or
the hierarchy of content maintained by a
WebApp

» Relationships—entity-relationship diagram or UML
» Hierarchy—data tree or UML

82

Data Tree

MarketingDescriptior
Phot ograph
part Number l
TechDescription
/ partName
1 - Schematic
component - art Type
\< P yp
\ description Hieze
price \

WholesalePrice

RetailPrice

Figure 18.3 Data tree for aSafeHome component

83

The Interaction Model

* Composed of four elements:
»

»
»

»

= Each of these is an important UML
notation and is described in Appendix | of
the textbook

84

Sequence Diagram

:Product ‘Billof FloorPlan BoM

‘Poom ‘HoorAan Component Materials Repository Repository

describes

room*
places room

|
|
|
|
|
|
in floor plan |
|
|
|

1
save floor plan configuration

Fgure 18.5 Sequence diagram for use-case:select SafeHome components

85

State Diagram

Validating user \

system status="input ready’
displaymsg = “enterserid”
displaymsg =“enterpswd”

sled “log-in”

/ Seledting user adion\

system status="link ready”

userid
validated

select other fungtions
—r‘ o809

display: navigation choices’

entry/ log-in requested
do: run user validation
ext/set user acess szvitd)

newcustomer

customization complete

password validatk

entry/ validated user

_» do: link as required
@/user adion seledecy

select e-commerce (purchase) functionality

select customization functionality

next selection

Saving floor plan \

(Qustomizing \4

seled desxiptive
oontent

1
|

system status="input ready’
display: basc insrucions

Defining room \

entry/validated user
do: process user selecion

room being defined | system status="input ready’
—rs display: roondef. window

system status="input ready’
seled desxriptive display: storage indicator

oontent

entry/ floor plan save seleqed

do: store floor plan)

’ @/save completed

ext/ customization terminat

eos @

_‘ L Jent ry/ roomdef.selected

all rooms| do: run room queries
defined | do: store room variables

@room completed

seled save floor plan

seled desxiptive
oontent

/ Building floor plan \

seled enter roomin floor plan

> sysem status="input ready’
display: floor plan window

entry/ floor plan selected
do: insert room in place

do: store floor plan variablg
ext/room insertion complet

o v

room insertion completed

Figure 18.6 Partial state diagramfor new customeémteraction

86

®
The Functional Model i

= The functional model addresses two
processing elements of the WebApp

» that is delivered
by the WebApp to end-users

» the
that implement behaviors associated
with the class.

= An can be used to
represent processing flow

87

Activity Diagram

no components remain orBoMList

components remain onBoMList

invoke \
calcShipping Cost

ret urns:
shipping Cost

lineCost =
price x quantity

invoke
aet ermineDiscount

\ ret urns: discount)

discount>0

add lineCost to
t ot alCost

discount <=0

taxTota=
totaCost xtaxrate

totaCost +taxTot 3l

Figure 18.7 Activity diagramfor computePri¢koperatic

88

The Configuration Model 1

s Server-side

» Server hardware and operating system
environment must be specified

» Interoperability considerations on the server-
side must be considered

» Appropriate interfaces, communication
protocols and related collaborative information
must be specified

= Client-side
» Browser configuration issues must be
identified
» Testing requirements should be defined

89

Navigation Modeling-I li

» Should certain elements be easier to reach (require
fewer navigation steps) than others? What is the priority
for presentation?

» Should certain elements be emphasized to force users to
navigate in their direction?

= How should navigation errors be handled?

» Should navigation to related groups of elements be given
priority over navigation to a specific element.

» Should navigation be accomplished via links, via search-
based access, or by some other means?

» Should certain elements be presented to users based on
the context of previous navigation actions?

» Should a navigation log be maintained for users?

90

Navigation Modeling-Ii i

Should a full navigation map or menu (as opposed to a
single “back” link or directed pointer) be available at
every point in a user’s interaction?

Should navigation design be driven by the most
commonly expected user behaviors or by the perceived
importance of the defined WebApp elements?

Can a user “store” his previous navigation through the
WebApp to expedite future usage?

For which user category should optimal navigation be
designed?

How should links external to the WebApp be handled?
overlaying the existing browser window? as a new
browser window? as a separate frame?

91

Agenda

2 Requirements Analysis

Sample Analysis and Designh Exercise Using UML

92

Design 'i

* Mitch Kapor, the creator of Lotus 1-2-3,
presented a “software design manifesto” in Dr.
Dobbs Journal. He said:

» Good software design should exhibit:

» A program should not have any bugs
that inhibit 1ts function.

» A program should be suitable for the
purposes for which i1t was intended.

» The experience of using the program
should be pleasurable one.

93

Analysis Model -> Design Model

Component-
flow-oriented Level Design

scenario-based

elements elements
USe-Cases - text data flow diagrams ,
use-case diagrams control-flow diagrams 3
activity diagrams processing narratives

swim lane diagrams

Interface Desig
Analysis Model /
Architectural Design

class-based behavioral
elements elements
class diagrams state diagrams
analysis packages sequence diagrams
CRC models Data/ Class Design
collaboration diagrams

Design Model

94

Design and Quality i

contained in the analysis model,
and it must accommodate all of the implicit
requirements desired by the customer.

for those who generate code and for those
who test and subsequently support the software.

, addressing the data, functional, and
behavioral domains from an implementation
perspective.

95

Quality Guidelines ﬁ

that (1) has been created using
recognizable architectural styles or patterns, (2) is composed of
components that exhibit good design characteristics and (3) can be
implemented in an evolutionary fashion

» For smaller systems, design can sometimes be developed linearly.

; that is, the software should be logically
partitioned into elements or subsystems

of data, architecture,
interfaces, and components.

for the classes
to be implemented and are drawn from recognizable data patterns.

of
connections between components and with the external environment.

that is driven by
information obtained during software requirements analysis.

96

a
Design Principles ‘ﬁ

» The design process should not suffer from ‘tunnel vision.’
= The design should be traceable to the analysis model.
= The design should not reinvent the wheel.

= The design should “minimize the intellectual distance”
[DAVI5] between the software and the problem as it exists
in the real world.

» The design should exhibit uniformity and integration.
= The design should be structured to accommodate change.

= The design should be structured to degrade gently, even
when aberrant data, events, or operating conditions are
encountered.

= Design is not coding, coding is not design.

= The design should be assessed for quality as it is being
created, not after the fact.

= The design should be reviewed to minimize conceptual
(semantic) errors.

From Davis [DAV95]

97

1\
Fundamental Concepts ﬁ

—data, procedure, control
—the overall structure of the software
—"conveys the essence” of a proven design solution

—any complex problem can be more easily
handled if it is subdivided into pieces

—compartmentalization of data and function
—controlled interfaces
—single-minded function and low coupling
—elaboration of detail for all abstractions

—a mechanism for understanding how global requirements
affect design

—a reorganization technique that simplifies the design
—Appendix I

—provide design detail that will enable analysis
classes to be implemented

98

Data Abstraction el

/

& Y,

implemented as a data structure

99

= r’.fij; =
Procedural Abstraction E\A—\%ﬁ

implemented with a "knowledge" of the
object that is associated with enter

100

Architecture ﬁ

“The overall structure of the software and the ways in which
that structure provides conceptual integrity for a system.”
[SHA95a]

This aspect of the architectural design representation
defines the components of a system (e.g., modules, objects, filters) and the
manner in which those components are packaged and interact with one another.
For example, objects are packaged to encapsulate both data and the processing
that manipulates the data and interact via the invocation of methods

The architectural design description should
address how the design architecture achieves requirements for performance,
capacity, reliability, security, adaptability, and other system characteristics.

The architectural design should draw upon
repeatable patterns that are commonly encountered in the design of families of
similar systems. In essence, the design should have the ability to reuse

architectural building blocks.

101

Patterns ﬁ

Design Pattern Template

—describes the essence of the pattern in a short but

expressive nhame
—describes the pattern and what it does
—Ilists any synonyms for the pattern
—provides an example of the problem

—notes specific design situations in which the pattern is

applicable
—describes the classes that are required to implement the

pattern

—describes the responsibilities of the classes that are
required to implement the pattern
—describes how the participants collaborate to carry out
their responsibilities

—describes the “design forces” that affect the pattern and
the potential trade-offs that must be considered when the pattern is
implemented

—cross-references related design patterns

102

ea
Separation of Concerns ﬁ

* Any complex problem can be more easily
handled 1f 1t 1s subdivided into pieces that can
each be solved and/or optimized independently

= A 1s a feature or behavior that 1s
specified as part of the requirements model for
the software

* By separating concerns into smaller, and
therefore more manageable pieces, a problem
takes less effort and time to solve.

103

1\
Modularity Yy

* "modularity 1s the single attribute of software that
allows a program to be intellectually manageable”
[Mye73].

* Monolithic software (i.e., a large program composed
of a single module) cannot be easily grasped by a

software engineer.

» The number of control paths, span of reference, number of
variables, and overall complexity would make
understanding close to impossible.

* In almost all instances, you should break the design
into many modules, hoping to make understanding
easier and as a consequence, reduce the cost required
to build the software.

104

Modularity: Trade-offs

What is the "right” number of modules
for a specific software design?

module development cost

cost of
software

_ module
integration
_ cost

optimal number_/ number of modules

of modules

105

_|
Information Hiding ﬁ

module

controlled
interface data structure

algorithm

details of external interface

resource allocation policy

clients "secret”

a specific design decision

106

Why Information Hiding?

= reduces the likelihood of “side effects”

= [imits the global impact of local design
decisions

» emphasizes communication through
controlled interfaces

» discourages the use of global data

» leads to encapsulation—an attribute of
high quality design
= results in higher quality software

107

Stepwise Refinement

repeat until door opens

turn knob clockwise;

if knob doesn't turn, then
take key out;
find correct key;
insert in lock;

endif

pull/push door

move out of way;

end repeat

108

IeWS

Two V

Sizing Modules

109

Functional Independence

* Functional independence is achieved by developing
modules with "single-minded" function and an
"aversion" to excessive interaction with other
modules.

1S an 1indication of the relative functional
strength of a module.

» A cohesive module performs a single task, requiring little
interaction with other components in other parts of a
program. Stated simply, a cohesive module should (1deally)
do just one thing.

1s an indication of the relative
interdependence among modules.

» Coupling depends on the interface complexity between
modules, the point at which entry or reference 1s made to a
module, and what data pass across the interface.

110

Aspects ﬁ

* Consider two requirements, A and B.
Requirement A crosscuts requirement B “if a
software decomposition [refinement] has been
chosen 1n which B cannot be satistied without
taking A into account. [Ros04]

" An 1S a representation of a cross-cutting
concern.

111

Aspects—An Example ,

» Consider two requirements for the SafeHomeAssured.com
WebApp. Requirement A is described via the use-case ACCess
camera surveillance via the Internet. A design refinement
would focus on those modules that would enable a registered user to
access video from cameras placed throughout a space. Requirement
B 1s a generic security requirement that states that a registered user
must be validated prior to using SafeHomeAssured.com. This
requirement 1s applicable for all functions that are available to
registered SafeHome users. As design refinement occurs, A*is a
design representation for requirement A and B* 1s a design
representation for requirement B. Therefore, A* and B* are
representations of concerns, and B* cross-cuts A*.

" An aspect 1s a representation of a cross-cutting concern. Therefore,
the design representation, B*, of the requirement, a registered user
must be validated prior to using SafeHomeAssured.com, is an
aspect of the SafeHome WebApp.

112

_\ |
Refactoring ﬁ

» Fowler [FOW99] defines refactoring in the following

manner.
>

* When software is refactored, the existing design is
examined for
» redundancy
» unused design elements
» Inefficient or unnecessary algorithms
» poorly constructed or inappropriate data structures

» or any other design failure that can be corrected to yield a
better design.

113

00 Design Concepts ﬁ

» Entity classes
» Boundary classes
» Controller classes

—all responsibilities of a superclass is
iImmediately inherited by all subclasses

—stimulate some behavior to occur in the
receiving object

—a characteristic that greatly reduces
the effort required to extend the design

114

Design Classes ﬁ

» Analysis classes are refined during design to become

are developed during design to create
the interface (e.g., interactive screen or printed reports)
that the user sees and interacts with as the software is
used.
» Boundary classes are designed with the responsibility of
managing the way entity objects are represented to users.
are designed to manage
the creation or update of entity objects;

the instantiation of boundary objects as they obtain information
from entity objects;

» complex communication between sets of objects;

validation of data communicated between objects or between
the user and the application.

>

A4

>

Vv

>

Vv

115

The Design Model

high

analysis mode

abstraction dimension

class diagrams
analysis packages
CRCmodels
collaboration diagrams
data flow diagrams
control-flow diagrams
processing narratives

design class realizations
subsystems
collaboration diagrams

desigh mode

low

use-cases - text
use-case diagrams
activity diagrams
swim lane diagrams
collaboration diagrams
state diagrams
sequence diagrams

technical interface

class diagrams
analysis packages
CRC models
collaboration diagrams
data flow diagrams
control-flow diagrams
processing narratives
state diagrams
sequence diagrams

S~~~
- ~~—

-_—]

component diagrams

Requirement s:
constraints
int eroperability
targets and
configuration

S~

S~

design class realizations

S~~~ —

design design classes subsvstems
Navigation design activity diagrams colla)l:/)oration diagrams
CUldesign sequence diagrams ! 9
component diagrams
design classes
refinements to: activity diagrams
refinements to: component diagrams sequence diagrams
design class realizations design classes
subsystems activity diagrams
collaboration diagrams :
g sequence diagrams deployment diagrams
architecture interface component-level deployment-level
elements elements elements elements

process dimension

116

Design Model Elements

»
»

»
»

»

»
»

»

Data model --> data structures
Data model --> database architecture

Application domain

Analysis classes, their relationships, collaborations and behaviors
are transformed into design realizations

Patterns and “styles” (see textbook chapters 9 and 12)

the user interface (Ul)

external interfaces to other systems, devices, networks or other
producers or consumers of information

internal interfaces between various design components.

117

Architectural Elements

= The architectural model [Sha96] i1s derived
from three sources:

> for the
software to be built;

» such as data
flow diagrams or analysis classes, their

relationships and collaborations for the problem at
hand, and

» (see
textbook chapter 12) (see textbook
chapter 9).

118

Interface Elements

MobilePhone

WirelessPDA

ControlPanel \

LCDdisplay
LEDindicators
keyPadCharacteristics KeyPad
speaker
wirelessinterface

readKeyStroke()
decodeKey ()
displayStatus()
light LEDs() |
sendControlMsg) 1

<<interface>>
KeyPad

[——————

readKeystroke()
decodeKey()

Figure 9.6 UML interface representation forControlPanel
119

Component Elements :

SensorManagement

Sensor

Y

120

Deployment Elements

Control Panel CPI server

— —
Security homeownerAccess

/

Personal computer

| —
externalAccess

5 |
f—————t———F——————————

1 | —
Security Survelllance

homeMVanagement communication

Figure 9.8 UML deployment diagram for SafeHome

121

2 Requirements Analysis

‘ . Sample Analysis and Designh Exercise Using UML

STUPLID SOFTWAR
WON'T COMPILE ;

§

EH??[

\

hy

R
Al

www.dilbert.com

SA%ns

United Feature Syndicate, Inc.

WE CALL IT “CODE
RAGE." T'M SEEING
A LOT OF LT LATELY,

122

UML ...

... Is @ modeling language, a notation used to
express and document designs

... unifies the notation of Booch, Rumbaugh
(OMT) and Jacobson, and augmented with
other contributors once submitted to OMG

... proposes a standard for technical exchange
of models and designs

... defines a “meta-model”, a diagram that
defines the syntax of the UML notation

123

UML is not ...

= ... amethod or methodology (Method =
Notation (e.g.,UML) + Process)

= .. aproponent of a particular process
(although the “Rational Objectory
Process” is being proposed by Booch,
Rumbaugh and Jacobson)

Starting Point

» |dentify key domain abstractions ... classes integrating:
» Attributes
» Behavior (responsibilities, methods)
» Messaging
 providing logical independence between client and object
» Polymorphism

 providing physical independence between client and
implementation

= (Consider relationships ... integrating classes and
objects to form higher levels of abstraction
» Association (“Uses, Needs”)
» Aggregation (“Has-A”)
» Inheritance (“Is-A”)

125

Model Perspectives 1

= Conceptual
» Book [Title]
» objects, “things” from the domain
» conceptual map to implementation
= Specification
» Booklface { void setTitle(String value); }
» identifies how to obtain properties
* |mplementation
» PersistentBook : Booklface { -> DB }
» identifies how interface will be implemented

126

®
Model Perspective Hints 1

= Works as a map of the system
= Different subsystems become UML packages
= Keep dependencies simple and domain-related

= Define relationships and interactions between
packages

= Address both functional and non-functional
requirements

= Take time to factor in reuse

127

Initial Modeling Results i

List of use cases, describing system
requirements

Domain model, capturing your understanding of
the business process and key domain classes

Design model, realizing both the information in
the domain objects and the behavior described
In the use cases

Add classes in the design model that actually
do the work and also provide a reusable
architecture for future extensions

128

UML 1.x Notation Baseline

Diagram Name Type Phase
Use Case Static’ Analysis
Class Static Analysis
Activity Dynamic”™ Analysis
State-Transition Dynamic Analysis
Event Trace (Interaction) Dynamic Design
Sequence Static Design
Collaboration Dynamic Design
Package Static Delivery
Deployment Dynamic Delivery

:*Static describes structural system properties
Dynamic describes behavioral system properties.

129

Example (Using UML 1.x)

= A die toe ‘

» The player throws die 10 x 2
= When total is 7, player scores 10 points

= At the end of the game, the score is
collected in a score map

130

Requirements Analysis gl

» First Use Case

= |dentify Actors?

= |dentify possible System use cases
= External functionality !

131

First Use Case ??ﬁ

= Play:
» Actor: Player
» Descr: Player rolls the dices

10 times, whenever total is
%O 7, +10pts
\ " = \/iew High Score
e » Actor: Player
@ » Descr: Player looks up
View High Score highest score in read-only
mode

132

U C T\v:)i“\ﬁ 1
Seé Ldse ™
<]

= Very important diagram !

= A must for requirements analysis
= A must to present an application |
= MUST BE formally commented

» Used as a reference for all remaining
modeling stages

133

Activity Diagram ;bﬁ

= |ooks awfully close to a flow diagram
= |dentify activities based on a use case
= |dentify transitions between activities

134

Update
highscore

135

t»
~ - /‘
Play \ ‘
\ 7
\ - \,
«7

View High Score

Roll
Dice
turn++

Update
highscore

136

Activity Diagram

Highscore

[tr

A 4

Update
highscore

E Menu initial

Dice GAME !

=] E3

| Viewhighscorell Exit ||

El Démarrage O] x|
_____________ player name |
\\\ El Lancer dés [[O] x]
\\
AN 1 turn score =10

dil:4
d2=4

roll ||

137

Activity Diagram H

» Requirements analysis or analysis phase?
» More business process than object

» Provide message calling sequence and
detail Use-cases

» Very useful for tests...

138

H‘:\’_’_ ;’E‘;\'ﬁ‘i

. L P

Analysis Y
iJ

= Model the real world
* Implementation independent

= Determine real world classes: first class
diagram

» Model system’s dynamics: collaboration
diagram

139

Collaboration Diagram H

= |dentify the Objects

= |dentify relationships between Objects
(objects graph)

» |dentify messages and message calling
sequence between objects

140

Collaboration Diagram ;bﬁ

«0. " Display the objects

_— 2:ri=ol) = Display relationships
garg:;—rmoe 7 3: r2=roll() between objects
el .
e " D|S|c_>lay message
Meno: Peyer calling sequence on

individual objects

141

.

Update
highscore

142

Class Diagram H

» |dentify classes

= |dentify static and dynamic relationships
between classes

= |dentify relationships’ cardinality
= |dentify class attributes
= |dentify methods and their parameters

143

Class Diagram

Player _
(from Use Case View) Rolls Die
&name : String &faceValue :int = 1
&score :int=0; 1 2 ol
*play()
’
Plays Includes
’
DiceGame
1— 1
Scoring
’

HighScore

144

Class Diagram

2:r1=roll()

//

di:Die

Player .
(from Use Case View) Rolls Die
&name : String &faceValue :int =1
&score:int=0; |4 2 sl
*play()]
Includes
DiceGame
1— 1
Scoring
1

HighScore

145

Sequence Diagram "
)

= Dynamic modeling (~same as
collaboration)

= Focuses on message sequencing

= |dentify objects, their messages, and the
message calling sequence

146

Sequence Diagram e

: DiceGame

1:play()

L

- Activation Duration !

A

: Player

d1 :Die

|
2:roll() |

1

3: rqll()
|
|
|
|
|

147

2:r1=rall()
7

f% 3: r2=roll()

:DiceGame

Reference!

b‘
0 o %
VK\":-\/‘ v':\/z
AL o
T
»

148

(dp]
D
o]
c
D
-
O
D
O
Q
«Q
o
Q
=
=4, B
vifi);

A X

- RealPlayer _DiceGame d1:Die d2 : Die

‘ 1:DiceGame() l .
— >

H i

|

|

|
The player 1s only created at the beginning of the game !

149

‘9-2’0’ _};

State Diagram e

= |dentify the states of an object
= |dentify state transitions

150

State Diagram for a « game » object

cancel
/ Start game tant
’ﬂg Ready to play >t ~ Player ready
entry: get player name
Quit
@ Cancel play
—~
(roll dices[turn<10]

[turn>=10]

In progress
entry: turn++

151

Y

. Playerready

/Statgame) start
. g Ready to play

Start

@ Cancel

‘ entry: get player name

[tru

Cancel ?

Update
highscore

Highscore turn=0 play
| ~
rall dices[turn<10]
Roll /
> Dice [turn>410] In progress
turn++ entry: turn++

152

Highscore

Roll
Dice

turn++ Cancel

\ 4

[tru

Update
highscore

153

Modify Schemas ?

Highscore

[tr

A 4

Start
turn=0

Roll
Dice
turn++

Update
highscore

E Menu initial E=] B3

——————— Dice GAME !

| Viewhighscorell Exit ||

B Démarrage

player name

El Lancer dés

score =10

154

End of Analysis ? ;é

= Verify coverage for use-case and activity
diagrams...

» Use case « view highscores » ?
» Use case « play » partially handled

155

Diagram Coverage

View High\Score

Partially handled

Update
highscore

Not handled

156

Sequence Diagram e

: RealPlayer _~DiceGame di : Die d2:Die HighScore
| 1: DiceGame() | 2: Die() i] ‘
3: Die()

4: Highscore() HJ
|
|
|
|

|
|
u
|
|

157

Sequence Diagram S

: DiceGame

1: Player(String) ﬂ]

2: play() |

: Player

: HighScore

d2 : Die new : Entr

5: Entry(name:String,score:int)

6: add(Entry)

| |
| |
| |
!
)
| |

158

Class Diagram

<<Actor>> Rolls Die
Player &faceValue :int =1
&&name : String | 1 o
&score : int=0; *FO_”()
*Die()
® 1 Plays
play()]
*Player()
’
DiceGame Includes

*DiceGame()
Ystart()

4 I
Scoring

1
HighScore

Entry
&&name:String : type =initval
®score:int : type = initval

*

‘ *Entry(name:String,score:int)()

*Highscore()
*2dd()

—

159

End of Analysis ? H

= Coverage is « pretty » good
= Consistency across schemas is correct

= 14/20

» Dynamic model lacks detail (dynamic model for
cancel?)

» Schemas are not described in enough detail...

» Sequence diagrams for the game are not detailed
enough : a few methods are missing...

160

A
D I z\i';f."\??-«?
eS I g n X e %f &
<]

= Take implementation into account
» Handle the GUI portion
» Handle highscores persistence

= Define a logical architecture
= Define a physical architecture

= Add technical classes allowing the
implementation of such architecture |

161

E Lancer dés = B3

(R score =0

Presentation i

Application N -

Persistence File or DBMS

_//

162

Layered Architecture...

)‘, \
i’
ool Fhae

Vil ¢

= One possible architecture, others exist
(seeo « A system of patterns »
Bushcmann »)

= Layers must be as independent as
possible

" « Separate » layers by relying on
interfaces + abstract classes (design
patterns)

163

Logical « packaging » *\A;“

= Map the architecture
on « layered »

o packages
<<IaL)j?r>> = ExpreSS

RN dependencies
\ AN

{ N

\
<<layer>> <<subsystem>>
Core - ;\ Util
/7
e
— \% P - -
<<layer>>

Persist

164

« core » Layer ;ﬁ

= Classes representing the application logic

* |n fact, these are the analysis classes
which are being revisited for realization
purpose

165

Core « Layer »:First Diagram

- Analysis
Design | y
HighScore Rolls
&5$ hs : HighScore = null - - Entry — I <<Actor>> /\
&iname:String :type =initval Player -
@ Highscore() | ®scoreiint : type = initval | &Jname : String 2 —
.add() 1 0.* . . Score : |nt = 0, faceVa|ue dint=1
Bload() | ®Entry(name:String,score:int)() | -
Fsave() roll()
o ~ | ®Die()
DiceGame Singleton... |

E8$ dg = null]

BiDiceGame() | DiceGame Includes

®getinstance() I

start() B¥DiceGame() | 4

| Sstart(
14—
2 . _player | Scoring
Die -dies R
_ -~ 1 Player I
EfaceValue :int =1 name : String .
agscore :int=0;
=rDoilgz) ! — &name:String : type = initval
Bdisplay() Player(| . Bscore:int : type = initval
Hdisplay() ®Highscore() : 0."
| Badd) E¥Entry(name:String,score:int)()

166

Graphical Interface Layering: MVC

Observable
(from util)

&changed : boolean = false

<<Interface>>
[®0bservable() Observer
®addObserver() (from util)
=deleteObserver() 0.*

notifyObservers() - . - Ohi R
BinotifyObservers) +Pupdate(o : Observable, arg : Object) : wid
"®delete Observers() %

PsetChanged()
#clearChanged()
"®hasChanged()
"®countObservers()

B

Die
(from Core) DieView
&faceValue :int =1
- - __[®DieView(die : Die)
e =BD_|‘|3(2) ﬁ ®update(o : Observable, arg : Object) : void
|
(from Core) ®display/()

&name : String -

- S ——— PlayerView
&score :int=0; ¥e

[®PlayerView(player : Player)

“SPlayer() [®update(o : Observable, arg : Object) : void

[®display()

167

<<Interface>>
Observer
(from util)

El Lancerdas

“update(o : Observable, arg : Object) : void

DieView

[®update(o : Observable, arg : Object) : void

|
|
‘ [®¥DieView(die : Die)
|

PlayerView

[®PlayerView(player : Player)
[®update(o : Observable, arg : Object) : void

168

Attention ...

Observable
(from util)

&changed : boolean = false

<<Interface>>
[®0bservable() Observer
®addObserver() (from util)
=deleteObserver() 0.*

notifyObservers() - . - Ohi R
BinotifyObservers) +Pupdate(o : Observable, arg : Object) : wid
"®delete Observers() %

PsetChanged() ‘
#clearChanged()

"®hasChanged() Panel
"®countObservers() (fr Y

Z> Panel()

Panel()
constructComponentName()
addNotify()

Die
(from Core)
B faceValue :int = 1

DieView

ol S - __I®DieView(die : Die)
Plaver .Die(z) ﬁ [®update(o : Observable, arg : Object) : void
(from Core))/ .display() ‘
®setValue()

&name : String -

- -] PlayerView
&score :int=0; ¥e

[®PlayerView(player : Player)

“SPlayer() [®update(o : Observable, arg : Object) : void

[®display()

169

MVC in action: 1 Setup }?\A;

: RollForm

: PlayerView :Die :DieView

Plgye

1: displ
i 'splay() 2: PlayerView Player

P

4: return component

5: display() 6: DieView(Die)
sreturn Component g

\
3: addObserver(Observer) ;]
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

\ \
| i
7: addObserver(Observer) ‘
|

|

|

|

|

|

— o

170

MVC in action: 2 state change

e : Randomizer

: DieView

3: not

1:getValue()

’—‘ .
2: setValue(int) u

|
ifyObservers() |
|

4: update(Observable, Object)

w

171

MVC

),.
@,
=0 2-(14-6(
g

= Java AWT Java: Delegation Model

» Event propagation from user interface to core
application classes

= MVC:
» State change propagation to graphical objects

172

%

Put the views in the « forms » et

-_:-l’c(‘ _}g

» Implement graphical interfaces containing
views as needed...

= The Ul « layer » ...

173

Ul « Layer »

Frame
(from awt)

£

PlayerForm

I®ok_action()
cancel_action()
®PlayerForm()

g/ 0.1

HighScoreForm RollIForm
g Squit_action()
Wstart_action() —

MainForm

ok _action() Bhigh action() Sroll_action()
o 9n 0..1%cancel_action()
MainForm() BRolForm()
4 L
PlayerView B
. . 2. .,
HighScoreView DieView
BPlayerView()
Bupdate() __Bupdate() o /=Di((ejView()
— update
<<Interfaces> |/ < — paate()
Observer |\ —
(from util)
=update()

174

Ul Mapping Class, Ul

E Démarrage [[O] x]

E Menu initial E=] B3

player name |

Dice GAME !

PlayerForm

| Viewhighscorell | ok _action(=

cancel_action()
®PlayerFom))

MainForm

RollIForm

F¥quit_action()
Estart_action() D ———

Ehigh_action() 0..18cancel_action()
EMainForm() A8 RollForm()

1 L
T _[olx]| PlyerView -

®roll_action()

2 .,
DieView
< 1turn score =0 F®PlayerView()
N~ " | Bupdate() ®DieView()
w [SUpdate ()

175

Object Diagram: rollform

d1:Die _Label
View

theDieVi?w/ :
: Roll d2:Die = _:label
Form View

theDieView

momo :
PlayerView ———— _ Label

: Label

: Panel

176

Sequence Diagram: rollform

: DiceGame : MainForm : PlayerForm : :RollForm

: RealPlayer Piave

1: getinstance() .
2: MainForm

0
i
3: start_ac‘tion()

|
|
|
4: PlayerForm() ‘
+ 91
|

5: ok_action() ‘

| 7: Player(String)

8: RollForm() /LH

|
|
|
|
|
|
|
6: start(String playerName)
|
!
|
| |
T | |

177

Sequence Diagram: rollform

: RollForm

P Playe
1: displ
i Ispiay() | 2: PlayerView(Player) ‘

P

4: return component

|| Sidisplay) % 6: DieView(Die)
\ |
?: return component Q

3: addObserver(Cosenver) HJ
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
7: addObsenver(OCoserver) D
|
|
|
|
|
|

178

Ul/Core Separation...

HighScore

&3 hs : HighScore = null Entry

name:Stri ng : type = initval
Escore:int : type = initval

*

"‘.Entry(name:Stri ng,score:int)()

@¥Highscore()
®add () 1
®load()

S
MWsawe() -
- S
4 S
<<Interface>> : DiceGame Singleton...
Displayable ®$dg=nul |
. E¥DiceGame()
“Sdisplay) - ®getinstance()
— Mstart()
N T
2
Die -dies ™ - layer
EfaceValue :int =1 -1 _ Player
&name : String
Hroll() &score :int=0;
®Die()
Fdisplay() ®Player()
®setValue() Fdisplay()

179

Layered Architecture...

RollIForm
(from UI)

Technical classes
®roll_action()

Ul ®cancel_action()
¥ RollForm() Q\+thePl.elyerVievyerView
DieView 2 (from UI)
Ul (romUD _ theDieView 1 =
o PlayerView()
EDieView() Fupdate()
Eupdate() ~
— /o
\

\
. % \
<<Interface>> Observable <<Interface>>
Displayable (from util) Observer \
ffrom util)

|
I
|
|
|
abstract classes handling decoupling 4 ﬁ %

Interface and

\
N \ /
N N e
Die AN -
Core EfaceValue :int=1 Player L
&name : String
E¥roll() Escore :int=0;
. isplay Pla
Analysis classes MsetValue() Sdicpiayl)

180

Util « subsystem » ;wﬁ

= Need for random numbers
= Use java.util « random » functionality...

= The random number generator is shared
by the die...

= Another singleton...

181

Singleton ﬁ

AN
AN

Subsystem « util »

\\

Randomizer

E¥getinstance ()
MgetValue()

Random
(from util)

®$ serialVersionUID : long = 3905348978240129619L
Eseed : long

EZ$ multiplier : long = 0OXSDEECE66DL

B%$ addend : long = OXBL

B9$ mask : long = (1L << 48) - 1

E5$ BITS_PER BYTE :int=8

&$ BYTES_PER _INT :int =4

BZnextNextGaussian : double

EZhaveNextNextGaussian : boolean = false

¥Random()
®Random()
®setSeed()
@next()
SnextBytes()
Fnextint()
Mnextint()
SnextLong()
®nextBoolean()
SnextFloat()
¥nextDouble()
SnextGaussian()

182

« Util » Dynamic Model »\A?z

: Player : Die : Randomizer : Random

| 1:roll() | 2:getinstance()

/ 3: Randomizer()

/

/
4: Random()

|
|
|
/ !
/ |
|
T
|
|
|
|

Singleton ! ﬁ

T
|
|

5: getValue() H 6: nextint(int)
|
|
|
|

183

« Persist » Layer el

= Technical classes used for persistence

» Ensures Core/Persist independence
» Ability to switch « persistent engine »

= For example:
» Persistence by « Serialization »
» Persistence via a relational DBMS (JDBC)

184

Isolation : Pattern Fabrication >;¢

HighScore
(from Core)
&5$ hs : HighScore = null
Abstract product > PHighscore()
®add()
"Sioad)
®save()
HighScoreSr
HighScoreJDBC B9$ filename : String = "/tmp/high.score”
Concrete product — =
> ®Highscore() ¥ Highscore()
oad|() Fload() <
‘ BSsave() Bsave() ‘
| |
B JdocKit smit
Concrete factory g SmakeKit)
PersistKit
Abstract factory —
[®makeKit()

185

« Persist » Dynamic Model

~

: RealPlayer _DiceGame : HighScoreSr
\
L 1: SrKit()

M~

2: getinstance() ‘

7:quit()

3: DiceGame()

P

4: makeKit()

\

~
—

5: HighScoreSr()
6: load()

8: getlnstance
9: save %
|

N

T~

— Attention!

Dice Game voit SrKit comme
un PersistKit et HighScore Sr
comme un HighScore

Seul le Realplayer sait qu'il
utilise un SrKit ! DiceGame
non!

186

Using Serialization teciog

= Persistence propagation...

el : Entry
: High e2 : Entry
Score
e3 : Entry
e4 : Entry

“9-((7' _}g

187

A little bit of code...that’s all folks

class HighScoreSr extends HighScore implements Serializable {
public void save () throws Exception {
FileOutputStream ostream = new FileOutputStream(filename);

ObjectOutputStream p = new ObjectOutputStream(ostream) ;

p.writeObject (this); // Write the tree to the stream.

1o el bisial () E

ostream.close () ; // close the file.
}

pulollie woilel logel() Throws Ihxecotilon |

FileInputStream istream = new FileInputStream(filename) ;
ObjectInputStream g = new ObjectInputStream(istream);

HighScoreSr hsr = (HighScoreSr)g.readObject () ;

188

JdbPersist... Dynamic Model

= A table must be created in a relational DBMS

= Upon creation of HighScoreJDBC:
Connection to DBMS via JDBC
= Save.
» Perform « inserts » for each « entry »
» |oad:
» Select * from ...,

» Follow the result,
» create « entry » objects

189

A little bit of code... »\A;"fﬁ

public class HighScoreJDBC extends HighScore {
public static final String url="jdbc:odbc:dice";

Connection con=null;

public HighScoreJDBC () {

try |
//loads the driver
Class.forName ("sun. jdbc.odbc.JdbcOdbcDriver") ;

con=DriverManager.getConnection (url,
"mOlli", " ") ;

} catch (Exception e) {

e.printStackTrace() ;
new Error ("Cannot access Database at"+url);

}
!

hs=this; // register unique instance
this.load();

190

Jdbc Load

public void load () {
try A
Statement select=con.createStatement () ;
ResultSet result=select.executeQuery
("SELECT Name, Score FROM HighScore");
while (result.next()) {
this.add(new Entry(result.getString(l),
result.getInt (2)));
}
} catch (Exception e) {
e.printStackTrace() ;

191

Jdbc Save

public void save() {
try {
for (Enumeration e = this.elements() ;
e.hasMoreElements () ;) {

Entry entry=(Entry)e.nextElement () ;
Statement s=con.createStatement();
s.executeUpdate (
"INSERT INTO HighScore (Name, Score)"+
"VALUES ('"+entry.getName()+""', "+
entry.getScore()+")");
}
} catch (Exception e) {
e.printStackTrace() ;

192

Component diagram... il

= A component is a « non-trivial, nearly
iIndependent, and replaceable part of a
system that fulfills a clear function in the
context of a well-defined architecture »

= A component conforms to and provides
the physical realization of a set of
interfaces.

193

Component diagram Sl

= « Realize » : implement interfaces
= « Depend » : Use interfaces
» Interfaces isolate components

194

Component diagram...

DicePersist

7>©

HighScore

7©<7 -

PersistKit

DiceSystem

Randomizer

Random
system

7©<7

Displayable
—O< —

Observable

Observer

Dice
Viaualization

195

Deployment Diagrams

= Display the physical architecture

= Associer execution units to associated
handlers

= |dentify connections between execution
units

196

Deployment Diagrams

JBDC Save/load the
Connection highscore

\ \
\ N

Game Computer

\

SGBD computer

Play the

_ Maybe a Remote
game Sss”th . lafile system

197

Design Complete ? it

» Functionality coverage : compare Use-
case and activity diagrams...

= Consistency between diagrams ?7?
» Some inconsistencies... Ul vs Core

» Gore/Persist independence partially
modeled...

198

Generate code : code mapping

= Map into any programming language |
= OO languages : java, C++, smalltalk

= Or: VB, C, Fortran

= As well as: SQL, Cobol...

199

Java Mapping...

package Core;

import Util.Randomizer;
import UI.DieView;
import java.util.z;

import java.awt.Component;
<<Interface>>
Dlsplayable Observable public class Die extends Observable
i implements Displayable {
(ﬁOﬂ]UUD private int faceValue = 1;
Rdisplay()
public int roll() {
Yii setValue (Randomizer.getInstance () .
getValue()) ;
\ return getValue();
}
Di public java.awt.Component display ()
ie {
EfaceValue :int =1 Component c=new

DieView (this) ;
. this.addObserver ((Observer
SBroll() : int .

-Dle() return c;

L] . L] }
-dlsplay() .java.a\.Nt.Com.ponent public void setValue(int value) ({
®setValue(value : int) : void

faceValue=value;

-getValue() sint this.setChanged();

this.notifyObservers() ;

}
public int getValue() { return
faceValue; }

} 200

Relationships

package Core;

import java.util.=*:;

import java.awt.Component;

import UI.HighScoreView;

public abstract class HighScore

extends Observable implements

java.io.Serializable, Displayable {
protected static HighScore hs = null;
public Vector entries—new Vector ();

HighScore public void add(Entry entry) ({
@mmCae) Entry entries.addElement (entry) ;
$ hS . HIghSCOFG = nU" hed {fi’()m Core) thlS . SetChanged () .
@Highscore() +se u.;...ename:String : type =initval this.notifyObservers();

Bscore:int : type = initval
=add() 1 0. P }
load o .
-save(()) E®Entry(name:String,score:int)() sublic Bauneration elemeats() |
®getinstance() il e ies clemenko() g

}
puplic cbstract void loodf);

public abstract void save();
public Component display() {
Component c=new HighScoreView(this) ;
this.addObserver ((java.util.Observer)c) ;
return c¢;
}
public static HighScore getlnstance() {
if (hs==null) {
new Error ("No Persist Kit declared”) ;

}

return hs;}

201

Programming... H

» Use « forward engineering » functionality
provided by tools

= Then « reverse engineering »
= To achieve « round trip engineering » ;-D

» Ensure Programming/Design/Analysis
consistency...

202

Forward engineering

// Source file: c:/prout/Core/DiceGame. java

Die package Core;
blic class DiceGame {
Player (from Core) b : =
= : private static int dg = null;
(from Core) faceValue int=1 private Die dies[];

&name : String

private Player thePlayer;

}

Escore :int=0 =r[()),"(z) ?ice@ame“ {
e
. /% *
®Player() Rdisplay() @roseuid 37F877B3027B
Bdisplay() ®setValue() ny
444—————;theFHayer gi A\ private DiceGame () {
‘ -alies }
/*k*
@roseuid 3802F61403A0
. */
+theQ|ceGame public void getInstance() {
DiceGame i**
(rom Core) @Qroseuid 37F8781A014D
E%$ dg = null */
public void start() {
o 8 1 }
cheGame() .
getinstance() @roseuid 38074E7F0158
Sstart() y
Hquit() public void quit() {

203

Forward Engineering

: DiceGame : SrKit
: RealPlayer
M 1: SrKi
SrKit() -] package Core;
2: getlnstance() imporE I . MainFeorm;
= LEpoElE Bobsisie &
3: DiceGame() LpEEE Gava Sk
4: makeKit() class Main {

public =takfiec void mein(sEring args ||} |
/! SrEf cSrk-—new SrRit():
Joboh i s keomeng TR (]
DiceGame dg=DiceGame.getInstance();
Frame f=MainForm.getInstance();
foaet e [R00 S0
. show!()

204

Reverse Engineering...

Observable
(from util)
Die A\
EfaceValue :int = 1
Hroll()
®Die()
display()
MsetValue()
®getValue() E—
: Bscore :int=0
-dies[}] Bhurn :int=0
EBWIN_ NUMBER :int=7
EBWIN_SCORE :int=10
®Player()
Ediet ()
DiceGame Erie2()
-thePIaLer_) lay()
E¥DiceGame() /-display()
¥getinstance() ®getName()
M¥start() BgetScore()
=getDie() =get$um8
getPlayer() setlurn
$‘$\df MsetScore()

Vector
(from util)

+entries

Entry

HighScore

&score :int

F¥Entry()
®getName()
®getScore()
®toString()

-name yname
- String
(from lang)

#¥HighScore()
M®add()
®elements()
Mioad()
Msave()
display()
®getinstance()

#$hs

205

Reverse engineering ;ﬁ

= Does not apply to the dynamic model !

= Handle forward+modification+reverse
ISSUes

= Nothing miraculous !

206

Design/Implementation Comparison

Observable Vector String
(from util) (from util) (from lang)
+entrie187 -name
-nam
Die HighScore Player Entry
BfaceValue :int=1 ®score :int=0
@HighScore() Bturn :int=0
-rolll() add() #$h BW N_NUMBER :int=7 E=E ntry()
-D_le() -e|ements() s EBw N_SCORE :int=10 -getName()
ESdisplay() ®load() ®¥getScore()
SsetValue() ®save() E®P layer() F¥toString()
®getvalue() =display() d!e1 0
F®¥getinstance() EPdie2 ()
diesl Fplay()
dies] Bdisplay ()
\ l -thePIaygr-g S
\ ‘ =g etScore()
getTurmn()
AN /-setTurn()
DiceGame (~ |I®setScore ()
E¥DiceGame() v %
-$d <<lInterface >>
Mgetinstance() B Displayable
=start()
getDie() .
®getPlayer() "Sdisplay()

207

ui(1)

/

ActionListener

(from event)

Frame
(from awt)

X

HighScoreForm

I®actionPerformed)()
ighScoreForm()
closeAction() -hf

RollForm

®actionPerformed()
rollAction()
®cancelAction()

¥ RollForm()

+m_MainFo

close

o

+cance|

\
\

\

\

T

MainForm

actionPerformed()
FquitAction()
rMistartAction()]
BhighAction()
E¥MainForm()
nAAl
.getlnstat_$mf)

+Mm_

Button
(from awt)

-cance |

=

AN

AN

AN

MainForm

AN

AN

_pf

TextField
(from awt)

-tf

AN

PlayerForm

MactionPerformed()
okAction()
McancelAction()
®PlayerForm()

208

Ui(2)

HighScoreForm

®actionPerformed()
S HighScoreForm()
McloseAction()

+m_HighScSre Form

-hv

HighScoreView

¥HighScoreView()
Mupdate()

List
(from awt)

+canc

- +0k
close Button /

RollForm

MactionPerformed()
HrollAction()
ScancelAction()

¥ RollForm()

-m_RollForm

| +m_RollIForm
(from awt)

+theDieView(]

+thePIayer\/iew

¥
DieView
=DieView()
update -l s
podel) | 1 pomlabe —
\ (from awt)
\ -
\ 7
AN
. e
o -
Vad
Observer
(from util)

e

7

PlayerView

SPlayerView()
Mupdate()

209

q Random
Randomizer ﬁrﬂom util)
"®getinstance ()
®getValue()

E¥Randomizer()

210

P PersistKit()
Bgetinstance()
FPmakekit()

b

JdocKit

—

—

DiceGame
(from Core)

B¥DiceGame()
Mgetinstance()
Mistart()
SgetDie()
BgetPlayer()

B®JdbcKit()
FMmakekKit()

SiKit

F®rmakekit()
I¥srKit()

-$dg

HighScoreJDBC

®HighScoreJDBC()
Mload()
Bsave()

Serializable
(fromio)
Z% ~
~
~
HighScore
(from Core)
| Vector |
B HighScore() %mﬂ”%‘omum)
Madd()
Melements()
Sload()
Msave()
Baisplay()
Bgetinstance()
HighScoreSr
~—— —>Bicad)
Msaw(
FSHighScoreSr()

Entry
(from Core)

~|Bscore : int

B Entry()
SgetName()

BgetScore()
BtoString()

211

Problems Found ;&ﬁ

= Dynamic model to handle turns is not
designed properly |

= Who really tests for the end of the game ?
= Design flaw |

212

Here ! Analysis Diagram !!

A

: Player
| |
y |
| |

3:roll() ﬁ

4: r?ll()
|

: DiceGame di : Die d2 : Die new : Entry : HighScore

1: Player(String)

2: play()

\
5: Entry(name:String,score:int)

6: add(Entry)

213

%

A
Problem ! b

h‘9'<0” _}g

= Not formal enough !

» This analysis diagram was not reviewed at
design time !!!

‘ (-4)

214

:RollIForm : Player :Die

R |
1: actionPerformed(ActionEvent)

P

2:rollAction()

P

3: getTurn()

|
|
|
|
1
_ T .
4:[turn<10lplay() s5: setvalue(int

|
|
|
|
|
|
|
|
) |
]

6: setValue(int)

|
7: setTurn(int)

P

|
|
7 |
| |
| |
| |

215

Finally !

B = 3

moma, 30
rmarma, 40
toto, 60
fiti, 0
tutu, 0
tutu, 0
moma, 30
rmarma, 40
toto, 60
fiti, 0

FY

Close

[[0 x]

Marme:Momao

Die:t

Score:d

Die:t

Cangel

216

Does it work ? Testing ;bﬁ

= Unit testing : test each class and each
method at a time

» Class diagram

= |ntegration tests :
» Gomponent diagram

= System test :
» Use Case + Activity diagram

217

System Test fe ™l

= Ok, functionality is

h‘s-l'(‘n” _}g

there ...
= And conforms to the
%% description of the use
case !
Play
Player = >8->

(>

View Hgh Score

218

System Test

| forgot this one !

/

E Menu initial E=] B3

| Viewhighscorell Exit ||

q E Démarrage [[O] x]

Start
turn=0

Highscore

________ player name |

Roll
Dice
turn++

A 4

[trl N E Lancer dés [_ (O] =]

AN 1 turn score =10

Update
highscore

219

System Test e

Highscore

[tr

A 4

Start
turn=0

Roll
Dice
turn++

Update
highscore

e

:\J{j\

h-g{(;f P

Tl ol

» Test all possible
paths !

T = EX:

» 1/Start
» 2/ roll

» 3/ cancel
» 4/ highscore
» 5/ exit

220

Problems Found >;¢

= Scenario 1 :
» start, roll*, highscore, quit : OK

= Scenario 2:
» highscore, : ko | Bug

» Design bug:
« DiceGame creates Highscore (start)
« |f Highscore before start : bug

221

package Core;

import UI.MainForm;
import Persist.*;
import java.awt.*;

class Main {
public static void main(String args([]) {

// SrKit srk=new SrKit () ;
JdbcKit srk=new JdbcKit () ;
DiceGame dg=DiceGame.getInstance();
Frame f=MainForm.getInstance();
f.setSize (300,300);
f.show();

222

Integration Test &\ﬁ:%;:vz

.] Dice
DicePersist |— >() DiceSystem Displaypble Vizalization
HighScore —_— —
Obsenble
—O<—
PersistKit — =0
‘ Observer

Randomizer

| MVC Test

Random
system

223

Test Scenario el

= Highscore, start, roll*

= |f the MVC works properly, entry of a new
highscore leads to redisplaying the list
which is already opened !!

= OK, it works...
= |t is good to design well ...

224

Summary of this Application Design Tﬁ

» Requirements Analysis
» Use-case + description
» Activity diagram
» Ul prototyping

= Analysis

» Dynamic Model : Collaboration, Sequence,
state diagrams

» Static Model : Class Diagram

225

@
A
Q . Phma ©
(Cg, 7
& o ¥
Fy(
L}

= Architecture design (layer)

» Package diagram, component diagram,
deployement diagram

= Technical classes used to ensure
Isolation :
» MVC pattern,
» Factory pattern

= Technical classes Ul and persistence
» *Forms, Highscore”®

==

226

Programming K

= Simple conversion of design to Java

» For each UML model, it is possible to build
a translation towards any target language

= Use « round-trip engineering » tools

= Programming PB : Need to update the
analysis/design artifacts !!!

227

Feedback Problems Found at Coding ! ;

: RollIForm : Player

:Die

1: actionP;ﬁormed(ActionEvent)

2

:rollAction()

il

3: getTurn()

|

ﬂ

4: [turn<10play() | 5. setvalue(int) |

6: setV?Iue(int)

7: setTurn(int)

P

« auto-critique » to find
the reason behind the
problem.

Improve process for next
time |

Here : analysis diagrams
have not been redone !

A software process must
emphasize quality !

228

bl
[H‘:\"’:f/};&iﬁ/‘i
Testing ol
iJ

= Functionality control : Use-case diagram
= Conformance control : Activity diagram
» |Integration tests : Component diagram

= Unit tests : not done

229

Paying Attention to Testing !

L%,
L0 Hse
M L

= Current vision is too simplistic |

= Must integrate testing as part of a quality
management process (change
management)

= Regression testing, automated testing
(test suites, test generation, tools!!)

230

Conclusion for this Application :&ﬁ

= Phase:

» Requirements analysis, analysis, design,
iImplementation, etc.

» For each phase:
» Put together views for the same problem
» Static, dynamic, fonctional, architectural views

231

UML Usage Guideline: Consistency & Coverage

Architectural

Function® View
View

Dynamic
View

232

Consistency / Coverage

» Use-cases/Activity Diagrams

» An activity must always be assigned to a use-
case

» All use cases must be implemented in the
activity diagrams

233

\)
N - /‘
Play \ ‘
\ 7
S \)
R

View High Score

Roll
Dice
turn++

Update
highscore

234

Activity / Collaboration H

= All possible paths in the activity diagrams
may be represented using collaboration
diagrams !

= Beware of over-analysis |

= Only represent the most relevant
scenarios !

235

1 collaboration diagram
partially handling Roll !!

.

Update
highscore

236

2

Collaboration / Class diagram

= All the objects in a collaboration diagram
have a type: the class diagram Class

= All the relationships in a collaboration
diagram must exist or may be derived from
the class diagram !

» Messages exchanged are methods in the
class diagram |

237

Collaboration / Class Diagram

ame : Dice

2:r1=rall()

Momo : Player

//

3:r2=rall()
T

di:Die

Player

(from Use Case View) Rolls

&name : String

®score:int=0; |

Die

*play()

&faceValue :int =1

*roll()

Includes

238

Class diagram / collab / sequence

St

i @K

<< Hne
1 '>'<2‘/

= The complete dynamic model for relations
must appear in at least one sequence or
activity diagram

= Any attribute change must be represented
In at least one activity or sequence
diagram

= Object creation or destruction must appear
in at least one dynamic diagram !

239

Y

Class / Sequence ‘ ':%?&Z

KO!

Player : % %
(from Use Case View) Folls /ﬁ\ . :DosCGne : :
% &»faoevaw:irt=1> “refae T e
_0r b—
Csoeiin-0; Gy e | L |
Yoiay() 1 %ﬁ | |
! State Change ? | | |
SQd) ‘
Pays Incluces | ¢ |
1 i
DiceCarre | 4sa() | | | | |
- Py W#
Scoing H - ‘ ‘
| | | |
1
HghSoore ‘ ‘ ‘ ‘ ‘
Creation ? ! | | | |

240

Class / Sequence o]

= A «good » solution:

» Follow the activity diagram to generate
scenarios

» Follow the possible paths in the activity
diagram
» If the activity diagram is not covered:

« Granularity is not fine enough (it is the case here)
 Class diagram over-specified

241

Class / State diagram...

)..
4,
. 2}14—0(
W g
P

» For each class, ask yourself if its state
evolves with time ?

» |f so, put together a state diagram...

= Every transition in the state diagram must
be verified !

242

Y

Class / State diagram ! ‘ ':%-,»@Z

Where are
these
methods ??
Player Dic
(from Use Case View) Rolls —
&rame : Strirg faceVale :irt=1
&soore:int=0; 1 2 Sl
Player ready

dy D
=
— (rolldoes[ume]
.| 1 Object DiceGame ! N
s [tum>=1%) 1nlnlm"ogll’%s
0 Where is frtm

this
attribute ??

243

Class/Package/Component diagram (Design) x

= Fach class must be allocated to one
package, which is itself part of the overall
architecture

» Every class must also be part of a
component that implements a set of
functionalities in that architecture !!

= Otherwise the class is not part of the
architecture |

244

Class / Package

awt
(fomjava)

[— MVC: Observer/Observable j

_ / Random
ingleton ﬁ (from util)

‘ ¥ Random()
=Random()

tSeed
‘ setSeed() ¢ — S/ \

Pnext() — -]

-neXtByteS () <dayer>> <<SUbe)§|tem» forrandom !

- 7 7 /
<<IaEIJ(i.‘r>> - 4 // “util

<<Interface>>
Randomizer

.nextlnt() Core
1=nextlnt() N —‘]
nextLong()
ge:[[I\r;s}ance() ®nextBoolean() ‘
getValue() SnextFloat() '
Random
<<ayer>>
Persist

Randbomizer() ®nextDouble()
®nextGaussian()

245

Class / Component

:) Dice
DicePersist >O—— DiceSystem Displayable Vizualization
HighScore O<—
Observable
7Q< _
PersistKit — 0

A Observer
\%
Random N O

7(gleto n ﬁ (from util) Randomizer
‘ ¥ Random() Random
-Random() system

‘ ®setSeed()
Pnext()

<<Interface>> SnextBytes()

Randomizer / .nextlnt()
1®¥nextint()

®nextLong()
®nextBoolean()
®nextFloat()
®nextDouble()
.nextGaussianiy

&¥getinstance ()
BgetValue()

246

Component / Deployment H

= Each component must be allocated to one
execution unit in the deployment diagram !

* |In general, a component cannot be part of
two execution units...

= Every execution unit must have at least
one component...

247

Component Deployment !

— T T~

. , Di
ersist | —>O—— DiceSystem Displayable \ﬁ;e;anzation
HighScore ©<7 OOOPPPPSS '
Q< Observable
PersistKit >0

BDC Save/load the
Qbserver onnection highscore
\%
O \ A
Randomizer
Random
system

Play the : Maybe a Remote
game File | lafile system
System

248

General Conclusion on Dice fe™

= How different is it from a « directly
coded » application ??

249

Bibliographie 1

= UML Distilled Fowler&Scott

» UML Toolkit Eriksson&Penker

» Applying UML and Patterns Larman
= Design pattern Gor

» System of patterns Buschman&al

» Penser objet avec UML&Java Lai

= Object oriented Analysis Spadounakis
» UML Specification www.rational.com

250

Agenda

2 Requirements Analysis

Sample Analysis and Designh Exercise Using UML

251

Summary - Key Detailed-Level Analysis and Design Objectives

Requirements Models

» Scenario-based (system from the user’s point of view)

» Data (shows how data are transformed inside the system)

» Class-oriented (defines objects, attributes, and relationships)

» Flow-oriented (shows how data are transformed inside the system)

» Behavioral (show the impact of events on the system states)
Requirements modeling covers different dimensions via flow-oriented models,
behavioral models, and patterns
Software design encompasses the set of principles, concepts, and practices
that lead to the development of a high quality system or product
Design principles establish and overriding philosophy that guides the designer
as the work is performed
Design concepts must be understood before the mechanics of design practice
are applied
Goal of design engineering is to produce a model or representation that is bug
free (firmness), suitable for its intended uses (commodity), and pleasurable to
use (delight)
Software design practices change continuously as new methods, better
analysis, and broader understanding evolve

252

®
Course Assignments 1

» Individual Assignments
» Reports based on case studies / class presentations
» Project-Related Assignments
= All assignments (other than the individual assessments) will
correspond to milestones in the team project.
= As the course progresses, students will be applying various
methodologies to a project of their choice. The project and related
software system should relate to a real-world scenario chosen by each
team. The project will consist of inter-related deliverables which are
due on a (bi-) weekly basis.
» There will be only one submission per team per deliverable and all
teams must demonstrate their projects to the course instructor.
= A sample project description and additional details will be available
under handouts on the course Web site

253

Team Project 'i

Project Logistics

Teams will pick their own projects, within certain constraints: for instance,
all projects should involve multiple distributed subsystems (e.g., web-
based electronic services projects including client, application server, and
database tiers). Students will need to come up to speed on whatever
programming languages and/or software technologies they choose for their
projects - which will not necessarily be covered in class.

Students will be required to form themselves into "pairs" of exactly two (2)
members each:; if there is an odd number of students in the class, then one
(1) team of three (3) members will be permitted. There may not be any
"pairs" of only one member! The instructor and TA(s) will then assist the
pairs in forming "teams", ideally each consisting of two (2) "pairs", possibly
three (3) pairs if necessary due to enrollment, but students are encouraged
to form their own 2-pair teams in advance. If some students drop the
course, any remaining pair or team members may be arbitrarily reassigned
to other pairs/teams at the discretion of the instructor (but are strongly
encouraged to reform pairs/teams on their own). Students will develop and
test their project code together with the other member of their programming
pair.

254

Team Project Approach - Overall

= Document Transformation methodology driven
approach

= Strategy Alignment Elicitation

= Equivalent to strategic planning
= j.e., planning at the level of a project set

= Strategy Alignment Execution

= Equivalent to project planning + SDLC

= j.e., planning a the level of individual projects + project
implementation

= Build a methodology Wiki & partially implement the
enablers

* Apply transformation methodology approach to a

sample problem domain for which a business solution
must be found

» Final product is a wiki/report that focuses on

= Methodology / methodology implementation / sample
business-driven problem solution

255

Team Project Approach - Initial Step

= Document sample problem domain and
business-driven problem of interest
* Problem description
» High-level specification details
» High-level implementation details
» Proposed high-level timeline

256

Assignments & Readings

» Readings
= Slides and Handouts posted on the course web site

& = Textbook: Part Two-Chapters 6-8
= Individual Assignment (assigned)

= See Session 5 Handout: “Assignment #2”
= Team Project #1 (ongoing)

= Team Project proposal (format TBD in class)

= See Session 2 Handout: “Team Project Specification” (Part 1)
= Team Exercise #1 (ongoing)

= Presentation topic proposal (format TBD in class)
= Project Frameworks Setup (ongoing)

= As per reference provided on the course Web site

257

Next Session: From Analysis and Design to Software Architecture

259

