
1

Software Engineering

Session 6 – Main Theme

Detailed-Level Analysis and Design

Dr. Jean-Claude Franchitti

New York University

Computer Science Department

Courant Institute of Mathematical Sciences

Presentation material partially based on textbook slides

Software Engineering: A Practitioner’s Approach (7/e)

by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009

2

33 Requirements ModelingRequirements Modeling

44 Design ConceptsDesign Concepts

Agenda

11 IntroductionIntroduction

66 Summary and ConclusionSummary and Conclusion

22 Requirements AnalysisRequirements Analysis

55 Sample Analysis and Design Exercise Using UMLSample Analysis and Design Exercise Using UML

3

What is the class about?

�Course description and syllabus:

» http://www.nyu.edu/classes/jcf/g22.2440-001/

» http://www.cs.nyu.edu/courses/spring13/G22.2440-001/

� Textbooks:
» Software Engineering: A Practitioner’s Approach

Roger S. Pressman
McGraw-Hill Higher International

ISBN-10: 0-0712-6782-4, ISBN-13: 978-00711267823, 7th Edition (04/09)

» http://highered.mcgraw-hill.com/sites/0073375977/information_center_view0/

» http://highered.mcgraw-
hill.com/sites/0073375977/information_center_view0/table_of_contents.html

4

Detailed-Level Analysis and Design in Brief

� Introduction

� Requirements Analysis

� Requirements Modeling

� Design Concepts

� Sample Analysis and Design Exercise (Using UML 1.x)

� Summary and Conclusion

� Readings

� Individual Assignment #2 (assigned)

� Team Assignment #1 (ongoing)

� Course Project (ongoing)

5

Icons / Metaphors

5

Common Realization

Information

Knowledge/Competency Pattern

Governance

Alignment

Solution Approach

6

33 Requirements ModelingRequirements Modeling

44 Design ConceptsDesign Concepts

Agenda

11 IntroductionIntroduction

66 Summary and ConclusionSummary and Conclusion

22 Requirements AnalysisRequirements Analysis

55 Sample Analysis and Design Exercise Using UMLSample Analysis and Design Exercise Using UML

7

Requirements Analysis

� Requirements analysis
» specifies software’s operational characteristics

» indicates software's interface with other system
elements

» establishes constraints that software must meet

� Requirements analysis allows the software
engineer (called an analyst or modeler in this
role) to:
» elaborate on basic requirements established during

earlier requirement engineering tasks

» build models that depict user scenarios, functional
activities, problem classes and their relationships,
system and class behavior, and the flow of data as it
is transformed.

8

A Bridge

system

description

analysis

model

design

model

9

Rules of Thumb

� The model should focus on requirements that
are visible within the problem or business
domain. The level of abstraction should be
relatively high.

� Each element of the analysis model should
add to an overall understanding of software
requirements and provide insight into the
information domain, function and behavior of
the system.

� Delay consideration of infrastructure and
other non-functional models until design.

� Minimize coupling throughout the system.

� Be certain that the analysis model provides
value to all stakeholders.

� Keep the model as simple as it can be.

10

Domain Analysis

Software domain analysis is the identification, analysis, and

specification of common requirements from a specific

application domain, typically for reuse on multiple projects

within that application domain . . . [Object-oriented domain

analysis is] the identification, analysis, and specification of

common, reusable capabilities within a specific application

domain, in terms of common objects, classes, subassemblies,

and frameworks . . .

Donald Firesmith

11

Domain Analysis

� Define the domain to be
investigated.

� Collect a representative sample of
applications in the domain.

� Analyze each application in the
sample.

� Develop an analysis model for the
objects.

12

Elements of Requirements Analysis

13

Scenario-Based Modeling

“[Use-cases] are simply an aid to defining what exists
outside the system (actors) and what should be
performed by the system (use-cases).” Ivar Jacobson

(1) What should we write about?

(2) How much should we write about it?

(3) How detailed should we make our description?

(4) How should we organize the description?

14

What to Write About?

� Inception and elicitation—provide you with the
information you’ll need to begin writing use cases.

� Requirements gathering meetings, QFD, and other
requirements engineering mechanisms are used to
» identify stakeholders

» define the scope of the problem

» specify overall operational goals

» establish priorities

» outline all known functional requirements, and

» describe the things (objects) that will be manipulated by the
system.

� To begin developing a set of use cases, list the functions
or activities performed by a specific actor.

15

How Much to Write About?

� As further conversations with the
stakeholders progress, the requirements
gathering team develops use cases for
each of the functions noted.

� In general, use cases are written first in an
informal narrative fashion.

� If more formality is required, the same use
case is rewritten using a structured format
similar to the one proposed.

16

Use-Cases

� a scenario that describes a “thread
of usage” for a system

� actors represent roles people or
devices play as the system functions

� users can play a number of different
roles for a given scenario

17

Developing a Use-Case

� What are the main tasks or functions that
are performed by the actor?

� What system information will the the actor
acquire, produce or change?

� Will the actor have to inform the system
about changes in the external
environment?

� What information does the actor desire
from the system?

� Does the actor wish to be informed about
unexpected changes?

18

Use-Case Diagram

homeowner

Access camera

surveillance via the

Internet

Configure SafeHome

system parameters

Set alarm

cameras

SafeHome

19

Activity Diagram

enter password

and user ID

select major function

valid passwords/ ID

prompt for reentry

invalid passwords/ ID

input t r ies remain

no input

t r ies remain

select surveillance

ot her f unct ions

may also be

select ed

t humbnail views select a specif ic camera

select camera icon

prompt for

another view

select specif ic

camera - thumbnails

exit t his f unct ion
see anot her camera

view camera output

in labelled window

Supplements the use

case by providing a

graphical

representation of the

flow of interaction

within a specific

scenario

20

Swimlane Diagrams

Allows the modeler to
represent the flow of
activities described by the
use-case and at the same
time indicate which actor
(if there are multiple
actors involved in a
specific use-case) or
analysis class has
responsibility for the
action described by an
activity rectangle

enter password

and user ID

select m ajor funct ion

valid p asswo r d s/ ID

prom pt for reent ry

in valid

p asswo r d s/ ID

in p u t t r ies

r em ain

n o in p u t

t r ies r em ain

select surveillance

o t h er f u n ct io n s

m ay also b e

select ed

t h u mb n ail views select a sp ecif ic cam er a

select camera icon

generate video

output

select specif ic

camera - thumbnails

exit t h is

f u n ct io n

see

an o t h er

cam er a

h o m e o w n e r c a m e ra i n t e rf a c e

prom pt for

another view
view cam era output

in labelled window

21

Data Modeling

� examines data objects
independently of processing

� focuses attention on the data
domain

� creates a model at the
customer’s level of abstraction

� indicates how data objects
relate to one another

22

What is a Data Object?

� a representation of almost any composite
information that must be understood by software.
» composite information—something that has a number of

different properties or attributes

� can be an external entity (e.g., anything that
produces or consumes information), a thing (e.g., a
report or a display), an occurrence (e.g., a telephone
call) or event (e.g., an alarm), a role (e.g.,
salesperson), an organizational unit (e.g.,
accounting department), a place (e.g., a warehouse),
or a structure (e.g., a file).

� The description of the data object incorporates the
data object and all of its attributes.

� A data object encapsulates data only—there is no
reference within a data object to operations that act
on the data.

23

Data Objects and Attributes

A data object contains a set of attributes that act as

an aspect, quality, characteristic, or descriptor of

the object

object: automobile
attributes:

make
model
body type
price
options code

24

What is a Relationship?

� Data objects are connected to one another
in different ways.
»A connection is established between person

and car because the two objects are related.
• A person owns a car

• A person is insured to drive a car

� The relationships owns and insured to
drive define the relevant connections
between person and car.

� Several instances of a relationship can
exist

� Objects can be related in many different
ways

25

ERD Notation

(0, m) (1, 1)

object objectrelationship
1 2

One common form:

(0, m)

(1, 1)

object
1 object2

relationship

Another common form:

attribute

26

Building an ERD

� Level 1—model all data objects
(entities) and their “connections” to one
another

� Level 2—model all entities and
relationships

� Level 3—model all entities,
relationships, and the attributes that
provide further depth

27

The ERD: An Example

(1,1) (1,m)
placesCustomer

request
for service

generates
(1,n)

(1,1)

work
order

work
tasks

materials

consists
of

lists

(1,1)
(1,w)

(1,1)

(1,i)

selected
from

standard
task table

(1,w)

(1,1)

28

Class-Based Modeling

� Class-based modeling represents:

» objects that the system will manipulate

» operations (also called methods or services) that will be

applied to the objects to effect the manipulation

» relationships (some hierarchical) between the objects

» collaborations that occur between the classes that are

defined.

� The elements of a class-based model include classes

and objects, attributes, operations, CRC models,

collaboration diagrams and packages.

29

Identifying Analysis Classes

� Examining the usage scenarios developed as
part of the requirements model and perform a
"grammatical parse" [Abb83]
»Classes are determined by underlining each noun

or noun phrase and entering it into a simple table.

»Synonyms should be noted.

» If the class (noun) is required to implement a
solution, then it is part of the solution space;
otherwise, if a class is necessary only to describe a
solution, it is part of the problem space.

� But what should we look for once all of the
nouns have been isolated?

30

Manifestations of Analysis Classes

� Analysis classes manifest themselves in one of the
following ways:

• External entities (e.g., other systems, devices, people) that produce
or consume information

• Things (e.g, reports, displays, letters, signals) that are part of the
information domain for the problem

• Occurrences or events (e.g., a property transfer or the completion
of a series of robot movements) that occur within the context of
system operation

• Roles (e.g., manager, engineer, salesperson) played by people who
interact with the system

• Organizational units (e.g., division, group, team) that are relevant
to an application

• Places (e.g., manufacturing floor or loading dock) that establish
the context of the problem and the overall function

• Structures (e.g., sensors, four-wheeled vehicles, or computers) that
define a class of objects or related classes of objects

31

Potential Classes

� Retained information. The potential class will be useful during analysis
only if information about it must be remembered so that the system can
function.

� Needed services. The potential class must have a set of identifiable
operations that can change the value of its attributes in some way.

� Multiple attributes. During requirement analysis, the focus should be on
"major" information; a class with a single attribute may, in fact, be useful
during design, but is probably better represented as an attribute of another
class during the analysis activity.

� Common attributes. A set of attributes can be defined for the potential class
and these attributes apply to all instances of the class.

� Common operations. A set of operations can be defined for the potential
class and these operations apply to all instances of the class.

� Essential requirements. External entities that appear in the problem space
and produce or consume information essential to the operation of any
solution for the system will almost always be defined as classes in the
requirements model.

32

Defining Attributes

� Attributes describe a class that has been

selected for inclusion in the analysis model.

» build two different classes for professional

baseball players

• For Playing Statistics software: name, position,
batting average, fielding percentage, years played,
and games played might be relevant

• For Pension Fund software: average salary, credit
toward full vesting, pension plan options chosen,
mailing address, and the like.

33

Defining Operations

� Do a grammatical parse of a processing

narrative and look at the verbs

� Operations can be divided into four broad

categories:

» (1) operations that manipulate data in some way

(e.g., adding, deleting, reformatting, selecting)

» (2) operations that perform a computation

» (3) operations that inquire about the state of an

object, and

» (4) operations that monitor an object for the

occurrence of a controlling event.

34

CRC Models

� Class-responsibility-collaborator (CRC)

modeling [Wir90] provides a simple means for

identifying and organizing the classes that are

relevant to system or product requirements.

Ambler [Amb95] describes CRC modeling in

the following way:

»A CRC model is really a collection of standard

index cards that represent classes. The cards are

divided into three sections. Along the top of the

card you write the name of the class. In the body of

the card you list the class responsibilities on the

left and the collaborators on the right.

35

CRC Modeling

Class:

Description:

Responsibility: Collaborator:

Class:

Description:

Responsibility: Collaborator:

Class:

Description:

Responsibility: Collaborator:

Class: FloorPlan

Description:

Responsibility: Collaborator:

incorporates walls, doors and windows

shows position of video cameras

defines floor plan name/type

manages floor plan positioning

scales floor plan for display

scales floor plan for display

Wall

Camera

36

Class Types

� Entity classes, also called model or business classes,
are extracted directly from the statement of the problem
(e.g., FloorPlan and Sensor).

� Boundary classes are used to create the interface (e.g.,
interactive screen or printed reports) that the user sees
and interacts with as the software is used.

� Controller classes manage a “unit of work” [UML03]
from start to finish. That is, controller classes can be
designed to manage
» the creation or update of entity objects;

» the instantiation of boundary objects as they obtain information
from entity objects;

» complex communication between sets of objects;

» validation of data communicated between objects or between
the user and the application.

37

Responsibilities

� System intelligence should be distributed across
classes to best address the needs of the
problem

� Each responsibility should be stated as
generally as possible

� Information and the behavior related to it should
reside within the same class

� Information about one thing should be localized
with a single class, not distributed across
multiple classes.

� Responsibilities should be shared among related
classes, when appropriate.

38

Collaborations

� Classes fulfill their responsibilities in one of two ways:

» A class can use its own operations to manipulate its own
attributes, thereby fulfilling a particular responsibility, or

» a class can collaborate with other classes.

� Collaborations identify relationships between classes

� Collaborations are identified by determining whether a
class can fulfill each responsibility itself

� three different generic relationships between classes
[WIR90]:
» the is-part-of relationship

» the has-knowledge-of relationship

» the depends-upon relationship

39

Composite Aggregate Class

Player

PlayerHead PlayerArms PlayerLegsPlayerBody

40

Associations and Dependencies

� Two analysis classes are often related to one
another in some fashion

» In UML these relationships are called associations

» Associations can be refined by indicating multiplicity

(the term cardinality is used in data modeling

� In many instances, a client-server relationship
exists between two analysis classes.

» In such cases, a client-class depends on the server-
class in some way and a dependency relationship is
established

41

Multiplicity

WallSegment Window Door

Wall

is used to buildis used to build

is used to build1..*

1 1 1

0..* 0..*

42

Dependencies

CameraDisplayWindow

{password}

<<access>>

43

Analysis Packages

� Various elements of the analysis model (e.g.,
use-cases, analysis classes) are categorized in
a manner that packages them as a grouping

� The plus sign preceding the analysis class name
in each package indicates that the classes have
public visibility and are therefore accessible from
other packages.

� Other symbols can precede an element within a
package. A minus sign indicates that an element
is hidden from all other packages and a #
symbol indicates that an element is accessible
only to packages contained within a given
package.

44

Analysis Packages

Environment

+Tree

+Landscape

+Road

+Wall
+Bridge

+Building

+VisualEffect
+Scene

Characters

+Player
+Protagonist
+Antagonist
+SupportingRole

RulesOfTheGame

+RulesOfMovement
+ConstraintsOnAction

package name

45

Reviewing the CRC Model

� All participants in the review (of the CRC model) are given a subset of the
CRC model index cards.

» Cards that collaborate should be separated (i.e., no reviewer should
have two cards that collaborate).

� All use-case scenarios (and corresponding use-case diagrams) should be
organized into categories.

� The review leader reads the use-case deliberately.

» As the review leader comes to a named object, she passes a token to
the person holding the corresponding class index card.

� When the token is passed, the holder of the class card is asked to describe
the responsibilities noted on the card.

» The group determines whether one (or more) of the responsibilities
satisfies the use-case requirement.

� If the responsibilities and collaborations noted on the index cards cannot
accommodate the use-case, modifications are made to the cards.

» This may include the definition of new classes (and corresponding CRC
index cards) or the specification of new or revised responsibilities or
collaborations on existing cards.

46

33 Requirements ModelingRequirements Modeling

44 Design ConceptsDesign Concepts

Agenda

11 IntroductionIntroduction

66 Summary and ConclusionSummary and Conclusion

22 Requirements AnalysisRequirements Analysis

55 Sample Analysis and Design Exercise Using UMLSample Analysis and Design Exercise Using UML

47

Requirements Modeling Strategies

� One view of requirements modeling, called structured

analysis, considers data and the processes that

transform the data as separate entities.

» Data objects are modeled in a way that defines their

attributes and relationships.

» Processes that manipulate data objects are modeled in a

manner that shows how they transform data as data objects

flow through the system.

� A second approach to analysis modeled, called

object-oriented analysis, focuses on

» the definition of classes and

» the manner in which they collaborate with one another to

effect customer requirements.

48

Flow-Oriented Modeling

� Represents how data objects are transformed at they

move through the system

� data flow diagram (DFD) is the diagrammatic form

that is used

� Considered by many to be an “old school” approach,

but continues to provide a view of the system that is

unique—it should be used to supplement other

analysis model elements

49

The Flow Model

Every computer-based system is an

information transform

computer
based
system

input output

50

Flow Modeling Notation

external entity

process

data flow

data store

51

External Entity

A producer or consumer of data

Examples: a person, a device, a sensor

Another example: computer-based

system

Data must always originate somewhere

and must always be sent to something

52

Process

A data transformer (changes input
to output)

Examples: compute taxes, determine area,

format report, display graph

Data must always be processed in some

way to achieve system function

53

Data Flow

Data flows through a system, beginning
as input and transformed into output.

compute
triangle

area

base

height

area

54

Data Stores

Data is often stored for later use.

look-up
sensor

data

sensor #

report required

sensor #, type,
location, age

sensor data

sensor number

type,
location, age

55

Data Flow Diagramming: Guidelines

� all icons must be labeled with meaningful
names

� the DFD evolves through a number of
levels of detail

� always begin with a context level
diagram (also called level 0)

� always show external entities at level 0

� always label data flow arrows

� do not represent procedural logic

56

Constructing a DFD—I

� review user scenarios and/or the
data model to isolate data objects
and use a grammatical parse to
determine “operations”

� determine external entities
(producers and consumers of data)

� create a level 0 DFD

57

Level 0 DFD Example

user
processing

request

video
source NTSC

video signal

digital
video

processor

requested
video
signal

monitor

58

Constructing a DFD—II

� write a narrative describing the
transform

� parse to determine next level transforms

� “balance” the flow to maintain data flow
continuity

� develop a level 1 DFD

� use a 1:5 (approx.) expansion ratio

59

The Data Flow Hierarchy

P
a b

x y

p1

p2

p3

p4 5

a

b

c

d
e

f

g

level 0

level 1

60

Flow Modeling Notes

� each bubble is refined until it does just
one thing

� the expansion ratio decreases as the
number of levels increase

� most systems require between 3 and 7
levels for an adequate flow model

� a single data flow item (arrow) may be
expanded as levels increase (data
dictionary provides information)

61

Process Specification (PSPEC)

PSPEC

narrative

pseudocode (PDL)

equations

tables

diagrams and/or charts

bubble

62

Maps into

DFDs: A Look Ahead

analysis model

design model

63

Control Flow Modeling

� Represents “events” and the processes
that manage events

� An “event” is a Boolean condition that can
be ascertained by:

• listing all sensors that are "read" by the software.

• listing all interrupt conditions.

• listing all "switches" that are actuated by an
operator.

• listing all data conditions.

• recalling the noun/verb parse that was applied to
the processing narrative, review all "control items"
as possible CSPEC inputs/outputs.

64

Control Specification (CSPEC)

The CSPEC can be:

state diagram

(sequential spec)

state transition table

decision tables

activation tables

combinatorial spec

65

Behavioral Modeling

� The behavioral model indicates how
software will respond to external events
or stimuli. To create the model, the
analyst must perform the following
steps:

• Evaluate all use-cases to fully understand the
sequence of interaction within the system.

• Identify events that drive the interaction sequence
and understand how these events relate to
specific objects.

• Create a sequence for each use-case.

• Build a state diagram for the system.

• Review the behavioral model to verify accuracy
and consistency.

66

State Representations

� In the context of behavioral modeling, two
different characterizations of states must be
considered:
» the state of each class as the system performs its

function and

» the state of the system as observed from the outside
as the system performs its function

� The state of a class takes on both passive and
active characteristics [CHA93].
» A passive state is simply the current status of all of an

object’s attributes.

» The active state of an object indicates the current
status of the object as it undergoes a continuing
transformation or processing.

67

State Diagram for the ControlPanel Class

reading

locked

select ing

password

ent ered

comparing

password = incorrect

& numberOfTries < maxTries

password = correct

act ivat ion successful

key hit

do: validatePassword

numberOfTries > maxTries

t imer < lockedTime

t imer > lockedTime

68

The States of a System

� state—a set of observable circum-
stances that characterizes the behavior of
a system at a given time

� state transition—the movement from one
state to another

� event—an occurrence that causes the
system to exhibit some predictable form
of behavior

� action—process that occurs as a
consequence of making a transition

69

Behavioral Modeling

� make a list of the different states of a
system (How does the system behave?)

� indicate how the system makes a
transition from one state to another (How
does the system change state?)

» indicate event

» indicate action

� draw a state diagram or a sequence
diagram

70

Sequence Diagram

homeowner cont rol panel sensorssyst em sensors

syst em

ready

reading

request lookup
comparing

result

password ent ered

password = correct

request act ivat ion

act ivat ion successful

locked
numberOfTries > maxTries

select ing

t imer > lockedTime
A

A

Figure 8.27 Sequence diagram (part ial) for SafeHome security funct ion

act ivat ion successful

71

Writing the Software Specification

Everyone knew exactly
what had to be done
until someone wrote it
down!

72

Patterns for Requirements Modeling

� Software patterns are a mechanism for capturing

domain knowledge in a way that allows it to be

reapplied when a new problem is encountered

» domain knowledge can be applied to a new problem within

the same application domain

» the domain knowledge captured by a pattern can be applied

by analogy to a completely different application domain.

� The original author of an analysis pattern does not

“create” the pattern, but rather, discovers it as

requirements engineering work is being conducted.

� Once the pattern has been discovered, it is

documented

73

Discovering Analysis Patterns

� The most basic element in the description of a

requirements model is the use case.

� A coherent set of use cases may serve as the

basis for discovering one or more analysis

patterns.

� A semantic analysis pattern (SAP) “is a pattern

that describes a small set of coherent use cases

that together describe a basic generic

application.” [Fer00]

74

An Example

� Consider the following preliminary use case for software
required to control and monitor a real-view camera and
proximity sensor for an automobile:

Use case: Monitor reverse motion

Description: When the vehicle is placed in reverse gear, the

control software enables a video feed from a rear-placed video

camera to the dashboard display. The control software

superimposes a variety of distance and orientation lines on the

dashboard display so that the vehicle operator can maintain

orientation as the vehicle moves in reverse. The control software

also monitors a proximity sensor to determine whether an object is

inside 10 feet of the rear of the vehicle. It will automatically break

the vehicle if the proximity sensor indicates an object within 3 feet

of the rear of the vehicle.

75

An Example

� This use case implies a variety of functionality that
would be refined and elaborated (into a coherent set
of use cases) during requirements gathering and
modeling.

� Regardless of how much elaboration is accomplished,
the use case(s) suggest(s) a simple, yet widely
applicable SAP—the software-based monitoring and
control of sensors and actuators in a physical system.

� In this case, the “sensors” provide information about
proximity and video information. The “actuator” is the
breaking system of the vehicle (invoked if an object is
very close to the vehicle.

� But in a more general case, a widely applicable
pattern is discovered --> Actuator-Sensor

76

Actuator-Sensor Pattern—I

Pattern Name: Actuator-Sensor

Intent: Specify various kinds of sensors and actuators in an embedded system.

Motivation: Embedded systems usually have various kinds of sensors and actuators. These sensors and

actuators are all either directly or indirectly connected to a control unit. Although many of the sensors and

actuators look quite different, their behavior is similar enough to structure them into a pattern. The pattern

shows how to specify the sensors and actuators for a system, including attributes and operations. The Actuator-

Sensor pattern uses a pull mechanism (explicit request for information) for PassiveSensors and a push

mechanism (broadcast of information) for the ActiveSensors.

Constraints:

Each passive sensor must have some method to read sensor input and attributes that represent the sensor value.

Each active sensor must have capabilities to broadcast update messages when its value changes.

Each active sensor should send a life tick, a status message issued within a specified time frame, to detect

malfunctions.

Each actuator must have some method to invoke the appropriate response determined by the

ComputingComponent.

Each sensor and actuator should have a function implemented to check its own operation state.

Each sensor and actuator should be able to test the validity of the values received or sent and set its operation

state if the values are outside of the specifications.

77

Actuator-Sensor Pattern—II

Applicability: Useful in any system in which multiple sensors and actuators are present.

Structure: A UML class diagram for the Actuator-Sensor Pattern is shown in Figure 7.8. Actuator,

PassiveSensor and ActiveSensor are abstract classes and denoted in italics. There are four different

types of sensors and actuators in this pattern. The Boolean, integer, and real classes represent the most

common types of sensors and actuators. The complex classes are sensors or actuators that use values that

cannot be easily represented in terms of primitive data types, such as a radar device. Nonetheless, these

devices should still inherit the interface from the abstract classes since they should have basic

functionalities such as querying the operation states.

78

Actuator-Sensor Pattern—III

Behavior: Figure 7.9 presents a UML sequence diagram for an example of the Actuator-Sensor Pattern as it

might be applied for the SafeHome function that controls the positioning (e.g., pan, zoom) of a security

camera. Here, the ControlPanel queries a sensor (a passive position sensor) and an actuator (pan control) to

check the operation state for diagnostic purposes before reading or setting a value. The messages Set

Physical Value and Get Physical Value are not messages between objects. Instead, they describe the

interaction between the physical devices of the system and their software counterparts. In the lower part of

the diagram, below the horizontal line, the PositionSensor reports that the operation state is zero. The

ComputingComponent then sends the error code for a position sensor failure to the FaultHandler that will

decide how this error affects the system and what actions are required. it gets the data from the sensors and

computes the required response for the actuators.

79

Actuator-Sensor Pattern—III

� See textbook for additional information on:

»Participants

»Collaborations

»Consequences

80

Requirements Modeling for WebApps

Content Analysis. The full spectrum of content to be provided by the
WebApp is identified, including text, graphics and images, video,
and audio data. Data modeling can be used to identify and describe
each of the data objects.

Interaction Analysis. The manner in which the user interacts with the
WebApp is described in detail. Use-cases can be developed to
provide detailed descriptions of this interaction.

Functional Analysis. The usage scenarios (use-cases) created as part
of interaction analysis define the operations that will be applied to
WebApp content and imply other processing functions. All
operations and functions are described in detail.

Configuration Analysis. The environment and infrastructure in which
the WebApp resides are described in detail.

81

When Do We Perform Analysis?

� In some WebE situations, analysis and
design merge. However, an explicit
analysis activity occurs when …
» the WebApp to be built is large and/or

complex
» the number of stakeholders is large

» the number of Web engineers and other
contributors is large

» the goals and objectives (determined during
formulation) for the WebApp will effect the
business’ bottom line

» the success of the WebApp will have a strong
bearing on the success of the business

82

The Content Model

� Content objects are extracted from use-cases

» examine the scenario description for direct and
indirect references to content

� Attributes of each content object are identified

� The relationships among content objects and/or
the hierarchy of content maintained by a
WebApp

» Relationships—entity-relationship diagram or UML

» Hierarchy—data tree or UML

83

Data Tree

Figure 18.3 Dat a t ree for a SafeHome component

component

partNumber

partName

partType

descript ion

price

Market ingDescript ion

Photograph

TechDescript ion

Schemat ic

Video

WholesalePrice

RetailPrice

84

The Interaction Model

� Composed of four elements:

» use-cases

» sequence diagrams

» state diagrams

» a user interface prototype

� Each of these is an important UML
notation and is described in Appendix I of
the textbook

85

Sequence Diagram

Figure 18.5 Sequence diagram for use-case: select SafeHome components

new cust omer

:Room :FloorPlan

describes

room*
places room

in f loor plan

:Product

Component

select s product component *

:Billof

Materials

add t o BoM

FloorPlan

Repository

save f loor plan conf igurat ion

save bill of mat erials

BoM

Repository

86

State Diagram

Figure 18.6 Part ial state diagram for new cust omer interact ion

new cust omer

Validating user

system status=“input ready”
display msg = “enter userid”
display msg =“enter pswd”

entry/ log-in requested
do: run user validation
exit/set user access switch

select “log-in”

userid
validated

password validated

Selecting user action

system status=“link ready”
display: navigation choices”

entry/ validated user
do: link as required
exit/user action selected

select other functions

select customization functionality

select e-commerce (purchase) functionality

Customizing

system status=“input ready”
display: basic instructions

entry/validated user

do: process user selection
exit/ customization terminated

select descriptive
content

room being defined

Defining room

system status=“input ready”
display: room def. window

entry/ room def. selected
do: run room queries
do: store room variables
exit/room completed

select descriptive
content

Building floor plan

system status=“input ready”
display: floor plan window

entry/ floor plan selected
do: insert room in place
do: store floor plan variables
exit/room insertion completed

select descriptive
content

select enter room in floor plan

Saving floor plan

system status=“input ready”

display: storage indicator

entry/ floor plan save selected

do: store floor plan
exit/save completed

select save floor plan

room insertion completed

next selection

customization complete

all rooms

defined

87

The Functional Model

� The functional model addresses two
processing elements of the WebApp
» user observable functionality that is delivered

by the WebApp to end-users

» the operations contained within analysis
classes that implement behaviors associated
with the class.

� An activity diagram can be used to
represent processing flow

88

Activity Diagram

Figure 18.7 Act ivity diagram for comput ePr ice() operat io

init ialize t ot alCost

invoke

calcShippingCost
get price and
quant it y

components remain on BoMList

invoke
det ermineDiscount

discount <= 0

discount>0
t ot alCost=
 t ot alCost - discount

t axTot al=

t ot alCost x t axrat e

no components remain on BoMList

lineCost =

price x quant it y

add lineCost t o

t ot alCost

priceTot al =

 t ot alCost + t axTot al
 + shippingCost

ret urns:
 shippingCost

ret urns: discount

89

The Configuration Model

� Server-side

»Server hardware and operating system
environment must be specified

» Interoperability considerations on the server-
side must be considered

»Appropriate interfaces, communication
protocols and related collaborative information
must be specified

� Client-side

»Browser configuration issues must be
identified

»Testing requirements should be defined

90

Navigation Modeling-I

� Should certain elements be easier to reach (require
fewer navigation steps) than others? What is the priority
for presentation?

� Should certain elements be emphasized to force users to
navigate in their direction?

� How should navigation errors be handled?

� Should navigation to related groups of elements be given
priority over navigation to a specific element.

� Should navigation be accomplished via links, via search-
based access, or by some other means?

� Should certain elements be presented to users based on
the context of previous navigation actions?

� Should a navigation log be maintained for users?

91

Navigation Modeling-II

� Should a full navigation map or menu (as opposed to a
single “back” link or directed pointer) be available at
every point in a user’s interaction?

� Should navigation design be driven by the most
commonly expected user behaviors or by the perceived
importance of the defined WebApp elements?

� Can a user “store” his previous navigation through the
WebApp to expedite future usage?

� For which user category should optimal navigation be
designed?

� How should links external to the WebApp be handled?
overlaying the existing browser window? as a new
browser window? as a separate frame?

92

33 Requirements ModelingRequirements Modeling

44 Design ConceptsDesign Concepts

Agenda

11 IntroductionIntroduction

66 Summary and ConclusionSummary and Conclusion

22 Requirements AnalysisRequirements Analysis

55 Sample Analysis and Design Exercise Using UMLSample Analysis and Design Exercise Using UML

93

Design

� Mitch Kapor, the creator of Lotus 1-2-3,

presented a “software design manifesto” in Dr.

Dobbs Journal. He said:

»Good software design should exhibit:

»Firmness: A program should not have any bugs

that inhibit its function.

»Commodity: A program should be suitable for the

purposes for which it was intended.

»Delight: The experience of using the program

should be pleasurable one.

94

Analysis Model -> Design Model

Analysis Model

use-cases - text

use-case diagrams
activity diagrams

swim lane diagrams

data flow diagrams

control-flow diagrams
processing narratives

f low- or ient ed

element s

behavioral
element s

class- based

element s

scenar io- based

element s

class diagrams
analysis packages

CRC models
collaboration diagrams

state diagrams

sequence diagrams
Dat a/ Class Design

Archit ect ural Design

Int erface Design

Component -

Level Design

Design Model

95

Design and Quality

� the design must implement all of the explicit
requirements contained in the analysis model,
and it must accommodate all of the implicit
requirements desired by the customer.

� the design must be a readable, understandable
guide for those who generate code and for those
who test and subsequently support the software.

� the design should provide a complete picture of
the software, addressing the data, functional, and
behavioral domains from an implementation
perspective.

96

Quality Guidelines

� A design should exhibit an architecture that (1) has been created using
recognizable architectural styles or patterns, (2) is composed of
components that exhibit good design characteristics and (3) can be
implemented in an evolutionary fashion

» For smaller systems, design can sometimes be developed linearly.

� A design should be modular; that is, the software should be logically
partitioned into elements or subsystems

� A design should contain distinct representations of data, architecture,
interfaces, and components.

� A design should lead to data structures that are appropriate for the classes
to be implemented and are drawn from recognizable data patterns.

� A design should lead to components that exhibit independent functional
characteristics.

� A design should lead to interfaces that reduce the complexity of
connections between components and with the external environment.

� A design should be derived using a repeatable method that is driven by
information obtained during software requirements analysis.

� A design should be represented using a notation that effectively
communicates its meaning.

97

Design Principles

� The design process should not suffer from ‘tunnel vision.’

� The design should be traceable to the analysis model.

� The design should not reinvent the wheel.

� The design should “minimize the intellectual distance”
[DAV95] between the software and the problem as it exists
in the real world.

� The design should exhibit uniformity and integration.

� The design should be structured to accommodate change.

� The design should be structured to degrade gently, even
when aberrant data, events, or operating conditions are
encountered.

� Design is not coding, coding is not design.

� The design should be assessed for quality as it is being
created, not after the fact.

� The design should be reviewed to minimize conceptual
(semantic) errors.

From Davis [DAV95]

98

Fundamental Concepts

� Abstraction—data, procedure, control

� Architecture—the overall structure of the software

� Patterns—”conveys the essence” of a proven design solution

� Separation of concerns—any complex problem can be more easily
handled if it is subdivided into pieces

� Modularity—compartmentalization of data and function

� Hiding—controlled interfaces

� Functional independence—single-minded function and low coupling

� Refinement—elaboration of detail for all abstractions

� Aspects—a mechanism for understanding how global requirements
affect design

� Refactoring—a reorganization technique that simplifies the design

� OO design concepts—Appendix II

� Design Classes—provide design detail that will enable analysis
classes to be implemented

99

Data Abstraction

door

implemented as a data structure

manufacturer
model number
type
swing direction
inserts
lights

type
number

weight
opening mechanism

100

Procedural Abstraction

open

implemented with a "knowledge" of the

object that is associated with enter

details of enter
algorithm

101

Architecture

“The overall structure of the software and the ways in which
that structure provides conceptual integrity for a system.”
[SHA95a]

Structural properties. This aspect of the architectural design representation

defines the components of a system (e.g., modules, objects, filters) and the

manner in which those components are packaged and interact with one another.

For example, objects are packaged to encapsulate both data and the processing

that manipulates the data and interact via the invocation of methods

Extra-functional properties. The architectural design description should

address how the design architecture achieves requirements for performance,

capacity, reliability, security, adaptability, and other system characteristics.

Families of related systems. The architectural design should draw upon

repeatable patterns that are commonly encountered in the design of families of

similar systems. In essence, the design should have the ability to reuse

architectural building blocks.

102

Patterns

Design Pattern Template

Pattern name—describes the essence of the pattern in a short but
expressive name

Intent—describes the pattern and what it does

Also-known-as—lists any synonyms for the pattern

Motivation—provides an example of the problem

Applicability—notes specific design situations in which the pattern is
applicable

Structure—describes the classes that are required to implement the
pattern

Participants—describes the responsibilities of the classes that are
required to implement the pattern

Collaborations—describes how the participants collaborate to carry out
their responsibilities

Consequences—describes the “design forces” that affect the pattern and
the potential trade-offs that must be considered when the pattern is
implemented

Related patterns—cross-references related design patterns

103

Separation of Concerns

� Any complex problem can be more easily

handled if it is subdivided into pieces that can

each be solved and/or optimized independently

� A concern is a feature or behavior that is

specified as part of the requirements model for

the software

� By separating concerns into smaller, and

therefore more manageable pieces, a problem

takes less effort and time to solve.

104

Modularity

� "modularity is the single attribute of software that

allows a program to be intellectually manageable"

[Mye78].

� Monolithic software (i.e., a large program composed

of a single module) cannot be easily grasped by a

software engineer.

» The number of control paths, span of reference, number of

variables, and overall complexity would make

understanding close to impossible.

� In almost all instances, you should break the design

into many modules, hoping to make understanding

easier and as a consequence, reduce the cost required

to build the software.

105

Modularity: Trade-offs

What is the "right" number of modules

for a specific software design?

optimal number
of modules

cost of
software

number of modules

module
integration

cost

module development cost

106

Information Hiding

module

controlled
interface

"secret"

• algorithm

• data structure

• details of external interface

• resource allocation policy

clients

a specific design decision

107

Why Information Hiding?

� reduces the likelihood of “side effects”

� limits the global impact of local design
decisions

� emphasizes communication through
controlled interfaces

� discourages the use of global data

� leads to encapsulation—an attribute of
high quality design

� results in higher quality software

108

Stepwise Refinement

open

walk to door;
reach for knob;

open door;

walk through;
close door.

repeat until door opens
turn knob clockwise;
if knob doesn't turn, then

take key out;
find correct key;
insert in lock;

endif
pull/push door
move out of way;
end repeat

109

Sizing Modules: Two Views

MODULE

What's
inside??

How big
is it??

110

Functional Independence

� Functional independence is achieved by developing
modules with "single-minded" function and an
"aversion" to excessive interaction with other
modules.

� Cohesion is an indication of the relative functional
strength of a module.
» A cohesive module performs a single task, requiring little

interaction with other components in other parts of a
program. Stated simply, a cohesive module should (ideally)
do just one thing.

� Coupling is an indication of the relative
interdependence among modules.
» Coupling depends on the interface complexity between

modules, the point at which entry or reference is made to a
module, and what data pass across the interface.

111

Aspects

� Consider two requirements, A and B.

Requirement A crosscuts requirement B “if a

software decomposition [refinement] has been

chosen in which B cannot be satisfied without

taking A into account. [Ros04]

� An aspect is a representation of a cross-cutting

concern.

112

Aspects—An Example

� Consider two requirements for the SafeHomeAssured.com
WebApp. Requirement A is described via the use-case Access
camera surveillance via the Internet. A design refinement
would focus on those modules that would enable a registered user to
access video from cameras placed throughout a space. Requirement
B is a generic security requirement that states that a registered user
must be validated prior to using SafeHomeAssured.com. This
requirement is applicable for all functions that are available to
registered SafeHome users. As design refinement occurs, A* is a
design representation for requirement A and B* is a design
representation for requirement B. Therefore, A* and B* are
representations of concerns, and B* cross-cuts A*.

� An aspect is a representation of a cross-cutting concern. Therefore,
the design representation, B*, of the requirement, a registered user
must be validated prior to using SafeHomeAssured.com, is an
aspect of the SafeHome WebApp.

113

Refactoring

� Fowler [FOW99] defines refactoring in the following
manner:
» "Refactoring is the process of changing a software system in

such a way that it does not alter the external behavior of the
code [design] yet improves its internal structure.”

� When software is refactored, the existing design is
examined for
» redundancy
» unused design elements
» inefficient or unnecessary algorithms
» poorly constructed or inappropriate data structures
» or any other design failure that can be corrected to yield a

better design.

114

OO Design Concepts

� Design classes
» Entity classes

» Boundary classes

» Controller classes

� Inheritance—all responsibilities of a superclass is
immediately inherited by all subclasses

� Messages—stimulate some behavior to occur in the
receiving object

� Polymorphism—a characteristic that greatly reduces
the effort required to extend the design

115

Design Classes

� Analysis classes are refined during design to become
entity classes

� Boundary classes are developed during design to create
the interface (e.g., interactive screen or printed reports)
that the user sees and interacts with as the software is
used.
» Boundary classes are designed with the responsibility of

managing the way entity objects are represented to users.

� Controller classes are designed to manage
» the creation or update of entity objects;

» the instantiation of boundary objects as they obtain information
from entity objects;

» complex communication between sets of objects;

» validation of data communicated between objects or between
the user and the application.

116

The Design Model

process dimension

architecture

elements

interface

elements

component -level

elements

deployment -level

elements

low

high

class diagrams

analysis packages

CRC models

collaborat ion diagrams

use-cases - text

use-case diagrams

act ivity diagrams

swim lane diagrams

collaborat ion diagrams data f low diagrams

cont rol-f low diagrams

processing narrat ives

data f low diagrams

control-f low diagrams

processing narrat ives

state diagrams

sequence diagrams

state diagrams

sequence diagrams

design class realizat ions

subsystems

collaborat ion diagrams

design class realizat ions

subsystems

collaborat ion diagrams

ref inements to:

deployment diagrams

class diagrams

analysis packages

CRC models

collaborat ion diagrams

component diagrams

design classes

act ivity diagrams

sequence diagrams

ref inements to:

component diagrams

design classes

act ivity diagrams

sequence diagrams

design class realizat ions

subsystems

collaborat ion diagrams

component diagrams

design classes

act ivity diagrams

sequence diagrams

analysis model

design model

Requirements:

 const raints

 interoperabilit y

 targets and

 conf igurat ion

technical interface

 design

Navigat ion design

GUI design

117

Design Model Elements

� Data elements
» Data model --> data structures

» Data model --> database architecture

� Architectural elements
» Application domain

» Analysis classes, their relationships, collaborations and behaviors
are transformed into design realizations

» Patterns and “styles” (see textbook chapters 9 and 12)

� Interface elements
» the user interface (UI)

» external interfaces to other systems, devices, networks or other
producers or consumers of information

» internal interfaces between various design components.

� Component elements

� Deployment elements

118

Architectural Elements

� The architectural model [Sha96] is derived

from three sources:

» information about the application domain for the

software to be built;

» specific requirements model elements such as data

flow diagrams or analysis classes, their

relationships and collaborations for the problem at

hand, and

» the availability of architectural patterns (see

textbook chapter 12) and styles (see textbook

chapter 9).

119

Interface Elements

Cont rolPanel

LCDdisplay

LEDindicators

keyPadCharacterist ics

speaker

wirelessInterface

readKeyStroke()

decodeKey ()

displayStatus()

lightLEDs()

sendControlMsg()

Figure 9.6 UML int erface represent at ion for Cont rolPanel

KeyPad

readKeystroke()

decodeKey()

<<int erface>>

WirelessPDA

KeyPad

MobilePhone

120

Component Elements

SensorManagement
Sensor

121

Deployment Elements

Figure 9 .8 UML deployment diagram for SafeHome

Personal computer

Security

homeManagement

Surveillance

communication

Cont rol Panel CPI server

Security homeownerAccess

externalAccess

122

33 Requirements ModelingRequirements Modeling

44 Design ConceptsDesign Concepts

Agenda

11 IntroductionIntroduction

66 Summary and ConclusionSummary and Conclusion

22 Requirements AnalysisRequirements Analysis

55 Sample Analysis and Design Exercise Using UMLSample Analysis and Design Exercise Using UML

123

UML …

� … is a modeling language, a notation used to
express and document designs

� … unifies the notation of Booch, Rumbaugh
(OMT) and Jacobson, and augmented with
other contributors once submitted to OMG

� … proposes a standard for technical exchange
of models and designs

� … defines a “meta-model”, a diagram that
defines the syntax of the UML notation

124

UML is not …

� … a method or methodology (Method =
Notation (e.g.,UML) + Process)

� … a proponent of a particular process
(although the “Rational Objectory
Process” is being proposed by Booch,
Rumbaugh and Jacobson)

125

Starting Point

� Identify key domain abstractions … classes integrating:
» Attributes

» Behavior (responsibilities, methods)

» Messaging
• providing logical independence between client and object

» Polymorphism
• providing physical independence between client and

implementation

� Consider relationships … integrating classes and
objects to form higher levels of abstraction
» Association (“Uses, Needs”)

» Aggregation (“Has-A”)

» Inheritance (“Is-A”)

126

Model Perspectives

� Conceptual
» Book [Title]

» objects, “things” from the domain

» conceptual map to implementation

� Specification
» BookIface { void setTitle(String value); }

» identifies how to obtain properties

� Implementation
» PersistentBook : BookIface { -> DB }

» identifies how interface will be implemented

127

Model Perspective Hints

� Works as a map of the system

� Different subsystems become UML packages

� Keep dependencies simple and domain-related

� Define relationships and interactions between
packages

� Address both functional and non-functional
requirements

� Take time to factor in reuse

128

Initial Modeling Results

� List of use cases, describing system
requirements

� Domain model, capturing your understanding of
the business process and key domain classes

� Design model, realizing both the information in
the domain objects and the behavior described
in the use cases

� Add classes in the design model that actually
do the work and also provide a reusable
architecture for future extensions

129

UML 1.x Notation Baseline

Diagram Name Type Phase

Use Case Static* Analysis

Class Static Analysis

Activity Dynamic** Analysis

State-Transition Dynamic Analysis

Event Trace (Interaction) Dynamic Design

Sequence Static Design

Collaboration Dynamic Design

Package Static Delivery

Deployment Dynamic Delivery
*
Static describes structural system properties
**
Dynamic describes behavioral system properties.

130

Example (Using UML 1.x)

� A die

� The player throws die 10 x 2

� When total is 7, player scores 10 points

� At the end of the game, the score is
collected in a score map

131

Requirements Analysis

� First Use Case

� Identify Actors?

� Identify possible System use cases

� External functionality !

132

First Use Case

� Play:
» Actor: Player

» Descr: Player rolls the dices
10 times, whenever total is
7, +10pts

� View High Score
» Actor: Player

» Descr: Player looks up
highest score in read-only
mode

Play

Player

View High Score

133

Use Case

� Very important diagram !

� A must for requirements analysis

� A must to present an application !

� MUST BE formally commented

� Used as a reference for all remaining
modeling stages

134

Activity Diagram

� Looks awfully close to a flow diagram

� Identify activities based on a use case

� Identify transitions between activities

135

menu

view

Highscore

Start

turn=0

Roll

Dice

turn++

Update

highscore

Turn<10

Activity Diagram

[highscore] [start] [exit]

[true]

[false]

136

Activity Diagram

menu

view

Highscore

Start

turn=0

Roll

Dice

turn++

Update

highscore

Turn<10

[highscore] [start] [exit]

[true]

[false]

Play

Player

View High Score

137

menu

view

Highscore

Start

turn=0

Roll

Dice

turn++

Update

highscore

Turn<10

Activity Diagram

[highscore] [start] [exit]

[true]

[false]

138

Activity Diagram

� Requirements analysis or analysis phase?

� More business process than object

� Provide message calling sequence and
detail Use-cases

� Very useful for tests...

139

Analysis

� Model the real world

� Implementation independent

� Determine real world classes: first class
diagram

� Model system’s dynamics: collaboration
diagram

140

Collaboration Diagram

� Identify the Objects

� Identify relationships between Objects
(objects graph)

� Identify messages and message calling
sequence between objects

141

Collaboration Diagram

Momo : Player

game : Dice
Game

d1 : Die

d2 : Die

2: r1=roll()

3: r2=roll()

1: play()

� Display the objects

� Display relationships
between objects

� Display message
calling sequence on
individual objects

142

Collaboration Diagram

menu

view

Highscore

Start

turn=0

Roll

Dice

turn++

Update

highscore

Turn<10

[highscore] [start] [exit]

[true]

[false]

Momo : Player

game : Dice
Game

d1 : Die

d2 : Die

2: r1=roll()

3: r2=roll()

1: play()

143

Class Diagram

� Identify classes

� Identify static and dynamic relationships
between classes

� Identify relationships’ cardinality

� Identify class attributes

� Identify methods and their parameters

144

Class Diagram

Player

name : String
score : int = 0;

play()

(from Use Case View) Die

faceValue : int = 1

roll()21 21

Rolls

HighScore

DiceGame

1

1

1

1

Plays

1

1

1

1

Includes

1

1

1

1

Scoring

145

Class Diagram

Player

name : String
score : int = 0;

play()

(from Use Case View) Die

faceValue : int = 1

roll()21 21

Rolls

HighScore

DiceGame

1

1

1

1

Plays

1

1

1

1

Includes

1

1

1

1

Scoring

Momo : Player

game : Dice
Game

d1 : Die

d2 : Die

2: r1=roll()

3: r2=roll()

1: play()

146

Sequence Diagram

� Dynamic modeling (~same as
collaboration)

� Focuses on message sequencing

� Identify objects, their messages, and the
message calling sequence

147

Sequence Diagram

d1 : Die : DiceGame
 : Player

d2 : Die

1: play()
2: roll()

3: roll()

Activation Duration !

148

Momo : Player

game : Dice
Game

d1 : Die

d2 : Die

2: r1=roll()

3: r2=roll()

1: play()

Sequence Diagram

d1 : Die : DiceGame
 : Player

d2 : Die

1: play()
2: roll()

3: roll()

Reference!

149

 : DiceGame d1 : Die d2 : Die
 : Player : RealPlayer

2: Die()

3: Die()

1: DiceGame()

4: start()
5: Player(String)

Sequence Diagram

The player is only created at the beginning of the game !

150

State Diagram

� Identify the states of an object

� Identify state transitions

151

State Diagram for a « game » object

Ready to play Player ready

entry: get player name

In progress

entry: turn++

 / S tart game

roll dices[turn<10]

start

[turn>=10]

Cancel play

cancel

Quit

152

State Diagram

menu

view

Highscore

Start

turn=0

Roll

Dice

turn++

Update

highscore

Turn<10

[highscore] [start] [exit]

[true]

[false]

Ready to play Player ready

entry: get player name

In progress

entry: turn++

 / Start game

roll dices[turn<10]

start

[turn>=10]

Cancel play

cancel

Quit

Cancel ?

Cancel ?

153

Modify Schema...

menu

view

Highscore

Start

turn=0

Roll

Dice

turn++

Update

highscore

Turn<10

[highscore] [start] [exit]

[true]

[false]

cancel

cancel

154

menu

view

Highscore

Start

turn=0

Roll

Dice

turn++

Update

highscore

Turn<10

Modify Schemas ?

[highscore] [start] [exit]

[true]

[false]

155

End of Analysis ?

� Verify coverage for use-case and activity
diagrams…

� Use case « view highscores » ?

� Use case « play » partially handled

156

Diagram Coverage

menu

view

Highscore

Start

turn=0

Roll

Dice

turn++

Update

highscore

Turn<10

[highscore] [start] [exit]

[true]

[false]

Play

Player

View High Score

Not handled

Partially handled

157

Sequence Diagram

 : DiceGame d1 : Die d2 : Die : HighScore
 : RealPlayer

1: DiceGame() 2: Die()

3: Die()

4: Highscore()

158

Sequence Diagram

 : DiceGame
 : Player

d1 : Die d2 : Die new : Entry : HighScore

1: Player(String)

2: play()

3: roll()

4: roll()

5: Entry(name:String,score:int)

6: add(Entry)

159

Class Diagram

Player

name : String
score : int = 0;

play()
Player()

<<Actor>> Die

faceValue : int = 1

roll()
Die()

1 21 2

Rolls

DiceGame

DiceGame()
start()

1

1

1

1 Plays

1

1

1

1

Includes

HighScore

Highscore()
add()

1

1

1

1

Scoring

Entry

name:String : type = initval
score:int : type = initval

Entry(name:String,score:int)()
0..*1 0..*1

160

End of Analysis ?

� Coverage is « pretty » good

� Consistency across schemas is correct

� 14/20

» Dynamic model lacks detail (dynamic model for
cancel?)

» Schemas are not described in enough detail…

» Sequence diagrams for the game are not detailed
enough : a few methods are missing…

161

Design

� Take implementation into account

»Handle the GUI portion

»Handle highscores persistence

� Define a logical architecture

� Define a physical architecture

� Add technical classes allowing the
implementation of such architecture !

162

Architecture Design

Play View High Score

File or DBMS

Presentation

Application

Persistence

163

Layered Architecture...

� One possible architecture, others exist
(seeo « A system of patterns »
Bushcmann »)

� Layers must be as independent as
possible

� « Separate » layers by relying on
interfaces + abstract classes (design
patterns)

164

Logical « packaging »

UI
<<layer>>

Core
<<layer>>

Persist
<<layer>>

Util
<<subsystem>>

� Map the architecture
on « layered »
packages

� Express
dependencies

165

« core » Layer

� Classes representing the application logic

� In fact, these are the analysis classes
which are being revisited for realization
purpose

166

Core « Layer »:First Diagram

Entry

name:String : type = initval
score:int : type = initval

Entry(name:String,score:int)()

HighScore

$ hs : HighScore = null

Highscore()
add()
load()
save()

1 0..*1 0..*

Player

name : String
score : int = 0;

Player()
display()

Die

faceValue : int = 1

roll()
Die()
display()

DiceGame

$ dg = null

DiceGame()
getInstance()
start()

1

-player

1
-dies

22

Singleton...

Player

name : String
score : int = 0;

play()
Player()

<<Actor>>

Die

faceValue : int = 1

roll()
Die()

1 21 2

Rolls

DiceGame

DiceGame()
start()

1

1

1

1Plays

1

1

1

1

Includes

Entry

name:String : type = initval
score:int : type = initval

Entry(name:String,score:int)()

HighScore

Highscore()
add()

1

1

1

1

Scoring

0..*1 0..*1

Design Analysis

167

Graphical Interface Layering: MVC

Observable

changed : boolean = false

Observable()
addObserver()
deleteObserver()
notifyObservers()
notifyObservers()
deleteObservers()
setChanged()
clearChanged()
hasChanged()
countObservers()

(from util)

DieView

DieView(die : Die)
update(o : Observable, arg : Object) : void

PlayerView

PlayerView(player : Player)
update(o : Observable, arg : Object) : void

Observer

update(o : Observable, arg : Object) : void

(from util)

<<Interface>>

0..*0..*

Player

name : String
score : int = 0;

Player()
display()

(from Core)

Die

faceValue : int = 1

roll()
Die()
display()

(from Core)

168

Views ?

Observer

update(o : Observable, arg : Object) : void

(from util)

<<Interface>>

DieView

DieView(die : Die)
update(o : Observable, arg : Object) : void

PlayerView

PlayerView(player : Player)
update(o : Observable, arg : Object) : void

169

Attention ...

DieView

DieView(die : Die)
update(o : Observable, arg : Object) : void

PlayerView

PlayerView(player : Player)
update(o : Observable, arg : Object) : void

Observable

changed : boolean = false

Observable()
addObserver()
deleteObserver()
notifyObservers()
notifyObservers()
deleteObservers()
setChanged()
clearChanged()
hasChanged()
countObservers()

(from util)

Observer

update(o : Observable, arg : Object) : void

(from util)

<<Interface>>

0..*0..*

Player

name : String
score : int = 0;

Player()
display()

(from Core)

Die

faceValue : int = 1

roll()
Die()
display()
setValue()

(from Core)

Panel

Panel()
Panel()
constructComponentName()
addNotify()

(from awt)

170

MVC in action: 1 Setup

 : RollForm : Die : DieView :
Playe

 : PlayerView

1: display()
2: PlayerView(Player)

4: return component

5: display()
6: DieView(Die)

8: return component

3: addObserver(Observer)

7: addObserver(Observer)

171

MVC in action: 2 state change

 : Die : Randomizer : DieView

1: getValue()

2: setValue(int)

3: notifyObservers()

4: update(Observable, Object)

172

MVC

� Java AWT Java: Delegation Model

»Event propagation from user interface to core
application classes

� MVC:

»State change propagation to graphical objects

173

Put the views in the « forms »

� Implement graphical interfaces containing
views as needed…

� The UI « layer » ...

174

UI « Layer »

HighScoreView

update()

PlayerForm

ok_action()
cancel_action()
PlayerForm()

HighScoreForm

ok_action()

MainForm

quit_action()
start_action()
high_action()
MainForm()

0..10..1

PlayerView

PlayerView()
update()

RollForm

roll_action()
cancel_action()
RollForm()

0..10..1

11

DieView

DieView()
update()

22

Observer

update()

(from uti l)

<<Interface>>

Frame
(from awt)

175

UI Mapping Class, UI

MainForm

quit_action()
start_action()
high_action()
MainForm()

PlayerForm

ok_action()
cancel_action()
PlayerForm()

RollForm

roll_action()
cancel_action()
RollForm()

PlayerView

PlayerView()
update()

DieView

DieView()
update()

0..1

1

2

176

Object Diagram: rollform

 : Roll
Form

d1 : Die
View

d2 : Die
View

momo :
PlayerView

roll :
Button

cancel :
Button

 : Panel

 : Label

 : Label

 : Label

 : Label

theDieView

theDieView

thePlayerView

177

 : DiceGame : MainForm : PlayerForm :
Playe

 : RollForm
 : RealPlayer

2: MainForm()
1: getInstance()

3: start_action()

5: ok_action()

4: PlayerForm()

6: start(String playerName)

7: Player(String)

8: RollForm()

Sequence Diagram: rollform

178

 :
Playe

 : RollForm : Die : DieView : PlayerView

1: display()
2: PlayerView(Player)

4: return component

5: display()
6: DieView(Die)

8: return component

3: addObserver(Observer)

7: addObserver(Observer)

Sequence Diagram: rollform

179

HighScore

$ hs : HighScore = null

Highscore()
add()
load()
save()

Entry

name:String : type = initval
score:int : type = initval

Entry(name:String,score:int)()

Player

name : String
score : int = 0;

Player()
display()

DiceGame

$ dg = null

DiceGame()
getInstance()
start()

Die

faceValue : int = 1

roll()
Die()
display()
setValue()

Singleton...

1 0..*1 0..*

-player

11

-dies

22

Displayable

display()

<<Interface>>

UI/Core Separation...

180

Layered Architecture...

Die

faceValue : int = 1

roll()
Die()
display()
setValue()

Player

name : String
score : int = 0;

Player()
display()

Observer
(from util)

<<Interface>>Observable
(from util)

0..*0..*

Displayable
<<Interface>>

PlayerView

PlayerView()
update()

(from UI)

RollForm

roll_action()
cancel_action()
RollForm()

(from UI)

1

+thePlayerView

1

DieView

DieView()
update()

(from UI)
+theDieView

22

UI

Core

Interface and

abstract classes handling decoupling

Analysis classes

Technical classes

UI

181

Util « subsystem »

� Need for random numbers

� Use java.util « random » functionality…

� The random number generator is shared
by the die…

� Another singleton...

182

Subsystem « util »

Random

$ serialVersionUID : long = 3905348978240129619L
seed : long
$ multiplier : long = 0x5DEECE66DL
$ addend : long = 0xBL
$ mask : long = (1L << 48) - 1
$ BITS_PER_BYTE : int = 8
$ BYTES_PER_INT : int = 4
nextNextGaussian : double
haveNextNextGaussian : boolean = false

Random()
Random()
setSeed()
next()
nextBytes()
nextInt()
nextInt()
nextLong()
nextBoolean()
nextFloat()
nextDouble()
nextGaussian()

(from util)

Randomizer

getInstance()
getValue()

11

Singleton

183

« Util » Dynamic Model

 : Randomizer : Die : Player

1: roll()

 : Random

2: getInstance()

5: getValue()

4: Random()

6: nextInt(int)

Singleton !

3: Randomizer()

184

« Persist » Layer

� Technical classes used for persistence

� Ensures Core/Persist independence

»Ability to switch « persistent engine »

� For example:

»Persistence by « Serialization »

»Persistence via a relational DBMS (JDBC)

185

Isolation : Pattern Fabrication

HighScore

$ hs : HighScore = null

Highscore()
add()
load()
save()

(from Core)

PersistKit

makeKit()

JdbcKit

makeKit()

SrKit

makeKit()

HighScoreJDBC

Highscore()
load()
save()

HighScoreSr

$ filename : String = "/tmp/high.score"

Highscore()
load()
save()

Abstract product

Abstract factory

Concrete product

Concrete factory

186

 : RealPlayer
 : SrK it : HighScoreSr : DiceGame

2: getInstance()

3: DiceGame()

1: SrKit()

4: makeKit()
5: HighScoreSr()

Attention!
DiceGame voit SrK it comme
un PersistKit et HighScoreSr
comme un HighScore

6: load()

7: quit() 8: getInstance()

9: save()

Seul le Realplayer sait qu'il
utilise un SrK it ! DiceGame
non !

« Persist » Dynamic Model

187

Using Serialization

� Persistence propagation...

 : High
Score

e1 : Entry

e2 : Entry

e3 : Entry

e4 : Entry

188

A little bit of code…that’s all folks

class HighScoreSr extends HighScore implements Serializable {

...

public void save() throws Exception {

FileOutputStream ostream = new FileOutputStream(filename);

ObjectOutputStream p = new ObjectOutputStream(ostream);

p.writeObject(this); // Write the tree to the stream.

p.flush();

ostream.close(); // close the file.

}

public void load() throws Exception {

FileInputStream istream = new FileInputStream(filename);

ObjectInputStream q = new ObjectInputStream(istream);

HighScoreSr hsr = (HighScoreSr)q.readObject();

}

}

189

JdbPersist... Dynamic Model

� A table must be created in a relational DBMS

� Upon creation of HighScoreJDBC:
Connection to DBMS via JDBC

� save:

» Perform « inserts » for each « entry »

� load:

» Select * from ...,

» Follow the result,

» create « entry » objects

190

A little bit of code...

public class HighScoreJDBC extends HighScore {

public static final String url="jdbc:odbc:dice";

Connection con=null;

public HighScoreJDBC() {

try {

//loads the driver

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

con=DriverManager.getConnection(url,

"molli","");

} catch (Exception e) {

e.printStackTrace();

new Error("Cannot access Database at"+url);

}

hs=this; // register unique instance !

this.load();

}

191

Jdbc Load

public void load() {

try {

Statement select=con.createStatement();

ResultSet result=select.executeQuery

("SELECT Name,Score FROM HighScore");

while (result.next()) {

this.add(new Entry(result.getString(1),

result.getInt(2)));

}

} catch (Exception e) {

e.printStackTrace();

}

}

192

Jdbc Save

public void save() {

try {

for (Enumeration e = this.elements() ;

e.hasMoreElements() ;) {

Entry entry=(Entry)e.nextElement();

Statement s=con.createStatement();

s.executeUpdate(

"INSERT INTO HighScore (Name,Score)"+

"VALUES('"+entry.getName()+"',"+

entry.getScore()+")");

}

} catch (Exception e) {

e.printStackTrace();

}

}

193

Component diagram...

� A component is a « non-trivial, nearly
independent, and replaceable part of a
system that fulfills a clear function in the
context of a well-defined architecture »

� A component conforms to and provides
the physical realization of a set of
interfaces.

194

Component diagram

� « Realize » : implement interfaces

� « Depend » : Use interfaces

� Interfaces isolate components

195

Component diagram...

DicePersist Displayable
Dice
Vizualization

PersistKit

DiceSystem

Observable

Observer

Random
system

Randomizer

HighScore

196

Deployment Diagrams

� Display the physical architecture

� Associer execution units to associated
handlers

� Identify connections between execution
units

197

Deployment Diagrams

Game Computer

SGBD computer

JBDC
Connection

Play the
game File

System

Save/load the
highscore

Maybe a Remote
a file system

198

Design Complete ?

� Functionality coverage : compare Use-
case and activity diagrams…

� Consistency between diagrams ??

»Some inconsistencies… UI vs Core

»Core/Persist independence partially
modeled...

199

Generate code : code mapping

� Map into any programming language !

� OO languages : java, C++, smalltalk

� Or: VB, C, Fortran

� As well as: SQL, Cobol...

200

Java Mapping...

package Core;

import Util.Randomizer;

import UI.DieView;

import java.util.*;

import java.awt.Component;

public class Die extends Observable

implements Displayable {

private int faceValue = 1;

public int roll() {

setValue(Randomizer.getInstance().

getValue());

return getValue();

}

public java.awt.Component display()

{

Component c=new

DieView(this);

this.addObserver((Observer

)c);

return c;

}

public void setValue(int value) {

faceValue=value;

this.setChanged();

this.notifyObservers();

}

public int getValue() { return

faceValue;}

}

Die

faceValue : int = 1

roll() : int
Die()
display() : java.awt.Component
setValue(value : int) : void
getValue() : int

Observable
(from util)

Displayable

display()

<<Interface>>

201

Relationships

HighScore

$ hs : HighScore = null

Highscore()
add()
load()
save()
getInstance()

(from Core)

0..*1

Entry

name:String : type = initval
score:int : type = initval

Entry(name:String,score:int)()

(from Core)
+schedule

package Core;

import java.util.*;

import java.awt.Component;

import UI.HighScoreView;

public abstract class HighScore

extends Observable implements

java.io.Serializable, Displayable {

protected static HighScore hs = null;

public Vector entries=new Vector();

public void add(Entry entry) {

entries.addElement(entry);

this.setChanged();

this.notifyObservers();

}

public Enumeration elements() {

return entries.elements();

}

public abstract void load();

public abstract void save();

public Component display() {

Component c=new HighScoreView(this);

this.addObserver((java.util.Observer)c);

return c;

}

public static HighScore getInstance() {

if (hs==null) {

new Error("No Persist Kit declared");

}

return hs;}

202

Programming...

� Use « forward engineering » functionality
provided by tools

� Then « reverse engineering »

� To achieve « round trip engineering » ;-D

� Ensure Programming/Design/Analysis
consistency...

203

Forward engineering

Die

faceValue : int = 1

roll()
Die()
display()
setValue()

(from Core)

DiceGame

$ dg = null

DiceGame()
getInstance()
start()
quit()

(from Core)

2
-dies

2

Player

name : String
score : int = 0

Player()
display()

(from Core)

+theDiceGame

-thePlayer

// Source file: c:/prout/Core/DiceGame.java

package Core;

public class DiceGame {

private static int dg = null;

private Die dies[];

private Player thePlayer;

DiceGame() {

}

/**

@roseuid 37F877B3027B

*/

private DiceGame() {

}

/**

@roseuid 3802F61403A0

*/

public void getInstance() {

}

/**

@roseuid 37F8781A014D

*/

public void start() {

}

/**

@roseuid 38074E7F0158

*/

public void quit() {

}

}

204

Forward Engineering

: RealPlayer
: SrKit: DiceGame

2: getInstance()

3: DiceGame()

1: SrKit()

4: makeKit()

package Core;

import UI.MainForm;

import Persist.*;

import java.awt.*;

class Main {

public static void main(String args[]) {

// SrKit srk=new SrKit();

JdbcKit srk=new JdbcKit();

DiceGame dg=DiceGame.getInstance();

Frame f=MainForm.getInstance();

f.setSize(300,300);

f.show();

}

}

205

Reverse Engineering...

Die

faceValue : int = 1

roll()
Die()
display()
setValue()
getValue()

DiceGame

DiceGame()
getInstance()
start()
getDie()
getPlayer()

-$dg

-dies[]

Observable
(from util)

Vector
(from uti l)

HighScore

HighScore()
add()
elements()
load()
save()
display()
getInstance()

#$hs

+entries

Player

score : int = 0
turn : int = 0
WIN_NUMBER : int = 7
WIN_SCORE : int = 10

Player()
die1()
die2()
play()
display()
getName()
getScore()
getTurn()
setTurn()
setScore()

-thePlayer

Entry

score : int

Entry()
getName()
getScore()
toString()

String
(from lang)

-name -name

206

Reverse engineering

� Does not apply to the dynamic model !

� Handle forward+modification+reverse
issues

� Nothing miraculous !

207

Design/Implementation Comparison

D ie

faceV a lue : int = 1

ro ll()
D ie()
d isp lay()
se tV a lue ()
getV a lue()

D iceGam e

D iceGam e()
ge tInstance()
sta rt()
ge tD ie()
ge tP layer()

-$dg

-d ies[]

Observab le
(from ut i l)

V ecto r
(from util)

H ighS core

HighS core()
add()
e lem ents()
load()
save()
d isp lay()
ge tIns tance()

#$hs

+entries

P laye r

sco re : int = 0
turn : int = 0
W IN _N UM BE R : int = 7
W IN _S C ORE : int = 1 0

P la ye r()
d ie1 ()
d ie2 ()
p la y()
d isplay()
g etN am e()
g etS core()
g etT urn()
se tTurn()
se tSco re ()

-theP laye r

E ntry

sco re : int

E ntry()
ge tNam e()
ge tS core()
toS tring()

S tring
(from lang)

-nam e
-nam e

D isp layab le

d isp lay()

< <Inter face >>

CORE

208

UI(1)

ActionListener
(from event)

Frame
(from awt)

TextField
(from awt)

HighScoreForm

actionPerformed()
HighScoreForm()
closeAction()

MainForm

actionPerformed()
quitAction()
startAction()
highAction()
MainForm()
getInstance()

-$mf

-mf

-hf

PlayerForm

actionPerformed()
okAction()
cancelAction()
PlayerForm()

-pf

+m_MainForm

-tf

RollForm

actionPerformed()
rollAction()
cancelAction()
RollForm()

-rf

+m_MainForm

Button
(from awt)

-close -start-quit-high
-ok

-cancel
+ok

+cancel

209

UI(2)

List
(from awt)

Observer
(from util)

HighScoreForm

actionPerformed()
HighScoreForm()
closeAction()

RollForm

actionPerformed()
rollAction()
cancelAction()
RollForm()

Button
(from awt)

-close +ok

+cancel

DieView

DieView()
update()

-m_RollForm

+theDieView[]

PlayerView

PlayerView()
update()

+m_RollForm

+thePlayerView

Label
(from awt)

-l -nameLabel-scoreLabel-turnLabel

HighScoreView

HighScoreView()
update()

-hv

+m_HighScoreForm

-l

210

Util

Random
(from util)Randomizer

getInstance()
getValue()
Randomizer()

-$r

-random

211

Persist

HighScoreJDBC

HighScoreJDBC()
load()
save()

HighScoreSr

load()
save()
HighScoreSr()

JdbcKit

JdbcKit()
makeKit()

PersistKit

PersistKit()
getInstance()
makeKit()

#$pk

SrKit

makeKit()
SrKit()

DiceGame

DiceGame()
getInstance()
start()
getDie()
getPlayer()

(from Core)

-$dg

Vector
(from util)

HighScore

HighScore()
add()
elements()
load()
save()
display()
getInstance()

(from Core)

#$hs

+entries

Serializable
(from io)

Entry

score : int

Entry()
getName()
getScore()
toString()

(from Core)

212

Problems Found

� Dynamic model to handle turns is not
designed properly !

� Who really tests for the end of the game ?

� Design flaw !

213

Here ! Analysis Diagram !!

 : DiceGame
 : Player

d1 : Die d2 : Die new : Entry : HighScore

1: Player(String)

2: play()

3: roll()

4: roll()

5: Entry(name:String,score:int)

6: add(Entry)

214

Problem !

� Not formal enough !

� This analysis diagram was not reviewed at
design time !!!

� (-4)

215

Redo !

 : RollForm : Player : Die : Die

4: [turn<10]play()

1: actionPerformed(ActionEvent)

2: rollAction()

5: setValue(int)

6: setValue(int)

7: setTurn(int)

3: getTurn()

216

Finally !

217

Does it work ? Testing

� Unit testing : test each class and each
method at a time

»Class diagram

� Integration tests :

»Component diagram

� System test :

»Use Case + Activity diagram

218

System Test

Play

Player

View High Score

� Ok, functionality is
there ...

� And conforms to the
description of the use
case !

� >8->

219

System Test

menu

view

Highscore

Start

turn=0

Roll

Dice

turn++

Update

highscore

Turn<10

[highscore] [start] [exit]

[true]

[false]

I forgot this one !

220

System Test

menu

view

Highscore

Start

turn=0

Roll

Dice

turn++

Update

highscore

Turn<10

[highscore] [start] [exit]

[true]

[false]

� Test all possible
paths !

� Ex:

» 1/Start

» 2/ roll

» 3/ cancel

» 4/ highscore

» 5/ exit

221

Problems Found

� Scenario 1 :

» start, roll*, highscore, quit : OK

� Scenario 2:

»highscore, : ko ! Bug

»Design bug:

• DiceGame creates Highscore (start)

• If Highscore before start : bug

222

Solution

package Core;

import UI.MainForm;

import Persist.*;

import java.awt.*;

class Main {

public static void main(String args[]) {

// SrKit srk=new SrKit();

JdbcKit srk=new JdbcKit();

DiceGame dg=DiceGame.getInstance();

Frame f=MainForm.getInstance();

f.setSize(300,300);

f.show();

}

}

223

DicePersist Displayable
Dice
Vizualization

PersistKit

DiceSystem

Observable

Observer

Random
system

Randomizer

HighScore

Integration Test

MVC Test

224

Test Scenario

� Highscore, start, roll*

� If the MVC works properly, entry of a new
highscore leads to redisplaying the list
which is already opened !!

� Ok, it works…

� It is good to design well ...

225

Summary of this Application Design

� Requirements Analysis
»Use-case + description

»Activity diagram

»UI prototyping

� Analysis
»Dynamic Model : Collaboration, Sequence,

state diagrams

»Static Model : Class Diagram

226

Design

� Architecture design (layer)

»Package diagram, component diagram,
deployement diagram

� Technical classes used to ensure
isolation :

»MVC pattern,

»Factory pattern

� Technical classes UI and persistence

» *Forms, Highscore*

227

Programming

� Simple conversion of design to Java

� For each UML model, it is possible to build
a translation towards any target language

� Use « round-trip engineering » tools

� Programming PB : Need to update the
analysis/design artifacts !!!

228

Feedback Problems Found at Coding !

 : RollForm : Player : Die : Die

4: [turn<10]play()

1: actionPerformed(ActionEvent)

2: rollAction()

5: setValue(int)

6: setValue(int)

7: setTurn(int)

3: getTurn()

� « auto-critique » to find
the reason behind the
problem.

� Improve process for next
time !

� Here : analysis diagrams
have not been redone !

� A software process must
emphasize quality !

229

Testing

� Functionality control : Use-case diagram

� Conformance control : Activity diagram

� Integration tests : Component diagram

� Unit tests : not done

230

Paying Attention to Testing !

� Current vision is too simplistic !

� Must integrate testing as part of a quality
management process (change
management)

� Regression testing, automated testing
(test suites, test generation, tools!!)

231

Conclusion for this Application

� Phase:

»Requirements analysis, analysis, design,
implementation, etc.

� For each phase:

»Put together views for the same problem

»Static, dynamic, fonctional, architectural views

232

Functional
View

Static
View

Dynamic
View

Architectural
View

Play

Player

View High Score

Find Beverage

Pour Coffee Drink Beverage

Get Can of ColaGet CupsAdd Water to ReservoirPut Coffee in Filter

Put Filter in Machine

Turn on Machine

Brew Coffee

 ̂ coffeePot.TurnOn

[no cola]

[found cola]

[no coffee]

[found coffee]

light goes out

Player

name : String
score : int = 0;

play()

(from Use Case View) Die

faceValue : int = 1

roll()21 21

Rolls

HighScore

DiceGame

1

1

1

1

Plays

1

1

1

1

Includes

1

1

1

1

Scoring

Momo : Player

game : Dice
Game

d1 : Die

d2 : Die

2: r1=roll()

3: r2=roll()

1: play()

d1 : Die : DiceGame
 : Player

d2 : Die

1: play()
2: roll()

3: roll()

Ready to play Player ready

entry: ge t player name

In progress

entry: turn++

 / S tart game

roll dices[turn<10]

start

[turn>=10]

Cancel play

cancel

Quit

DicePersist Displayable
Dice
Vizualization

PersistKit

DiceSystem

Observable

Observer

Random
system

Randomizer

HighScore

Game Computer

SGBD computer

JBDC
Connection

Play the
game File

System

Save/load the
highscore

Maybe a Remote
a file system

Consistency !!
Coverage !!

UML Usage Guideline: Consistency & Coverage

233

Consistency / Coverage

� Use-cases/Activity Diagrams

»An activity must always be assigned to a use-
case

»All use cases must be implemented in the
activity diagrams

234

Use-case / Activity

menu

view

Highscore

Start

turn=0

Roll

Dice

turn++

Update

highscore

Turn<10

[highscore] [start] [exit]

[true]

[false]

Play

Player

View High Score

OK !

235

Activity / Collaboration

� All possible paths in the activity diagrams
may be represented using collaboration
diagrams !

� Beware of over-analysis !

� Only represent the most relevant
scenarios !

236

Activity / collaboration

menu

view

Highscore

Start

turn=0

Roll

Dice

turn++

Update

highscore

Turn<10

[highscore] [start] [exit]

[true]

[false]

Momo : Player

game : Dice
Game

d1 : Die

d2 : Die

2: r1=roll()

3: r2=roll()

1: play()

1 collaboration diagram
partially handling Roll !!

237

Collaboration / Class diagram

� All the objects in a collaboration diagram
have a type: the class diagram Class

� All the relationships in a collaboration
diagram must exist or may be derived from
the class diagram !

� Messages exchanged are methods in the
class diagram !

238

Collaboration / Class Diagram

Player

name : String
score : int = 0;

play()

(from Use Case View) Die

faceValue : int = 1

roll()21 21

Rolls

HighScore

DiceGame

1

1

1

1

Plays

1

1

1

1

Includes

1

1

1

1

Scoring

Momo : Player

game : Dice
Game

d1 : Die

d2 : Die

2: r1=roll()

3: r2=roll()

1: play()

OK!

239

Class diagram / collab / sequence

� The complete dynamic model for relations
must appear in at least one sequence or
activity diagram

� Any attribute change must be represented
in at least one activity or sequence
diagram

� Object creation or destruction must appear
in at least one dynamic diagram !

240

Class / Sequence

 : DiceGame d1 : Die d2 : Die
 : Player : RealPlayer

2: Die()

3: Die()

1: DiceGame()

4: start()
5: Player(String)

Player

name : String
score : int = 0;

play()

(from Use Case View) Die

faceValue : int = 1

roll()21 21

Rolls

HighScore

DiceGame

1

1

1

1

Plays

1

1

1

1

Includes

1

1

1

1

Scoring

Creation ?

State Change ?

KO!

241

Class / Sequence

� A « good » solution:
»Follow the activity diagram to generate

scenarios

»Follow the possible paths in the activity
diagram

» If the activity diagram is not covered:
• Granularity is not fine enough (it is the case here)

• Class diagram over-specified

242

Class / State diagram...

� For each class, ask yourself if its state
evolves with time ?

� If so, put together a state diagram…

� Every transition in the state diagram must
be verified !

243

Class / State diagram !

Player

name : String
score : int = 0;

play()

(from Use Case View) Die

faceValue : int = 1

roll()21 21

Rolls

HighScore

DiceGame

1

1

1

1

Plays

1

1

1

1

Includes

1

1

1

1

Scoring

Ready to play Player ready

entry: get player name

In progress

entry: turn++

 / Start game

roll dices[turn<10]

start

[turn>=10]

Cancel play

cancel

Quit

1 Object DiceGame !

Where are
these

methods ??

Where is
this

attribute ??

244

Class/Package/Component diagram (Design)

� Each class must be allocated to one
package, which is itself part of the overall
architecture

� Every class must also be part of a
component that implements a set of
functionalities in that architecture !!

� Otherwise the class is not part of the
architecture !

245

Class / Package

UI
<<layer>>

Core
<<layer>>

Persist
<<layer>>

Util
<<subsystem>>

awt

(from java)

util

(from java)

for random !

MVC: Observer/Observable

Random
FUNCTION !

Singleton
Random

Random()
Random()
setSeed()
next()
nextBytes()
nextInt()
nextInt()
nextLong()
nextBoolean()
nextFloat()
nextDouble()
nextGaussian()

(from util)

Randomizer

getInstance()
getValue()
Randomizer()

<<Interface>>

11

246

Class / Component

DicePersist Displayable
Dice
Vizualization

PersistKit

DiceSystem

Observable

Observer

Random
system

Randomizer

HighScore

Singleton
Random

Random()
Random()
setSeed()
next()
nextBytes()
nextInt()
nextInt()
nextLong()
nextBoolean()
nextFloat()
nextDouble()
nextGaussian()

(from util)

Randomizer

getInstance()
getValue()
Randomizer()

<<Interface>>

11

247

Component / Deployment

� Each component must be allocated to one
execution unit in the deployment diagram !

� In general, a component cannot be part of
two execution units…

� Every execution unit must have at least
one component...

248

Component Deployment !

DicePersist Displayable
Dice
Vizualization

PersistKit

DiceSystem

Observable

Observer

Random
system

Randomizer

HighScore

Game Computer

SGBD computer

JBDC
Connection

Play the
game File

System

Save/load the
highscore

Maybe a Remote
a file system

OOOPPPPSS !

249

General Conclusion on Dice

� How different is it from a « directly
coded » application ??

250

Bibliographie

� UML Distilled Fowler&Scott

� UML Toolkit Eriksson&Penker

� Applying UML and Patterns Larman

� Design pattern GOF

� System of patterns Buschman&al

� Penser objet avec UML&Java Lai

� Object oriented Analysis Spadounakis

� UML Specification www.rational.com

251

33 Requirements ModelingRequirements Modeling

44 Design ConceptsDesign Concepts

Agenda

11 IntroductionIntroduction

66 Summary and ConclusionSummary and Conclusion

22 Requirements AnalysisRequirements Analysis

55 Sample Analysis and Design Exercise Using UMLSample Analysis and Design Exercise Using UML

252

Summary – Key Detailed-Level Analysis and Design Objectives

� Requirements Models

» Scenario-based (system from the user’s point of view)

» Data (shows how data are transformed inside the system)

» Class-oriented (defines objects, attributes, and relationships)

» Flow-oriented (shows how data are transformed inside the system)

» Behavioral (show the impact of events on the system states)

� Requirements modeling covers different dimensions via flow-oriented models,
behavioral models, and patterns

� Software design encompasses the set of principles, concepts, and practices
that lead to the development of a high quality system or product

� Design principles establish and overriding philosophy that guides the designer
as the work is performed

� Design concepts must be understood before the mechanics of design practice
are applied

� Goal of design engineering is to produce a model or representation that is bug
free (firmness), suitable for its intended uses (commodity), and pleasurable to
use (delight)

� Software design practices change continuously as new methods, better
analysis, and broader understanding evolve

253

Course Assignments

� Individual Assignments

� Reports based on case studies / class presentations

� Project-Related Assignments

� All assignments (other than the individual assessments) will

correspond to milestones in the team project.

� As the course progresses, students will be applying various

methodologies to a project of their choice. The project and related

software system should relate to a real-world scenario chosen by each

team. The project will consist of inter-related deliverables which are

due on a (bi-) weekly basis.

� There will be only one submission per team per deliverable and all

teams must demonstrate their projects to the course instructor.

� A sample project description and additional details will be available

under handouts on the course Web site

254

Team Project

� Project Logistics

� Teams will pick their own projects, within certain constraints: for instance,
all projects should involve multiple distributed subsystems (e.g., web-
based electronic services projects including client, application server, and
database tiers). Students will need to come up to speed on whatever
programming languages and/or software technologies they choose for their
projects - which will not necessarily be covered in class.

� Students will be required to form themselves into "pairs" of exactly two (2)
members each; if there is an odd number of students in the class, then one
(1) team of three (3) members will be permitted. There may not be any
"pairs" of only one member! The instructor and TA(s) will then assist the
pairs in forming "teams", ideally each consisting of two (2) "pairs", possibly
three (3) pairs if necessary due to enrollment, but students are encouraged
to form their own 2-pair teams in advance. If some students drop the
course, any remaining pair or team members may be arbitrarily reassigned
to other pairs/teams at the discretion of the instructor (but are strongly
encouraged to reform pairs/teams on their own). Students will develop and
test their project code together with the other member of their programming
pair.

255

� Document Transformation methodology driven
approach
� Strategy Alignment Elicitation

� Equivalent to strategic planning

� i.e., planning at the level of a project set

� Strategy Alignment Execution

� Equivalent to project planning + SDLC

� i.e., planning a the level of individual projects + project
implementation

� Build a methodology Wiki & partially implement the
enablers

� Apply transformation methodology approach to a
sample problem domain for which a business solution
must be found

� Final product is a wiki/report that focuses on
� Methodology / methodology implementation / sample

business-driven problem solution

Team Project Approach - Overall

256

� Document sample problem domain and
business-driven problem of interest

� Problem description

� High-level specification details

� High-level implementation details

� Proposed high-level timeline

Team Project Approach – Initial Step

257

Assignments & Readings

� Readings

� Slides and Handouts posted on the course web site

� Textbook: Part Two-Chapters 6-8

� Individual Assignment (assigned)

� See Session 5 Handout: “Assignment #2”

� Team Project #1 (ongoing)

� Team Project proposal (format TBD in class)

� See Session 2 Handout: “Team Project Specification” (Part 1)

� Team Exercise #1 (ongoing)

� Presentation topic proposal (format TBD in class)

� Project Frameworks Setup (ongoing)

� As per reference provided on the course Web site

258

Any Questions?

259

Next Session: From Analysis and Design to Software Architecture

