
1/31/2013

1

1

Software Engineering

Session 1 – Main Theme

Software Engineering Fundamentals

Dr. Jean-Claude Franchitti

New York University

Computer Science Department

Courant Institute of Mathematical Sciences

Presentation material partially based on textbook slides

Software Engineering: A Practitioner’s Approach (7/e)

by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009

2

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Agenda

11 Instructor and Course IntroductionInstructor and Course Introduction

44 Summary and ConclusionSummary and Conclusion

33 Towards a Pattern-Driven SE MethodologyTowards a Pattern-Driven SE Methodology

1/31/2013

2

3

- Profile -

� 30 years of experience in the Information Technology Industry, including twelve years of experience working
for leading IT consulting firms such as Computer Sciences Corporation

� PhD in Computer Science from University of Colorado at Boulder

� Past CEO and CTO

� Held senior management and technical leadership roles in many large IT Strategy and Modernization
projects for fortune 500 corporations in the insurance, banking, investment banking, pharmaceutical, retail,
and information management industries

� Contributed to several high-profile ARPA and NSF research projects

� Played an active role as a member of the OMG, ODMG, and X3H2 standards committees and as a
Professor of Computer Science at Columbia initially and New York University since 1997

� Proven record of delivering business solutions on time and on budget

� Original designer and developer of jcrew.com and the suite of products now known as IBM InfoSphere
DataStage

� Creator of the Enterprise Architecture Management Framework (EAMF) and main contributor to the creation
of various maturity assessment methodology

� Developed partnerships between several companies and New York University to incubate new
methodologies (e.g., EA maturity assessment methodology developed in Fall 2008), develop proof of
concept software, recruit skilled graduates, and increase the companies’ visibility

Who am I?

4

How to reach me?

Cell (212) 203-5004

Email jcf@cs.nyu.edu

AIM, Y! IM, ICQ jcf2_2003

MSN IM jcf2_2003@yahoo.com

LinkedIn http://www.linkedin.com/in/jcfranchitti

Twitter http://twitter.com/jcfranchitti

Skype jcf2_2003@yahoo.com

Come on…what else
did you expect?

Woo hoo…find the word
of the day…

1/31/2013

3

5

What is the class about?

�Course description and syllabus:
» http://www.nyu.edu/classes/jcf/g22.2440-001/

» http://www.cs.nyu.edu/courses/spring13/G22.2440-001/

�Textbooks:
» Software Engineering: A Practitioner’s Approach

Roger S. Pressman
McGraw-Hill Higher International
ISBN-10: 0-0712-6782-4, ISBN-13: 978-00711267823, 7th Edition (04/09)

» http://highered.mcgraw-hill.com/sites/0073375977/information_center_view0/
» http://highered.mcgraw-

hill.com/sites/0073375977/information_center_view0/table_of_contents.html

6

Icons / Metaphors

6

Common Realization

Information

Knowledge/Competency Pattern

Governance

Alignment

Solution Approach

1/31/2013

4

7

Helpful Preliminary Knowledge

� Business Process Modeling (BPM)
� Object-Oriented Analysis and Design (OOAD)
� Object-oriented technology experience
� Software development experience as a

software development team member in the
role of business analyst, developer, or project
manager

� Implementation language experience (e.g.,
C++, Java, C#)

� Note: Knowledge of BPMN, UML or a specific
programming language is not required

8

Course Objectives (1/3)

� Present modern software engineering techniques and

examines the software life-cycle, including software

specification, design implementation, testing and

maintenance

� Describe and compare various software development

methods and understand the context in which each

approach might be applicable

� Develop students’ critical skills to distinguish sound

development practices from ad-hoc practices, judge

which technique would be most appropriate for solving

large-scale software problems, and articulate the

benefits of applying sound practices

1/31/2013

5

9

� Expand students’ familiarity with mainstream languages

used to model and analyze processes and object designs

(e.g., BPMN, UML).

� Demonstrate the importance of formal/executable

specifications of object models, and the ability to verify the

correctness/completeness of solution by executing the

models.

� Explain the scope of the software maintenance problem

and demonstrate the use of several tools for reverse

engineering software.

Course Objectives (2/3)

10

� Develop students’ ability to evaluate the effectiveness of an

organization’s software development practices, suggest

improvements, and define a process improvement strategy

� Introduce state-of-the-art tools and techniques for large-

scale development

� Implement major software development methods in

practical projects and motivate discussion via group

presentations

Course Objectives (3/3)

1/31/2013

6

11

Software Requirements

� Microsoft Windows XP (Professional Ed.) / Vista / 7

� Software tools will be available from the Internet or

from the course Web site under demos as a choice

of freeware or commercial tools

� Business and Application Modeling Tools

� Software Development Tools

� Workflow Management Frameworks

� etc.

� References will be provided on the course Web site

12

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Agenda

11 Instructor and Course IntroductionInstructor and Course Introduction

44 Summary and ConclusionSummary and Conclusion

33 Towards a Pattern-Driven SE MethodologyTowards a Pattern-Driven SE Methodology

1/31/2013

7

13

Software Engineering Discipline

Software Development Challenges

The Human Side of Software Development

Refining the Software Engineering Discipline

Agenda – Software Engineering Fundamentals

Software Engineering Scope

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Software Engineering Best Practices ala Rational

Rational Unified Process

Introduction to Agile Software Engineering

14

What is Software? (1/2)

Software is:

(1)instructions (computer programs) that when

executed provide desired features, function,

and performance;

(2) data structures that enable the programs to

adequately manipulate information;

(3) documentation that describes the

operation and use of the programs.

1/31/2013

8

15

What is Software? (2/2)

� Software is developed or engineered, it is not
manufactured in the classical sense.

� Software doesn't "wear out."
� Although the industry is moving toward component-

based construction, most software continues to be
custom-built.

16

Wear vs. Deterioration

idealized curve

change

actual curve

Failure
rate

Time

increased failure
rate due to side effects

1/31/2013

9

17

� The economies of ALL developed nations are
dependent on software

� More and more systems are software-controlled
� Software engineering is concerned with theories,

methods and tools for professional software
development

� Software engineering expenditure represents a
significant fraction of GNP in all developed countries
� GNP stands for Gross National Product. GNP per capita

is the dollar value of a country’s final output of goods and
services in a year, divided by its population. It reflects the
average income of a country’s citizens.

Software Engineering

18

� Software costs often dominate system costs.
� The costs of software on a PC are often greater

than the hardware cost

� Software costs more to maintain than it does
to develop
� For systems with a long life, maintenance costs

may be several times development costs

� Software engineering is concerned with cost-
effective software development

Software Costs

1/31/2013

10

19

Software Products

� Generic products
� Stand-alone systems which are produced by a

development organization and sold on the open
market to any customer

� Bespoke (customized) products
� Systems which are commissioned by a specific

customer and developed specially by some
contractor

� Most software expenditure is on generic
products but most development effort is on
bespoke systems

20

Software Applications

� System software
� Application software
� Engineering/scientific

software
� Embedded software
� Product-line software
� WebApps (Web

applications)
� AI software

1/31/2013

11

21

Software—New Categories

� Open world computing - pervasive, distributed
computing

� Ubiquitous computing - wireless networks
� Netsourcing - the Web as a computing engine
� Open source - ”free” source code open to the

computing community (a blessing, but also a
potential curse!)

� Also …
»Data mining
»Grid computing
»Cognitive machines
»Software for nanotechnologies

22

Legacy Software

� software must be adapted to meet the
needs of new computing environments
or technology

� software must be enhanced to
implement new business requirements

� software must be extended to make it
interoperable with other more modern
systems or databases

� software must be re-architected to
make it viable within a network
environment

Why must it change?

1/31/2013

12

23

Software Product Attributes

� Maintainability
� It should be possible for the software to evolve

to meet changing requirements

� Dependability
� The software should not cause physical or

economic damage in the event of failure

� Efficiency
� The software should not make wasteful use of

system resources

� Usability
� Software should have an appropriate user

interface and documentation

24

Importance of Product Characteristics

� The relative importance of these
characteristics depends on the product and
the environment in which it is to be used

� In some cases, some attributes may
dominate
� In safety-critical real-time systems, key

attributes may be dependability and efficiency

� Costs tend to rise exponentially if very high
levels of any one attribute are required

1/31/2013

13

25

Efficiency Costs

Cost

Ef ficiency

26

Characteristics of WebApps (1/2)

� Network intensiveness. A WebApp resides on a network and must
serve the needs of a diverse community of clients.

� Concurrency. A large number of users may access the WebApp at
one time.

� Unpredictable load. The number of users of the WebApp may vary
by orders of magnitude from day to day.

� Performance. If a WebApp user must wait too long (for access, for
server-side processing, for client-side formatting and display), he or
she may decide to go elsewhere.

� Availability. Although expectation of 100 percent availability is
unreasonable, users of popular WebApps often demand access on
a “24/7/365” basis.

� Data driven. The primary function of many WebApps is to use
hypermedia to present text, graphics, audio, and video content to
the end-user.

� Content sensitive. The quality and aesthetic nature of content
remains an important determinant of the quality of a WebApp.

1/31/2013

14

27

Characteristics of WebApps (2/2)

� Continuous evolution. Unlike conventional application software
that evolves over a series of planned, chronologically-spaced
releases, Web applications evolve continuously

� Immediacy. Although immediacy—the compelling need to get
software to market quickly—is a characteristic of many application
domains, WebApps often exhibit a time to market that can be a
matter of a few days or weeks

� Security. Because WebApps are available via network access, it
is difficult, if not impossible, to limit the population of end-users
who may access the application

� Aesthetics. An undeniable part of the appeal of a WebApp is its
look and feel

28

Summary of Sub-Section’s Key Points

� Software engineering is concerned with the
theories, methods and tools for developing,
managing and evolving software products

� Software products consist of programs and
documentation

� Product attributes include maintainability,
dependability, efficiency and usability

1/31/2013

15

29

Software Engineering Discipline

Software Development Challenges

The Human Side of Software Development

Refining the Software Engineering Discipline

Agenda – Software Engineering Fundamentals

Software Engineering Scope

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Software Engineering Best Practices ala Rational

Rational Unified Process

Introduction to Agile Software Engineering

30

The Software Process

� Structured set of activities required to develop a
software system
� Specification
� Design
� Validation
� Evolution

� Activities vary depending on the organization
and the type of system being developed

� Software process must be explicitly modeled if it
is to be managed

1/31/2013

16

31

Process Characteristics (1/2)

� Understandability
� Is the process defined and understandable?

� Visibility
� Is the process progress externally visible?

� Supportability
� Can the process be supported by CASE tools?

� Acceptability
� Is the process acceptable to those involved in it?

32

Process Characteristics (2/2)

� Reliability
� Are process errors discovered before they result

in product errors?

� Robustness
� Can the process continue in spite of unexpected

problems?

� Maintainability
� Can the process evolve to meet changing

organizational needs?

� Rapidity
� How fast can the system be produced?

1/31/2013

17

33

Engineering Process Model

� Specification
� Set out the requirements and constraints on the system

� Design
� Produce a paper model of the system

� Manufacture
� Build the system

� Test
� Check if the system meets the required specifications

� Install
� Deliver the system to the customer and ensure it is operational

� Maintain
� Repair faults in the system as they are discovered

34

Software Process Models Characteristics

� Normally, specifications are
incomplete/anomalous

� Very blurred distinction between
specification, design and manufacturing

� No physical realization of the system for
testing

� Software does not wear out
� Maintenance does not mean component

replacement

1/31/2013

18

35

Generic Software Process Models

� Waterfall model
� Separate and distinct phases of specification and

development

� Evolutionary development
� Specification and development are interleaved

� Formal transformation
� A mathematical system model is formally

transformed to an implementation

� Reuse-based development
� The system is assembled from existing components

36

Waterfall Model

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

1/31/2013

19

37

Waterfall Model Characteristics and Limitations

� Phases:
� Requirements analysis and definition
� System and software design
� Implementation and unit testing
� Integration and system testing
� Operation and maintenance

� The drawback of the waterfall model is
the difficulty of accommodating change
after the process is underway

38

Evolutionary Development

Validation
Final

version

Development
Intermediate

versions

Specification
Initial

version

Outline

description

Concurrent

activities

1/31/2013

20

39

Evolutionary Development Characteristics

� Exploratory prototyping
� Objective is to work with customers and to

evolve a final system from an initial outline
specification

� Should start with well-understood requirements

� Throw-away prototyping
� Objective is to understand the system

requirements
� Should start with poorly understood

requirements

40

Evolutionary Development Limitations

� Problems
� Lack of process visibility
� Systems are often poorly structured
� Requires Special skills (e.g., languages for rapid

prototyping) may be required

� Applicability
� For small or medium-size interactive systems
� For parts of large systems (e.g. the user

interface)
� For short-lifetime systems

1/31/2013

21

41

Summary of Sub-Section’s Key Points

� The software process consists of those
activities involved in software development

� The waterfall model considers each process
activity as a discrete phase

� Evolutionary development considers process
activities as concurrent

42

Software Engineering Discipline

Software Development Challenges

The Human Side of Software Development

Refining the Software Engineering Discipline

Agenda – Software Engineering Fundamentals

Software Engineering Scope

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Software Engineering Best Practices ala Rational

Rational Unified Process

Introduction to Agile Software Engineering

1/31/2013

22

43

Inherent Risks
(http://www.ibm.com/developerworks/rational/library/1719.html)

� Sponsorship
� Budget
� Culture
� Business Understanding
� Priorities

� Business changes
� Features
� Schedule slips

� Methodology Misuse
� Software Quality

44

Symptoms of Software Development Problems

� User or business needs not met
� Requirements churn
� Modules don’t integrate
� Hard to maintain
� Late discovery of flaws
� Poor quality of end-user experience
� Poor performance under load
� No coordinated team effort
� Build-and-release issues

1/31/2013

23

45

Trace Symptoms to Root Causes

Develop Iteratively

Manage Requirements

Use Component Architectures

Model Visually (e.g., UML)

Continuously Verify Quality

Manage Change

Needs not met

Requirements churn

Modules don’t fit

Hard to maintain

Late discovery

Poor quality

Poor performance

Colliding developers

Build-and-release

Insufficient requirements

Ambiguous communications

Brittle architectures

Overwhelming complexity

Undetected inconsistencies

Poor testing

Subjective assessment

Waterfall development

Uncontrolled change

Insufficient automation

Symptoms Root Causes Best Practices

46

Risk Management

� Perhaps the principal task of a manager is to
minimize risk

� The 'risk' inherent in an activity is a measure
of the uncertainty of the outcome of that
activity

� High-risk activities cause schedule and cost
overruns

� Risk is related to the amount and quality of
available information
� The less information, the higher the risk

1/31/2013

24

47

Process Model Risk Problems

� Waterfall
� High risk for new systems because of

specification and design problems
� Low risk for well-understood developments

using familiar technology

� Prototyping
� Low risk for new applications because

specification and program stay in step
� High risk because of lack of process visibility

� Transformational
� High risk because of need for advanced

technology and staff skills

48

Software Engineering Discipline

Software Development Challenges

The Human Side of Software Development

Refining the Software Engineering Discipline

Agenda – Software Engineering Fundamentals

Software Engineering Scope

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Software Engineering Best Practices ala Rational

Rational Unified Process

Introduction to Agile Software Engineering

1/31/2013

25

49

Hybrid Process Models

� Large systems are usually made up of
several sub-systems

� The same process model need not be
used for all subsystems

� Prototyping should be used for high-
risk specifications

� Waterfall model should be used for
well-understood developments

50

Spiral Model of the Software Process

Risk
analys is

Risk
analys is

Risk
analys is

Risk
analysis Proto-

type 1

Prototyp e 2

Prototype 3
Opera-
tional
protoype

Concept o f
Operation

Simulations, models, bench marks

S/W
requirements

Requirement
valid ation

Design
V&V

Product
design Detail ed

design

Code

Unit tes t

Integr ation
testAccep tance

testServ ice Develop, verify
next-level p rod uct

Ev aluate alt ernatives
id en tify, resolve risk s

Determine ob jectiv es
alternatives and

cons traint s

Plan next p has e

Integration
and test p lan

Development
plan

Requirements plan
Life-cycle plan

REVIEW

1/31/2013

26

51

Phases of the Spiral Model

� Objective setting
� Specific objectives for the project phase are

identified

� Risk assessment and reduction
� Key risks are identified, analyzed and

information is sought to reduce these risks

� Development and validation
� An appropriate model is chosen for the next

phase of development.

� Planning
� The project is reviewed and plans drawn up for

the next round of the spiral

52

Template for a Spiral Round

� Quality Improvement Focus
� Objectives
� Constraints
� Alternatives

� Risk Reduction Focus
� Risk Assessment
� Risk resolution

� Plan-Do-Check-Act (PDCA) Approach
� Results
� Plans
� Commitment

1/31/2013

27

53

Quality Improvement Focus

� Objectives
� Significantly improve software quality

� Constraints
� Within a three-year timescale
� Without large-scale capital investment
� Without radical change to company standards

� Alternatives
� Reuse existing certified software
� Introduce formal specification and verification
� Invest in testing and validation tools

54

� Risk Assessment
� No cost effective quality improvement
� Possible quality improvements may increase

costs excessively
� New methods might cause existing staff to leave

� Risk resolution
� Literature survey
� Pilot project
� Survey of potential reusable components
� Assessment of available tool support
� Staff training and motivation seminars

Risk Reduction Focus

1/31/2013

28

55

� Results
� Experience of formal methods is limited - very

hard to quantify improvements
� Limited tool support available for company-wide

standard development system
� Reusable components available but little

support exists in terms of reusability tools

� Plans
� Explore reuse option in more detail
� Develop prototype reuse support tools
� Explore component certification scheme

� Commitment
� Fund further 18-month study phase

PDCA Approach

56

Template for a Spiral Round at Work - Catalogue Spiral (1/3)

� Quality Improvement Focus
� Objectives

� Procure software component catalogue

� Constraints
� Within a year

Must support existing component types
Total cost less than $100, 000

� Alternatives
� Buy existing information retrieval software
� Buy database and develop catalogue using database
� Develop special purpose catalogue

1/31/2013

29

57

� Risks Reduction Focus
� Risks assessment

� May be impossible to procure within constraints

� Catalogue functionality may be inappropriate

� Risk resolution
� Develop prototype catalogue (using existing 4GL and

an existing DBMS) to clarify requirements
� Commission consultants report on existing information

retrieval system capabilities.
� Relax time constraint

Template for a Spiral Round at Work - Catalogue Spiral (2/3)

58

� PDCA Approach
� Results

� Information retrieval systems are inflexible.
� Identified requirements cannot be met.
� Prototype using DBMS may be enhanced to complete

system
� Special purpose catalogue development is not cost-

effective

� Plans
� Develop catalogue using existing DBMS by enhancing

prototype and improving user interface

� Commitment
� Fund further 12 month development

Template for a Spiral Round at Work - Catalogue Spiral (3/3)

1/31/2013

30

59

Spiral Model Flexibility

� Hybrid models accommodated for
different parts of a project:
� Well-understood systems

� Low technical risk
� Use Waterfall model as risk analysis phase is relatively

cheap

� Stable requirements and formal
specification with safety criticality
� Use formal transformation model

� High UI risk with incomplete specification
� Use Prototyping model

60

Spiral Model Advantages

� Focuses attention on reuse options
� Focuses attention on early error

elimination
� Puts quality objectives up front
� Integrates development and

maintenance
� Provides a framework for

hardware/software development

1/31/2013

31

61

Spiral Model Limitations

� Contractual development often specifies
process model and deliverables in
advance

� Requires risk assessment expertise
� Needs refinement for general use

62

Process Visibility as a Process Model Metric

� Software systems are intangible so
managers need documents to assess
progress

� However, this may cause problems
� Timing of progress deliverables may not match

the time needed to complete an activity
� The need to produce documents places

constraints on process iterations
� The time taken to review and approve

documents is significant

� Waterfall model is still the most widely used
deliverable-based model

1/31/2013

32

63

Sample Set of Waterfall Model Documents

Activity Output documents

Requirements analysis Feasibility study, Outline requirements

Requirements definition Requirements document

System specification Functional specification, Acceptance test plan
Draft user manual

Architectural design Architectural specification, System test plan

Interface design Interface specification, Integration test plan

Detailed design Design specification, Unit test plan

Coding Program code

Unit testing Unit test report

Module testing Module test report

Integration testing Integration test report, Final user manual

System testing System test report

Acceptance testing Final system plus documentation

64

Process Model Visibility

Process model Process visibility

Waterfall model Good visibility, each activity produces some
deliverable

Evolutionary
development

Poor visibility, uneconomic to produce
documents during rapid iteration

Formal
transformations

Good visibility, documents must be produced
from each phase for the process to continue

Reuse-oriented
development

Moderate visibility, it may be artificial to
produce documents describing reuse and
reusable components.

Spiral model Good visibility, each segment and each ring
of the spiral should produce some document.

1/31/2013

33

65

Summary of Sub-Section’s Key Points

� The spiral process model is risk-driven
� Process visibility involves the creation

of deliverables from activities

66

Software Engineering Discipline

Software Development Challenges

The Human Side of Software Development

Refining the Software Engineering Discipline

Agenda – Software Engineering Fundamentals

Software Engineering Scope

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Software Engineering Best Practices ala Rational

Rational Unified Process

Introduction to Agile Software Engineering

1/31/2013

34

67

Professional Responsibility

� Software engineers should not just be
concerned with technical
considerations. They have wider
ethical, social and professional
responsibilities

� Not clear what is right or wrong about
the following issues:
� Development of military systems
� Whistle blowing
� What is best for the software engineering

profession

68

Ethical Issues

� Confidentiality
� Competence
� Intellectual property rights
� Computer misuse

1/31/2013

35

69

Summary of Sub-Section’s Key Points

� Software engineers have ethical, social
and professional responsibilities

70

Software Engineering Discipline

Software Development Challenges

The Human Side of Software Development

Refining the Software Engineering Discipline

Agenda – Software Engineering Fundamentals

Software Engineering Scope

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Software Engineering Best Practices ala Rational

Rational Unified Process

Introduction to Agile Software Engineering

1/31/2013

36

71

Section Outline

� Identify Steps for Understanding and Solving
Software Engineering Problems

� Explain the IBM Rational “Six Best Practices”

72

Best Practices
Process Made Practical

Develop Iteratively

Manage Requirements

Use Component
Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

Practice 1: Develop Iteratively

1/31/2013

37

73

Waterfall Development Characteristics

� Delays confirmation of
critical risk resolution

� Measures progress by
assessing work-
products that are poor
predictors of time-to-
completion

� Delays and aggregates
integration and testing

� Precludes early
deployment

� Frequently results in
major unplanned
iterations

Code and unit test

Design

Subsystem integration

System test

Waterfall Process

Requirements
analysis

74

Iterative Development Produces Executable Releases

Initial
Planning

Planning

Requirements

Analysis & Design

Implementation

Deployment

Test

Evaluation

Management
Environment

Each iteration
results in an
executable release

1/31/2013

38

75

Risk Profiles

Risk Reduction

Time

Iterative Risk

Waterfall Risk
R
is
k

76

Practice 2: Manage Requirements

Best Practices
Process Made Practical

Develop Iteratively

Manage Requirements

Use Component
Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

1/31/2013

39

77

Requirements Management

� Making sure you
� Solve the right problem

� Build the right system

� By taking a systematic approach to
� eliciting
� organizing
� documenting
� managing

the changing requirements of a
software application.

78

Aspects of Requirements Management

� Analyze the Problem
� Understand User Needs
� Define the System
� Manage Scope
� Refine the System Definition
� Build the Right System

1/31/2013

40

79

Problem

Solution
Space

Problem
Space

Needs

Features

Use Cases and
Software

Requirements

Test
Procedures Design User

Docs

The

Product

To Be

Built

Map of the Territory

80

Practice 3: Use Component Architectures

Best Practices
Process Made Practical

Develop Iteratively

Manage Requirements

Use Component
Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

1/31/2013

41

81

Resilient, Component-Based Architectures

� Resilient
� Meets current and future requirements
� Improves extensibility
� Enables reuse
� Encapsulates system dependencies

� Component-based
� Reuse or customize components
� Select from commercially-available

components
� Evolve existing software incrementally

82

Purpose of a Component-Based Architecture

� Basis for reuse
� Component reuse
� Architecture reuse

� Basis for project management
� Planning
� Staffing
� Delivery

� Intellectual control
� Manage complexity
� Maintain integrity System-

software

Middleware

Business-
specific

Application-
specific

Component-based
Architecture with
layers

1/31/2013

42

83

Practice 4: Model Visually (UML)

Best Practices
Process Made Practical

Develop Iteratively

Manage Requirements

Use Component
Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

84

Why Model Visually?

� Capture structure and behavior
� Show how system elements fit together
� Keep design and implementation

consistent
� Hide or expose details as appropriate
� Promote unambiguous communication

� UML: one language for all practitioners

1/31/2013

43

85

Visual Modeling with UML 1.X

� Multiple views
� Precise syntax

and semantics

Activity
Diagrams

Models

Sequence
Diagrams

Collaboration
Diagrams

Statechart
Diagrams

Deployment
Diagrams

Component
Diagrams

Object
Diagrams

Class
Diagrams

Use-Case
Diagrams

Static
Diagrams

Dynamic
Diagrams

86

Visual Modeling Using UML 1.X Diagrams

Actor A

Use Case 1

Use Case 2

Actor B

user : Clerk

mainWnd : MainWnd

fileMgr : FileMgr

repository : Repository
document : Document

gFile : GrpFile

9: sortByName ()

L1: Doc view request ()

2: fetchDoc()

5: readDoc ()

7: readFile ()

3: create ()

6: fillDocument ()

4: create ()

8: fillFile ()

Window95

¹®¼°ü¸®

Å¬¶óÀÌ¾ðÆ®.EXE

Windows

NT

¹®¼°ü¸® ¿£Áø.EXE

Windows
NT

Windows95

Solaris

ÀÀ¿ë¼¹ö.EXE

Alpha

UNIX

IBM

Mainframe

µ¥ÀÌÅ º̧£ÀÌ½º¼¹ö

Windows95

¹®¼°ü¸® ¾ÖÇÃ¸́Document

FileManager

GraphicFile

File

Repository DocumentList

FileList

user

mainWnd fileMgr :
FileMgr

repositorydocument :
Document

gFile

1: Doc view request ()

2: fetchDoc()

3: create ()

4: create ()

5: readDoc ()

6: fillDocument ()

7: readFile ()

8: fillFile ()

9: sortByName ()

Æ¯ Á¤¹®¼¿¡ ´ëÇÑ º̧±â ¦̧
»ç¿ëÀÚ°¡ ¿äÃ»ÇÑ´Ù.

ÈÀÏ°ü¸®ÀÚ´Â ÀÐ¾î¿Â

¹®¼ÀÇ Á¤º̧ ¦̧ ÇØ ḉ ¹®¼
°́ Ã¼¿¡ ¼³Á¤À» ¿äÃ»ÇÑ´Ù.

È¸é °́ Ã¼´Â ÀÐ¾îµéÀÎ
°́ Ã¼µé¿¡ ´ëÇØ ÀÌ¸§º°·Î

Á¤·ÄÀ» ½ÃÄÑ È¸é¿¡
º̧ ¿©ÁØ´Ù.

Forward and
Reverse
Engineering

Target

System

Openning

Writing

Reading
Closing

add f ile [numberOf f ile==MAX] /
f lag OFF

add f ile

close f ile

close f ileUse Case 3

Use-case
diagram

Class diagram

Collaboration
diagram

Sequence
diagram

Component
diagram

Statechart
diagram

GrpFile

read()
open()

create()
fillFile()

rep

Repository

name : char * = 0

readDoc()

readFile()

(from Persistence)

FileMgr

fetchDoc()

sortByName()

DocumentList

add()
delete()

Document

name : int

docid : int
numField : int

get()

open()
close()
read()
sortFileList()

create()
fillDocument()

fList

1

FileList

add()
delete()

1

File

read()

read() fill the
code..

Deployment
diagram

1/31/2013

44

87

UML 1.X Notation Baseline

Diagram Name Type Phase

Use Case Static* Analysis

Class Static Analysis

Activity Dynamic** Analysis

State-Transition Dynamic Analysis

Event Trace (Interaction) Dynamic Design

Sequence Dynamic Design

Collaboration Dynamic Design

Package Static Delivery

Deployment Dynamic Delivery
*
Static describes structural system properties
**
Dynamic describes behavioral system properties.

88

UML 1.X Diagrams

UML 1.X defines twelve types of diagrams, divided into three
categories

� Four diagram types represent static application structure:
� Class Diagram
� Object Diagram
� Component Diagram
� Deployment Diagram

� Five represent different aspects of dynamic behavior
� Use Case Diagram
� Sequence Diagram
� Activity Diagram
� Collaboration Diagram
� Statechart Diagram

� Three represent ways to organize and manage your
application modules

� Packages
� Subsystems
� Models

Source: http://www.omg.org/gettingstarted/what_is_uml.htm

1/31/2013

45

89

UML 1.X Views

� Approach
� UML 1.X defines five views that let you look at overall models from various

angles
� Layering architectural principles is used to allocate pieces of functionality to

subsystems
� Partitioning is used to group related pieces of functionality into packages

within subsystems
� Views and Related Diagrams

� Use Case View (application functionality)
� Use Case Diagram

� Logical View (static application structure)
� Class Diagram
� Object Diagram

� Process View (dynamic application behavior)
� Sequence Diagram
� Activity Diagram
� Collaboration Diagram
� Statechart Diagram

� Implementation View (application packaging)
� Component Diagram

� Deployment View (application delivery)
� Deployment Diagram

90

Functional
view

Static
View

Behavioral
View

Architectural
View

Play

Player

View High Score

Find Beverage

Pour Coffee Drink Beverage

Get Can of ColaGet CupsAdd Water to ReservoirPut Coffee in Filter

Put Filter in Machine

Turn on Machine

Brew Coffee

 ̂ coffeePot.TurnOn

[no cola]

[found cola]

[no coffee]

[found coffee]

light goes out

Player

name : String
score : int = 0;

play()

(from Use Case View) Die
faceValue : int = 1

roll()21 21

Rolls

HighScore

DiceGame

1

1

1

1

Plays

1

1

1

1

Includes

1

1

1

1

Scoring

Momo : Player

game : Dice
Game

d1 : Die

d2 : Die

2: r1=roll()

3: r2=roll()

1: play()

d1 : Die : DiceGame : Player d2 : Die

1: play()
2: roll()

3: roll()

Ready to play Player ready
entry: get player name

In progress
entry: turn++

 / Start game

roll dices[turn<10]

start

[turn>=10]

Cancel play

cancel

Quit

DicePersist Displayable
Dice
Vizualization

PersistKit

DiceSystem

Observable

Observer

Random
system

Randomizer

HighScore

Game Computer

SGBD computer

JBDC
Connection

Play the
game File

System

Save/load the
highscore

Maybe a Remote
a file system

Consistency

Coverage

Need to Maintain Consistency and Coverage Across UML 1.X Views

1/31/2013

46

91

New in UML 2.X (1/2)

(http://www.omg.org/gettingstarted/what_is_uml.htm)

� UML 2.X Profiles
� The new language goes well beyond the Classes and Objects well-modeled

by UML 1.X to add the capability to represent not only behavioral models,
but also architectural models, business process and rules, and other models
used in many different parts of computing and even non-computing
disciplines

� Nested Classifiers
� Every model building block (e.g., classes, objects, components, behaviors

such as activities and state machines) is a classifier

� A set of classes may be nested inside the component that manages them, or a
behavior (such as a state machine) may be embedded inside the class or
component that implements it

� Capability may be used to build up complex behaviors from simpler ones (i.e., the
capability that defines the Interaction Overview Diagram)

� Can layer different levels of abstraction in multiple ways:
� For example, you can build a model of your Enterprise, and zoom in to embedded site

views, and then to departmental views within the site, and then to applications within a
department

� Alternatively, you can nest computational models within a business process model.
OMG's Business Enterprise Integration Domain Task Force (BEI DTF) is currently
working on several interesting new standards in business process and business rules

92

New in UML 2.X (2/2)

(http://www.omg.org/gettingstarted/what_is_uml.htm)

� Improved Behavioral Modeling
� In UML 1.X, the different behavioral models were independent, but in UML

2.0, they all derive from a fundamental definition of a behavior (except for
the Use Case, which is subtly different but still participates in the new
organization)

� Improved relationship between Structural and Behavioral Models
� UML 2.0 makes it possible to designate that a behavior represented by (for

example) a State Machine or Sequence Diagram is the behavior of a class
or a component

� Object Constraint Language (OCL) and Action Semantics
» During the upgrade process, several additions to the language were

incorporated into it, including the Object Constraint Language (OCL) and
Action Semantics.

1/31/2013

47

93

Practice 5: Continuously Verify Quality

Best Practices
Process Made Practical

Develop Iteratively

Manage Requirements

Use Component
Architectures

Model Visually (UML)

Continuously
Verify Quality

Manage Change

94

Continuously Verify Software Quality

CostCost

TransitionConstructionElaborationInception

Software problems are
100 to 1000 times more costly
to find and repair after

deployment

� Cost to Repair Software

� Cost of Lost Opportunities

� Cost of Lost Customers

1/31/2013

48

95

Test All Dimensions of Software Quality

Functionality

Reliability

Performance

Does my application
do what’s required?

Does the system
perform under
production
load?

Verification of each
usage scenario

Verification of
sustained

application
operation

Test performance
under expected &
worst-case load

Does my application
respond acceptably?

96

UML Model
and

Implementation

Tests

Iteration 1

Test Suite 1

Iteration 2

Test Suite 2

Iteration 4

Test Suite 4

Iteration 3

Test Suite 3

Test Each Iteration

1/31/2013

49

97

Practice 6: Manage Change

Best Practices
Process Made Practical

Develop Iteratively

Manage Requirements

Use Component
Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

98

ALERTREPORT

Workspace

Management

Process

Integration

Parallel

Development

Build

Management

CM is more
than just

check-in and
check-out

What Do You Want to Control?

� Changes to enable iterative development
� Secure workspaces for each developer
� Automated integration/build management
� Parallel development

1/31/2013

50

99

Aspects of a Configuration Management (CM) System

� Change Request Management
� Configuration Status Reporting
� Configuration Management (CM)
� Change Tracking
� Version Selection
� Software Manufacturing

100

Unified Change Management

� Management across the lifecycle
� System
� Project Management

� Activity-Based Management
� Tasks
� Defects
� Enhancements

� Progress Tracking
� Charts
� Reports

1/31/2013

51

101

Best Practices Reinforce Each Other

Validates architectural
decisions early on

Addresses complexity of
design/implementation incrementally

Measures quality early and often

Evolves baselines incrementally

Ensures users involved
as requirements evolve

Best PracticesBest Practices

Develop Iteratively

Manage Requirements

Use Component Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

Develop Iteratively

Manage Requirements

Use Component Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

102

Software Engineering Discipline

Software Development Challenges

The Human Side of Software Development

Refining the Software Engineering Discipline

Agenda – Software Engineering Fundamentals

Software Engineering Scope

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Software Engineering Best Practices ala Rational

Rational Unified Process

Introduction to Agile Software Engineering

1/31/2013

52

103

Section Outline

� Present the IBM Rational Unified Process
within the context of the Six Best Practices
covered in the previous sub-section

104

Foundations of RUP

� Implement Software Engineering Best
Practices:
� Iterative Controlled Development
� Use Case Models for Business

Requirements
� Component Architectures
� Risk Identification, Management &

Mitigation

1/31/2013

53

105

RUP Best Practices Implementation

Best Practices
Process Made Practical

Develop Iteratively

Manage Requirements

Use Component Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

106

Achieving Best Practices

� Iterative Approach
� Guidance for activities

and work products
(artifacts)

� Process focus on
architecture

� Use cases which drive
design and
implementation

� Models which abstract
the system

Implementation

Test

Analysis & Design

Requirements

Configuration &
Change Management

1/31/2013

54

107

A Team-Based Definition of Process

� A process defines Who is doing What,
When and How to reach a certain goal.

New or changed

requirements

New or changed

system

Software Engineering
Process

108

Process Structure - Lifecycle Phases

� The Rational Unified Process has four
Phases:
» Inception - Define the scope of project
» Elaboration - Plan project, specify features,

baseline architecture
» Construction - Build the product
» Transition - Transition the product into end

user community

Inception Elaboration Construction Transition

time

1/31/2013

55

109

Phase Boundaries Mark Major Milestones

Inception Elaboration Construction Transition

Lifecycle
Objective
Milestone

Lifecycle
Architecture

Milestone

Initial Operational
Capability
Milestone

Product
Release

time

110

Iterations and Phases

An iteration is a distinct sequence of activities based on
an established plan and evaluation criteria, resulting in an
executable release (internal or external)

Preliminary

Iteration

Architect.

Iteration

Architect.

Iteration

Devel.

Iteration

Devel.

Iteration

Devel.

Iteration

Transition

Iteration

Transition

Iteration

Inception Elaboration Construction Transition

Minor Milestones: Releases

1/31/2013

56

111

Workflows Produce Models

OK

OK

Fail

Realized By
Implemented

By
Verified By

Implementation
Model

Test ModelDesign Model

Use-Case
Model

Models

Core Process
Workflows TestImplemen-

tation
Analysis &

Design
Requirements

Business Use-
Case Model

Business
Modeling

Business
Object Model

BBB

B

Realized
By

Automated
By

112

Bringing It All Together: The Iterative Approach

Workflows
group

activities
logically

In an iteration,
you walk

through all
workflows

1/31/2013

57

113

Workflows Guide Iterative Development

Business Modeling:
Workflow Details

Requirements:
Workflow Details

114

Notation

Role

Activity

Artifact

Detail a
Use Case

Use-Case
Package

Use Case

responsible for

Requirements
Specifier

A unit of work a

role may be

asked to perform

A piece of

information that is

produced, modified,

or used by a process

A role that may be

played by an

individual or a team

in the development

organization

1/31/2013

58

115

Resource

Paul

Mary

Joe

Sylvia

Stefan

Roles Are Used for Resource Planning

Each individual in
the project is

assigned to one
or several roles

Role

Designer

Requirements Specifier

System Analyst

Implementer

Architect

Activities

Define Operations

Detail a Use Case

Find Actors and Use Cases

Perform Unit Tests

Identify Design Mechanisms

116

Roles Perform Activities and Produce Artifacts

Example

Requirements:

Workflow Detail

“Define the
System”

Capture a
Common

Vocabulary

System
Analyst

Find Actors
and Use Cases

Use-Case Model
(refined)

Use-Case
Modeling

Guidelines

Supplementary
Specifications

Glossary
(refined)

Glossary

Stakeholder
Requests

Use-Case Model

Manage
Dependencies

Requirements
Management

Plan

Vision

Business
Use-Case Model

Business
Object Model

Requirements
Attributes

Requirements
Attributes
(refined)

Develop
Vision

Business
Rules

Vision
(refined)

Use Case
(outlined)

1/31/2013

59

117

Overview of Rational Unified Process Concepts

118

Summary: Best Practices of Software Engineering

� Best Practices guide software engineering
by addressing root causes

� Best Practices reinforce each other
� Process guides a team on what to do, how

to do it, and when to do it
� The Rational Unified Process is a means

of achieving Best Practices

1/31/2013

60

119

Artifacts Definitions

Investment Concept
Statement Business Case

Outlines the project’s purpose, scope, costs, benefits and risks of the investment and is used
by business sponsors and stakeholders to make an informed decision

Vision Defines the stakeholders view of the product to be developed, contains an outline of the
envisioned core requirements, defines the boundary and primary features of the system and is
used as the basis for more detailed technical requirements

Stakeholders Requests Captures all requests made on the project from stakeholders

Technology Governance
Questionnaire

Assesses the impact of all development projects introducing significant architectural or high-
level design changes

Use Case Specifications Defines the functional requirements for the system with use case diagrams

Supplementary
Specifications

Defines the nonfunctional requirements of the system

Software Architecture
Document

Provides a comprehensive architectural overview of the system, using a number of different
architectural views to depict different aspects of the system – use case view, logical view,
process view, deployment view, implementation view and data view (as needed)

User Acceptance Test Plan Documents a plan to be used to direct user acceptance testing and ensures that all of the
detailed business requirements defined in Inception are tested completely

System Test Plan Outlines and communicates the objectives of the testing effort to gain acceptance and
approval from the stakeholders

Corporate Report Card Provides measurement and explanation of variances between actual and expected project
performance and informs management of project issues (High Risk, High Impact)

Issues List Entails the documentation, review, resolution, and follow-up of project issues

Risk List Details a list of known and open risks to the project, sorted in decreasing order of importance
and associated with specific mitigation strategies or contingency plans

Project Plan / Iteration Plan Details the specific tasks that must be completed by each team member in order to complete a
project

Phase Assessment Review Establishes criteria for determining whether or not a project is ready to move from one phase
to the next phase

Sample RUP Artifacts Definition

120

Phase S M L Artifact Owner

Inception
� � �

Investment Concept Statement
Business Sponsor (A)

Business Project Manager

Inception
�

Business Case
Business Sponsor (A)

Business Project Manager

Inception
� � �

Vision
Business Lead (A)

Technology Project Manager

Inception Vision � � Stakeholder Requests Business Lead

Inception
� � �

Delegated Governance
Questionnaire Technology Project Manager

Elaboration
� � �

Use Case Specifications
Business Lead (A)

Technology Project Manager

Elaboration
Vision � �

Supplementary Specifications
Business Lead (A)

Technology Project Manager

Elaboration
� � �

Software Architecture Document
Technology Project Manager
Architect

Construction � � � User Acceptance Test Plan Business Project Manager

Construction � � System Test Plan Project Manager

Ongoing � � � Issues List Project Manager

Ongoing � � � Risk List Project Manager

Ongoing � � � Project Plan / Iteration Plan Project Manager

Ongoing � � � Phase Assessment Review Project Manager

Ongoing � � Corporate Report Card Business Project Manager
A = Approver

Light

Light

Light

Sample RUP Core Artifacts

1/31/2013

61

121

Key Role Definition

Business Sponsor � Establishes the project funding and periodically review the spending progress against the
Investment Opportunity expectations. They consistently champion the project and
associated changes, as well as communicate project progress to Corporate leaders.

Business Lead � Provides project leadership and overall business perspective. This role is responsible for
managing the project risk and working with the team to ensure appropriate
communication of risk mitigation.

� Represents the team to stakeholders and management and influences the strategic and
tactical business decisions pertaining to the project product. This role’s overall goal is to
ensure the business expectations are achieved on time and on budget.

Business Project Manager � Allocates resources, shapes priorities, coordinates interactions with customers and users,
and generally keeps the project team focused on the right goal. The project manager also
establishes a set of practices that ensure the integrity and quality of project artifacts. In
addition, the Business Project Manager plans and conducts the formal review of the use-
case model.

� Leads and coordinates requirements elicitation and use-case modeling by outlining the
system's functionality and delimiting the system; for example, establishing what actors
and use cases exist and how they interact. In addition, this role details the specification
of a part of the organization by describing the workflow of one or several business use
cases.

Technology Project Manager � Allocates resources, shapes priorities, coordinates interactions with customers and users,
and generally keeps the project team focused on the right goal. The technology project
manager also establishes a set of practices that ensure the integrity and quality of project
artifacts.

Architect � Leads and coordinates technical activities and artifacts throughout the project.
� The software architect establishes the overall structure for each architectural view: the

decomposition of the view, the grouping of elements, and the interfaces between these
major groupings. Therefore, in contrast to the other roles, the software architect's view is
one of breadth as opposed to one of depth.

Sample Key Roles/Owners of RUP Artifacts

122

Summary of Sub-Section’s Key Points

� RUP focuses on:
� Iterative Controlled Development
� Use Case Models for Business

Requirements
� Component Architecture
� Risk Identification, Management

&Mitigation

1/31/2013

62

123

Software Engineering Discipline

Software Development Challenges

The Human Side of Software Development

Refining the Software Engineering Discipline

Agenda – Software Engineering Fundamentals

Software Engineering Scope

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Software Engineering Best Practices ala Rational

Rational Unified Process

Introduction to Agile Software Engineering

124

Agile Software Engineering

� Agility
� “Ability to create and respond to change in order to

profit in a turbulent business environment”

� Agile Values
� Individual and interactions vs. processes and tools

� Working software vs. comprehensive documentation

� Customer collaboration vs. contract negotiation

� Responding to change vs. following a plan

1/31/2013

63

125

Agile Software Development Ecosystems

� Agile Software Development Ecosystems

(ASDEs) vs. Traditional Software Development

Methodologies

� “Chaordic” perspective
� Product goals are achievable but they are not

predictable

� Processes can aid consistency but they are not

repeatable

� Collaborative values and principles

� Barely sufficient methodology

� Agilists are proponents of ASDEs

126

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Agenda

11 Instructor and Course IntroductionInstructor and Course Introduction

44 Summary and ConclusionSummary and Conclusion

33 Towards a Pattern-Driven SE MethodologyTowards a Pattern-Driven SE Methodology

1/31/2013

64

127

Section Objectives

� Describe the limitations of legacy and
best practice SDLC methodologies

� Suggest the improved approach that is
covered in the course

� Discuss the approach to follow for the
class project

128

Limitations of Legacy SE Methodologies

� Focused on software solutions
development

� Driven by processes
� Not driven by architecture and/or best

practices altogether (other than initially)

� Focus is on scope, time, cost, and quality
� customer input sparsely considered

� Metaphor:
� “an algorithm without a centralized data

structure to operate on”

1/31/2013

65

129

Limitations of RUP Approach

� Focused on software solutions development
� Driven by best practices

� Driven by workflows (and tools)

� Focus is on scope, time, and cost
� Customer assesses quality and drive change
� Deliver quality software on-time & on-budget

� By enforcing a best practice process that manages
change

� By following a PDCA approach were individuals play
various roles in the overall process

� Gap between Architecture-Driven approach
and Use-Case Driven Modeling
� A “top-down” architectural approach

130

Illustrating the RUP “Gap”

OK

OK

Fail

Realized By
Implemented

By
Verified By

Implementation
Model

Test ModelDesign Model

Use-Case
Model

Models

Core Process
Workflows TestImplemen-

tation
Analysis &

Design
Requirements

Business Use-
Case Model

Business
Modeling

Business
Object Model

BBB

B

Realized
By

Automated
By

� Going from business requirements to use cases
requires non-trivial input that is hard/impossible to
predict

1/31/2013

66

131

Limitations of ASDE Approaches

� Focused on software solutions development
� Driven by best practices

� Driven by collaboration between individuals
� Interactions: customer/project team & intra-project team

� Driven by change

� Focus is on quality (test-driven), time, and cost
� Customer drives the scope
� Deliver optimal quality software on-time & on-budget

� By limiting the scope to facilitate change
� By follow an MOB approach were individuals assume full

leadership

� Architectural re-factoring becomes a nightmare
� A “bottom-up architectural approach”

132

Agile Pattern-Driven Architecture (PDA) Approach

� Focused on business solutions development
» SDLC stands for “(Business) Solution Development LifeCycle”

� Seed the Architecture-Driven approach so it does not
operate top-down or bottom-up
» Integrate the Architecture-Driven approach into standard and

business specific architecture-driven workflows
• e.g., AKDAR, GDM, SBAM, PEM, LSS (BPM pattern), CBM (SOA

pattern)

» Use an agile workflow-driven approach rather than rigid processes
» Use architecture-driven approach from business strategy all the

way down to product maintenance
» Subject individuals to ongoing transformation processes

� Flexible RUP-like or ASDE-like focus and introduces
problem pattern set as an additional variable

� Need to deal with individuals reaction to the constant need
to adapt to change
» Build conducive environments (e.g., game-metaphor, etc.)

1/31/2013

67

133

Enterprise Strategy and Business Solutions Alignment Problem

134

PDA Solution: Enterprise Architecture Management
“Focusing on Business Model Improvements while Maintaining Enterprise Alignment”

1/31/2013

68

135

Strategy Enablement Process Patterns and Artifact Types
“Enabler #1”

136

Strategy Enablement Process Patterns Detailed
A Process Pattern Leads to a Methodology Once Specific Activities are Chosen to Implement a Vision

1/31/2013

69

137

Strategy Enablement Artifact Types Detailed

T
ra

c
e
a
b
le

 A
rtifa

c
ts

138

Extensible Framework and Best Practices Knowledge Base
“Enablers #2 and #3 (Sample)” – EAMF Framework Summary of Capabilities

� Extension of the TOGAF Industry Standard
� http://www.opengroup.org/togaf/

� Differentiators:
� Business Pattern Oriented Architecture (POA) orientation

� Extensible methodology based on business solution patterns
� Extensible knowledge foundation based on best practices and

ongoing strategies and business solution development

� Artifact Traceability Focus
� Agile Activity-Driven Approach

� Solution Development Lifecycle agnostic

� Solution-Driven Approach
� Tool Agnostic Approach

1/31/2013

70

139

Strategy Enablement From a Tools Perspective
Enabler #4 (Sample): EAMF Framework Implementation

140

Incremental Iterative Enterprise Transformation Methodology
“Enabler #5”

1/31/2013

71

141

Strategy Enablement At Work

Enterprise business model goal is to sustain

double digit annual growth and align all

business units with that goal

Alignment Execution Methodology moves

onto requirements model engineering

activities and business architecture analysis

and design conducted by project Business

Architects in collaboration with application/

information/technology architects

(requirements model is shared between the

various group and is the central point of

focus for collaboration)

While the business architecture is still being

refined, Alignment Execution Methodology

activities are conducted on the Application

and Information Architecture fronts (business

architecture is “deployed” incrementally and

iteratively on top of the application/

information architecture)

Business unit X consults with the SPO to

identify:

(a) Their current maturity level with respect

to the high-level vision

(b) Business Unit Specific alignment goals

(c) Alignment Elicitation Methodology SPO conducts a high-level goal

decomposition, consults with the ARB,

matches the business domain forces with

the forces that drive best practice business

reference architectures, and identifies a

high-level vision:

e.g., SOA + BPM + BRM + BAM

With the help of the SPO and the EAM

infrastructure, alignment tenets are identified

by applying goal patterns and best

practices, and the applicable alignment

elicitation methodology is identified

Business unit X applies the alignment

elicitation methodology to identify their

maturity level (i.e., common denominator)

with respect to the high-level vision and a

set of alignment projects/opportunities

SPO, ARB, and Business unit X prioritize the

projects and elevate a subset of them into

the 4-year project roadmap and select an

appropriate alignment execution

methodology (ARB inputs is key to identify

constraints imposed by existing

infrastructure)

Gated execution of multiple projects starts:

Projects that are not aligned with the

Enterprise strategy breach gate 1

Projects that pass through gate 1 are funded

SPO updates the roadmap every six months

to account for changes in strategic directions

Alignment Execution Methodology is applied

to individual projects starting with

requirements engineering activities

conducted by project BAs:

Gate 2 review occurs at the end of the

requirements definition phase (aka.

Inception phase)

On selected project a 3-months timeline is

imposed on the delivery of a CPD prior to

Gate 2 review

While the business/application/information

architectures are still being refined,

Alignment Execution Methodology activities

are conducted on the Technology

Architecture front (application/information

architecture is “deployed” incrementally and

iteratively on top of the technology

architecture

Project

Requirements

Enterprise

Strategy

(SPO)

Enterprise

Governance

(SPO)

Project

Strategy

(EPO)

Requirements

Engineering

(PT)

Business

Architecture

(PT)

(PT)

Information

Architecture

Application

Architecture

(PT)

(PT)

Technology

Architecture

Enterprise

Requirements

&

Architectural

Models

Project

Requirements

&

Architectural

Models

Architecture

Integration

(SPO & ARB)

1

2

3

4

5

6

7

8

9

10

11

142

Enterprise Architecture Management
EAMF Activities Integrate Seamlessly with the Company X Project Lifecycle

1/31/2013

72

143

Enterprise Architecture Management
Integration with the Company X Project Lifecycle all

144

22 Software Engineering FundamentalsSoftware Engineering Fundamentals

Agenda

11 Instructor and Course IntroductionInstructor and Course Introduction

44 Summary and ConclusionSummary and Conclusion

33 Towards a Pattern-Driven SE MethodologyTowards a Pattern-Driven SE Methodology

1/31/2013

73

145

Course Assignments

� Individual Assignments
� Reports based on case studies / class presentations

� Project-Related Assignments
� All assignments (other than the individual assessments) will

correspond to milestones in the team project.

� As the course progresses, students will be applying various

methodologies to a project of their choice. The project and related

software system should relate to a real-world scenario chosen by each

team. The project will consist of inter-related deliverables which are

due on a (bi-) weekly basis.

� There will be only one submission per team per deliverable and all

teams must demonstrate their projects to the course instructor.

� A sample project description and additional details will be available

under handouts on the course Web site

146

Team Project

� Project Logistics
� Teams will pick their own projects, within certain constraints: for instance,

all projects should involve multiple distributed subsystems (e.g., web-
based electronic services projects including client, application server, and
database tiers). Students will need to come up to speed on whatever
programming languages and/or software technologies they choose for their
projects - which will not necessarily be covered in class.

� Students will be required to form themselves into "pairs" of exactly two (2)
members each; if there is an odd number of students in the class, then one
(1) team of three (3) members will be permitted. There may not be any
"pairs" of only one member! The instructor and TA(s) will then assist the
pairs in forming "teams", ideally each consisting of two (2) "pairs", possibly
three (3) pairs if necessary due to enrollment, but students are encouraged
to form their own 2-pair teams in advance. If some students drop the
course, any remaining pair or team members may be arbitrarily reassigned
to other pairs/teams at the discretion of the instructor (but are strongly
encouraged to reform pairs/teams on their own). Students will develop and
test their project code together with the other member of their programming
pair.

1/31/2013

74

147

� Document Transformation methodology driven
approach
» Strategy Alignment Elicitation

• Equivalent to strategic planning
– i.e., planning at the level of a project set

» Strategy Alignment Execution
• Equivalent to project planning + SDLC

– i.e., planning a the level of individual projects + project
implementation

� Build a methodology Wiki & partially implement the
enablers

� Apply transformation methodology approach to a
sample problem domain for which a business solution
must be found

� Final product is a wiki/report that focuses on
» Methodology / methodology implementation / sample

business-driven problem solution

Team Project Approach - Overall

148

� Document sample problem domain and
business-driven problem of interest
» Problem description
» High-level specification details
» High-level implementation details
» Proposed high-level timeline

Team Project Approach – Initial Step

1/31/2013

75

149

Assignments & Readings

� Readings

» Slides and Handouts posted on the course web site

» Textbook: Chapter 1 & Part One-Chapter 2

� Assignment #1

» Team Project proposal (format TBD in class)

» Presentation topic proposal (format TBD in class)

� Project Frameworks Setup (ongoing)

» As per reference provided on the course Web site

150

Next Session: Software Development Lifecycles (SDLCs)

� Software Engineering Detailed

� Process Models

� Agile Development

� Software Engineering Knowledge

� Roles and Types of Standards

� ISO 12207: Life Cycle Standard

� IEEE Standards for Software Engineering Processes and

Specifications

� Summary and Conclusion

� Readings

� Assignment #1

� Course Project

1/31/2013

76

151

Any Questions?

