
1

Database Systems

Session 6 – Main Theme

Standard Query Language (SQL) Features

Dr. Jean-Claude Franchitti

New York University

Computer Science Department

Courant Institute of Mathematical Sciences

Presentation material partially based on textbook slides

Fundamentals of Database Systems (7th Edition)

by Ramez Elmasri and Shamkant Navathe

Slides copyright © 2016

2

Agenda

1 Session Overview

5 Web Database Programming Using PhP

2 Basic SQL

3 Advanced SQL

4 Introduction to SQL Programming

6 Summary and Conclusion

3

Session Agenda

 Session Overview

 Basic SQL

 Data Manipulation Language

 Summary & Conclusion

4

What is the class about?

Course description and syllabus:

» http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001

» http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/

Textbooks:
» Fundamentals of Database Systems (7th Edition)

 Ramez Elmasri and Shamkant Navathe

 Pearson

 ISBN-10: 0133970779, ISBN-13: 978-0133970777 7th Edition (06/18/15)

http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/

5

Icons / Metaphors

5

Common Realization

Information

Knowledge/Competency Pattern

Governance

Alignment

Solution Approach

6

Agenda

1 Session Overview

5 Web Database Programming Using PhP

2 Basic SQL

3 Advanced SQL

4 Introduction to SQL Programming

6 Summary and Conclusion

7

Agenda

 SQL Data Definition and Data Types

 Specifying Constraints in SQL

 Basic Retrieval Queries in SQL

 INSERT, DELETE, and UPDATE Statements in

SQL

 Additional Features of SQL

8

 Basic SQL

 SQL language
» Considered one of the major reasons for the

commercial success of relational databases

 SQL
» The origin of SQL is relational predicate calculus called

tuple calculus which was proposed initially as the

language SQUARE.

» SQL Actually comes from the word “SEQUEL” which was the

original term used in the paper: “SEQUEL TO SQUARE” by

Chamberlin and Boyce. IBM could not copyright that term, so they

abbreviated to SQL and copyrighted the term SQL.

» Now popularly known as “Structured Query language”.

» SQL is an informal or practical rendering of the

relational data model with syntax

9

 SQL Data Definition, Data Types, Standards

 Terminology:

» Table, row, and column used for relational

model terms relation, tuple, and attribute

 CREATE statement

» Main SQL command for data definition

 The language has features for : Data definition, Data

Manipulation, Transaction control (Transact-SQL),

Indexing, Security specification (Grant and Revoke),

Active databases, Multi-media, Distributed databases,

etc.

10

 SQL Standards

 SQL has gone through many standards: starting

with SQL-86 or SQL 1.A. SQL-92 is referred to as

SQL-2.

 Later standards (from SQL-1999) are divided into

core specification and specialized extensions.

The extensions are implemented for different

applications – such as data mining, data

warehousing, multimedia etc.

 SQL-2006 added XML features; In 2008 they

added Object-oriented features.

 SQL-3 is the current standard which started with

SQL-1999. It is not fully implemented in any

RDBMS.

11

 Schema and Catalog Concepts in SQL (1/2)

 We cover the basic standard SQL syntax –

there are variations in existing RDBMS

systems

 SQL schema
» Identified by a schema name

» Includes an authorization identifier and descriptors

for each element

 Schema elements include
» Tables, constraints, views, domains, and other

constructs

 Each statement in SQL ends with a

semicolon

12

 Schema and Catalog Concepts in SQL (2/2)

 CREATE SCHEMA statement

»CREATE SCHEMA COMPANY AUTHORIZATION
‘Jsmith’;

 Catalog

» Named collection of schemas in an SQL

environment

 SQL also has the concept of a cluster of

catalogs.

13

 The CREATE TABLE Command in SQL (1/5)

 Specifying a new relation

» Provide name of table

» Specify attributes, their types and initial

constraints

 Can optionally specify schema:

»CREATE TABLE COMPANY.EMPLOYEE ...

 or

»CREATE TABLE EMPLOYEE ...

14

 The CREATE TABLE Command in SQL (2/5)

 Base tables (base relations)

» Relation and its tuples are actually created and

stored as a file by the DBMS

 Virtual relations (views)

» Created through the CREATE VIEW statement.

Do not correspond to any physical file.

15

 Company Relational Database

16

 One Possible Database State for COMPANY RDB Schema (1/2)

17

 One Possible Database State for COMPANY RDB Schema (2/2)

18

 SQL CREATE TABLE Data Definition Statements (Company Schema)

19

 SQL CREATE TABLE Data Definition Statements (Company Schema)

20

 The CREATE TABLE Command in SQL (3/5)

 Some foreign keys may cause errors

» Specified either via:

• Circular references

• Or because they refer to a table that has not yet

been created

» DBA’s have ways to stop referential integrity

enforcement to get around this problem.

21

 Attribute Data Types and Domains in SQL (1/4)

 Basic data types

» Numeric data types

• Integer numbers: INTEGER, INT, and SMALLINT

• Floating-point (real) numbers: FLOAT or REAL, and

DOUBLE PRECISION

» Character-string data types

• Fixed length: CHAR(n), CHARACTER(n)

• Varying length: VARCHAR(n), CHAR

VARYING(n), CHARACTER VARYING(n)

22

 Attribute Data Types and Domains in SQL (2/4)

» Bit-string data types

• Fixed length: BIT(n)

• Varying length: BIT VARYING(n)

» Boolean data type

• Values of TRUE or FALSE or NULL

» DATE data type

• Ten positions

• Components are YEAR, MONTH, and DAY in the form

YYYY-MM-DD

• Multiple mapping functions available in RDBMSs to

change date formats

23

 Attribute Data Types and Domains in SQL (3/4)

 Additional data types

» Timestamp data type

Includes the DATE and TIME fields

• Plus a minimum of six positions for decimal fractions

of seconds

• Optional WITH TIME ZONE qualifier

» INTERVAL data type

• Specifies a relative value that can be used to

increment or decrement an absolute value of a date,

time, or timestamp

» DATE, TIME, Timestamp, INTERVAL data types can

be cast or converted to string formats for comparison.

24

 Attribute Data Types and Domains in SQL (4/4)

 Domain

» Name used with the attribute specification

» Makes it easier to change the data type for a

domain that is used by numerous attributes

» Improves schema readability

» Example:

•CREATE DOMAIN SSN_TYPE AS CHAR(9);

 TYPE

» User Defined Types (UDTs) are supported for

object-oriented applications. Uses the
command: CREATE TYPE

25

 Specifying Constraints in SQL

Basic constraints:

 Relational Model has 3 basic constraint

types that are supported in SQL:

» Key constraint: A primary key value cannot be

duplicated

» Entity Integrity Constraint: A primary key

value cannot be null

» Referential integrity constraints : The “foreign

key “ must have a value that is already present

as a primary key, or may be null.

26

 Specifying Attribute Constraints

Other Restrictions on attribute domains:

 Default value of an attribute

»DEFAULT <value>

»NULL is not permitted for a particular attribute

(NOT NULL)

 CHECK clause

»Dnumber INT NOT NULL CHECK (Dnumber
> 0 AND Dnumber < 21);

27

 Specifying Key and Referential Integrity Constraints (1/3)

 PRIMARY KEY clause

» Specifies one or more attributes that make up

the primary key of a relation

»Dnumber INT PRIMARY KEY;

 UNIQUE clause

» Specifies alternate (secondary) keys (called

CANDIDATE keys in the relational model).

»Dname VARCHAR(15) UNIQUE;

28

 Specifying Key and Referential Integrity Constraints (2/3)

 FOREIGN KEY clause

» Default operation: reject update on violation

» Attach referential triggered action clause

• Options include SET NULL, CASCADE, and SET

DEFAULT

• Action taken by the DBMS for SET NULL or SET

DEFAULT is the same for both ON DELETE and ON

UPDATE

•CASCADE option suitable for “relationship” relations

29

 Giving Names to Constraints

 Using the Keyword CONSTRAINT

» Name a constraint

» Useful for later altering

30

 Default Attribute Values and Ref. Integrity Triggered Action Spec.

31

 Specifying Constraints on Tuples Using CHECK

» Additional Constraints on individual tuples within

a relation are also possible using CHECK

 CHECK clauses at the end of a CREATE

TABLE statement

» Apply to each tuple individually

»CHECK (Dept_create_date <=
Mgr_start_date);

32

 Basic Retrieval Queries in SQL

 SELECT statement

» One basic statement for retrieving information

from a database

 SQL allows a table to have two or more

tuples that are identical in all their attribute

values

» Unlike relational model (relational model is

strictly set-theory based)

» Multiset or bag behavior

» Tuple-id may be used as a key

33

 The SELECT-FROM-WHERE Structure of Basic SQL Queries (1/4)

 Basic form of the SELECT statement:

34

 The SELECT-FROM-WHERE Structure of Basic SQL Queries (2/4)

 Logical comparison operators

»=, <, <=, >, >=, and <>

 Projection attributes

» Attributes whose values are to be retrieved

 Selection condition

» Boolean condition that must be true for any

retrieved tuple. Selection conditions include

join conditions when multiple relations are

involved.

35

 Basic Retrieval Queries (1/2)

36

 Basic Retrieval Queries (2/2)

37

 Ambiguous Attribute Names

 Same name can be used for two (or more)

attributes in different relations

» As long as the attributes are in different

relations

» Must qualify the attribute name with the

relation name to prevent ambiguity

38

 Aliasing, Renaming, and Tuple Variables (1/2)

 Aliases or tuple variables

» Declare alternative relation names E and S to

refer to the EMPLOYEE relation twice in a

query:

Query 8. For each employee, retrieve the employee’s first and last name

and the first and last name of his or her immediate supervisor.

 SELECT E.Fname, E.Lname, S.Fname, S.Lname

 FROM EMPLOYEE AS E, EMPLOYEE AS S

 WHERE E.Super_ssn=S.Ssn;

» Recommended practice to abbreviate names

and to prefix same or similar attribute from

multiple tables.

39

 Aliasing, Renaming, and Tuple Variables (2/2)

» The attribute names can also be renamed

EMPLOYEE AS E(Fn, Mi, Ln, Ssn, Bd,

Addr, Sex, Sal, Sssn, Dno)

» Note that the relation EMPLOYEE now has a

variable name E which corresponds to a tuple

variable

» The “AS” may be dropped in most SQL

implementations

40

Explicit Sets and Renaming of Attributes in SQL

 Can use explicit set of values in WHERE

clause

 Use qualifier AS followed by desired new

name

 Rename any attribute that appears in the result

of a query

41

 Unspecified WHERE Claude and Use of the Asterisk (1/2)

 Missing WHERE clause

» Indicates no condition on tuple selection

 Effect is a CROSS PRODUCT

» Result is all possible tuple combinations (or the

Algebra operation of Cartesian Product)

42

 Unspecified WHERE Clause and Use of the Asterisk (2/2)

 Specify an asterisk (*)

 Retrieve all the attribute values of the selected

tuples

 The * can be prefixed by the relation name;

e.g., EMPLOYEE *

43

 Tables as Sets in SQL (1/2)

 SQL does not automatically eliminate

duplicate tuples in query results

 For aggregate operations duplicates must

be accounted for

 Use the keyword DISTINCT in the SELECT

clause

 Only distinct tuples should remain in the result

44

 Tables as Sets in SQL (2/2)

 Set operations

 UNION, EXCEPT (difference), INTERSECT

 Corresponding multiset operations: UNION

ALL, EXCEPT ALL, INTERSECT ALL)

 Type compatibility is needed for these

operations to be valid

45

 Substring Pattern Matching and Arithmetic Operators

 LIKE comparison operator

» Used for string pattern matching

» % replaces an arbitrary number of zero or more

characters

» underscore (_) replaces a single character

» Examples: WHERE Address LIKE

‘%Houston,TX%’;

» WHERE Ssn LIKE ‘_ _ 1_ _ 8901’;

 BETWEEN comparison operator

E.g., WHERE(Salary BETWEEN 30000 AND 40000)

 AND Dno = 5;

46

 Arithmetic Operations

 Standard arithmetic operators:

» Addition (+), subtraction (–), multiplication (*),

and division (/) may be included as a part of

SELECT

 Query 13. Show the resulting salaries if every employee working on

the ‘ProductX’ project is given a 10 percent raise.

SELECT E.Fname, E.Lname, 1.1 * E.Salary AS Increased_sal

FROM EMPLOYEE AS E, WORKS_ON AS W, PROJECT AS P

WHERE E.Ssn=W.Essn AND W.Pno=P.Pnumber AND

P.Pname=‘ProductX’;

47

 Ordering of Query Results

 Use ORDER BY clause

» Keyword DESC to see result in a descending

order of values

» Keyword ASC to specify ascending order

explicitly

» Typically placed at the end of the query

ORDER BY D.Dname DESC, E.Lname ASC,

E.Fname ASC

48

 Basic SQL Retrieval Query Block

49

 INSERT, DELETE, and UPDATE Statements in SQL

 Three commands used to modify the

database:

»INSERT, DELETE, and UPDATE

 INSERT typically inserts a tuple (row) in a

relation (table)

 UPDATE may update a number of tuples

(rows) in a relation (table) that satisfy the

condition

 DELETE may also update a number of tuples

(rows) in a relation (table) that satisfy the

condition

50

 INSERT

 In its simplest form, it is used to add one or

more tuples to a relation

 Attribute values should be listed in the

same order as the attributes were specified

in the CREATE TABLE command

 Constraints on data types are observed

automatically

 Any integrity constraints as a part of the

DDL specification are enforced

51

 The INSERT Command

 Specify the relation name and a list of

values for the tuple

 The variation below inserts multiple tuples

where a new table is loaded values from

the result of a query.

52

 Bulk Loading of Tables

 Another variation of INSERT is used for bulk-

loading of several tuples into tables

 A new table TNEW can be created with the same

attributes as T and using LIKE and DATA in the

syntax, it can be loaded with entire data.

 EXAMPLE:

CREATE TABLE D5EMPS LIKE EMPLOYEE

 (SELECT E.*

 FROM EMPLOYEE AS E

 WHERE E.Dno=5)

 WITH DATA;

53

 DELETE

 Removes tuples from a relation

» Includes a WHERE-clause to select the tuples to be

deleted

» Referential integrity should be enforced

» Tuples are deleted from only one table at a time

(unless CASCADE is specified on a referential integrity

constraint)

» A missing WHERE-clause specifies that all tuples in

the relation are to be deleted; the table then becomes

an empty table

» The number of tuples deleted depends on the number

of tuples in the relation that satisfy the WHERE-clause

54

 The DELETE Command

 Removes tuples from a relation

 Includes a WHERE clause to select the tuples to

be deleted. The number of tuples deleted will

vary.

55

 UPDATE (1/3)

 Used to modify attribute values of one or more

selected tuples

 A WHERE-clause selects the tuples to be

modified

 An additional SET-clause specifies the attributes

to be modified and their new values

 Each command modifies tuples in the same

relation

 Referential integrity specified as part of DDL

specification is enforced

56

 UPDATE (2/3)

 Example: Change the location and

controlling department number of project

number 10 to 'Bellaire' and 5, respectively

57

 UPDATE (3/3)

 Example: Give all employees in the 'Research'
department a 10% raise in salary.

U6: UPDATE EMPLOYEE

 SET SALARY = SALARY *1.1
 WHERE DNO IN (SELECT DNUMBER
 FROM DEPARTMENT
 WHERE DNAME='Research')

 In this request, the modified SALARY value depends on
the original SALARY value in each tuple

» The reference to the SALARY attribute on the right of =
refers to the old SALARY value before modification

» The reference to the SALARY attribute on the left of =
refers to the new SALARY value after modification

58

 Additional Features of SQL (1/2)

 Techniques for specifying complex retrieval

queries

 Writing programs in various programming

languages that include SQL statements:

Embedded and dynamic SQL, SQL/CLI (Call

Level Interface) and its predecessor ODBC,

SQL/PSM (Persistent Stored Module)

 Set of commands for specifying physical

database design parameters, file structures for

relations, and access paths, e.g., CREATE

INDEX

59

 Additional Features of SQL (2/2)

 Transaction control commands

 Specifying the granting and revoking of privileges

to users

 Constructs for creating triggers

 Enhanced relational systems known as object-

relational define relations as classes. Abstract

data types (called User Defined Types- UDTs)

are supported with CREATE TYPE

 New technologies such as XML and OLAP are

added to versions of SQL

60

 Summary (1/2)

 SQL

» A Comprehensive language for relational

database management

» Data definition, queries, updates, constraint

specification, and view definition

 Covered :

» Data definition commands for creating tables

» Commands for constraint specification

» Simple retrieval queries

» Database update commands

61

 Summary (2/2)

 Topics Covered in Next Section

» More Complex SQL Retrieval Queries

» Specifying Semantic Constraints as Assertions

and Actions as Triggers

» Views (Virtual Tables) in SQL

» Schema Modification in SQL

62

Agenda

1 Session Overview

5 Web Database Programming Using PhP

2 Basic SQL

3 Advanced SQL

4 Introduction to SQL Programming

6 Summary and Conclusion

63

Agenda

 Complex SQL:

» Nested queries, joined tables (in the FROM clause),

outer joins, aggregate functions, grouping

 Handling semantic constraints with CREATE

ASSERTION and CREATE TRIGGER

 CREATE VIEW statement and materialization

strategies

 Schema Modification for the DBAs using ALTER

TABLE , ADD and DROP COLUMN, ALTER

CONSTRAINT etc.

64

More Complex SQL Retrieval Queries

 Additional features allow users to specify

more complex retrievals from database:

» Nested queries, joined tables, and outer joins

(in the FROM clause), aggregate functions,

and grouping

65

Comparisons Involving NULLand Three-Valued Logic (1/3)

 Meanings of NULL

» Unknown value

» Unavailable or withheld value

» Not applicable attribute

 Each individual NULL value considered to

be different from every other NULL value

 SQL uses a three-valued logic:

»TRUE, FALSE, and UNKNOWN (like Maybe)

 NULL = NULL comparison is avoided

66

Comparisons Involving NULL and Three-Valued Logic (2/3)

67

Comparisons Involving NULL and Three-Valued Logic (3/3)

 SQL allows queries that check whether an
attribute value is NULL

»IS or IS NOT NULL

68

Nested Queries, Tuples, and Set/Multiset Comparisons (1/5)

 Nested queries

» Complete select-from-where blocks within

WHERE clause of another query

» Outer query and nested subqueries

 Comparison operator IN

» Compares value v with a set (or multiset) of

values V

» Evaluates to TRUE if v is one of the elements

in V

69

Nested Queries (2/5)

70

Nested Queries (3/5)

 Use tuples of values in comparisons

» Place them within parentheses

71

 Use other comparison operators to compare

a single value v

»= ANY (or = SOME) operator

• Returns TRUE if the value v is equal to some value in

the set V and is hence equivalent to IN

» Other operators that can be combined with ANY

(or SOME): >, >=, <, <=, and <>

»ALL: value must exceed all values from nested

query

Nested Queries (4/5)

72

Nested Queries (5/5)

 Avoid potential errors and ambiguities

» Create tuple variables (aliases) for all tables

referenced in SQL query

73

Correlated Nested Queries

 Queries that are nested using the = or

IN comparison operator can be

collapsed into one single block: E.g., Q16

can be written as:
 Q16A: SELECT E.Fname, E.Lname

 FROM EMPLOYEE AS E, DEPENDENT AS D

 WHERE E.Ssn=D.Essn AND E.Sex=D.Sex

 AND

 E.Fname=D.Dependent_name;

 Correlated nested query

» Evaluated once for each tuple in the outer

query

74

The EXISTS and UNIQUE Functions in SQL for correlating queries

 EXISTS function

» Check whether the result of a correlated

nested query is empty or not. They are

Boolean functions that return a TRUE or

FALSE result.

 EXISTS and NOT EXISTS

» Typically used in conjunction with a correlated

nested query

 SQL function UNIQUE(Q)

» Returns TRUE if there are no duplicate tuples

in the result of query Q

75

USE of EXISTS

Q7:

SELECT Fname, Lname

FROM Employee

WHERE EXISTS (SELECT *

 FROM DEPENDENT

 WHERE Ssn= Essn)

 AND EXISTS (SELECT *

 FROM Department

 WHERE Ssn= Mgr_Ssn)

76

USE OF NOT EXISTS

To achieve the “for all” (universal quantifier) effect, we use

double negation this way in SQL:

Query: List first and last name of employees who work on

ALL projects controlled by Dno=5.

SELECT Fname, Lname

FROM Employee

WHERE NOT EXISTS ((SELECT Pnumber

 FROM PROJECT

 WHERE Dno=5)

 EXCEPT (SELECT Pno

 FROM WORKS_ON

 WHERE Ssn= ESsn)

The above is equivalent to double negation: List names of those

employees for whom there does NOT exist a project managed by

department no. 5 that they do NOT work on.

77

Double Negation to accomplish “for all” in SQL

 Q3B: SELECT Lname, Fname

 FROM EMPLOYEE

 WHERE NOT EXISTS (SELECT *

 FROM WORKS_ON B

 WHERE (B.Pno IN (SELECT Pnumber

 FROM PROJECT

 WHERE Dnum=5

 AND

 NOT EXISTS (SELECT *

 FROM WORKS_ON C

 WHERE C.Essn=Ssn

 AND C.Pno=B.Pno)));

The above is a direct rendering of: List names of those employees for

whom there does NOT exist a project managed by department no. 5

that they do NOT work on.

78

Explicit Sets and Renaming of Attributes in SQL

 Can use explicit set of values in WHERE

clause
 Q17: SELECT DISTINCT Essn

 FROM WORKS_ON

 WHERE Pno IN (1, 2, 3);

 Use qualifier AS followed by desired new

name

» Rename any attribute that appears in the

result of a query

79

Specifying Joined Tables in the FROM Clause of SQL

 Joined table

» Permits users to specify a table resulting from

a join operation in the FROM clause of a

query

 The FROM clause in Q1A

» Contains a single joined table. JOIN may also

be called INNER JOIN

80

Different Types of JOINed Tables in SQL

 Specify different types of join

» NATURAL JOIN

» Various types of OUTER JOIN (LEFT, RIGHT,

FULL)

 NATURAL JOIN on two relations R and S

» No join condition specified

» Is equivalent to an implicit EQUIJOIN

condition for each pair of attributes with same

name from R and S

81

NATURAL JOIN

 Rename attributes of one relation so it can be joined with

another using NATURAL JOIN:

Q1B: SELECT Fname, Lname, Address

 FROM (EMPLOYEE NATURAL JOIN

 (DEPARTMENT AS DEPT (Dname, Dno, Mssn,

 Msdate)))

 WHERE Dname=‘Research’;

The above works with EMPLOYEE.Dno = DEPT.Dno as an

implicit join condition

82

INNER and OUTER Joins

 INNER JOIN (versus OUTER JOIN)

» Default type of join in a joined table

» Tuple is included in the result only if a matching tuple

exists in the other relation

 LEFT OUTER JOIN

» Every tuple in left table must appear in result

» If no matching tuple

• Padded with NULL values for attributes of right table

 RIGHT OUTER JOIN

» Every tuple in right table must appear in result

» If no matching tuple

• Padded with NULL values for attributes of left table

83

Example: LEFT OUTER JOIN

SELECT E.Lname AS Employee_Name

 S.Lname AS Supervisor_Name

FROM Employee AS E LEFT OUTER JOIN EMPLOYEE AS S

 ON E.Super_ssn = S.Ssn)

ALTERNATE SYNTAX:

SELECT E.Lname , S.Lname

FROM EMPLOYEE E, EMPLOYEE S

WHERE E.Super_ssn + = S.Ssn

84

Multiway JOIN in the FROM clause

 FULL OUTER JOIN – combines result if

LEFT and RIGHT OUTER JOIN

 Can nest JOIN specifications for a

multiway join:

 Q2A: SELECT Pnumber, Dnum, Lname, Address, Bdate

 FROM ((PROJECT JOIN DEPARTMENT ON

 Dnum=Dnumber) JOIN EMPLOYEE ON

 Mgr_ssn=Ssn)

 WHERE Plocation=‘Stafford’;

85

Aggregate Functions in SQL (1/2)

 Used to summarize information from

multiple tuples into a single-tuple summary

 Built-in aggregate functions

»COUNT, SUM, MAX, MIN, and AVG

 Grouping

» Create subgroups of tuples before

summarizing

 To select entire groups, HAVING clause is

used

 Aggregate functions can be used in the
SELECT clause or in a HAVING clause

86

Renaming Results of Aggregation

 Following query returns a single row of computed values

from EMPLOYEE table:

Q19: SELECT SUM (Salary), MAX (Salary), MIN (Salary),

AVG (Salary)

 FROM EMPLOYEE;

 The result can be presented with new names:

Q19A: SELECT SUM (Salary) AS Total_Sal, MAX (Salary) AS

 Highest_Sal, MIN (Salary) AS Lowest_Sal,

AVG (Salary) AS Average_Sal

 FROM EMPLOYEE;

87

Aggregate Functions in SQL (2/2)

 NULL values are discarded when

aggregate functions are applied to a

particular column

88

Aggregate Functions on Booleans

 SOME and ALL may be applied as

functions on Boolean Values.

 SOME returns true if at least one element

in the collection is TRUE (similar to OR)

 ALL returns true if all of the elements in

the collection are TRUE (similar to AND)

89

Grouping: The GROUP BY Clause (1/2)

 Partition relation into subsets of tuples

» Based on grouping attribute(s)

» Apply function to each such group

independently

 GROUP BY clause

» Specifies grouping attributes

 COUNT (*) counts the number of rows in

the group

90

Examples of GROUP BY

 The grouping attribute must appear in the SELECT

clause:

 Q24: SELECT Dno, COUNT (*), AVG (Salary)

 FROM EMPLOYEE

 GROUP BY Dno;

 If the grouping attribute has NULL as a possible value,

then a separate group is created for the null value (e.g.,

null Dno in the above query)

 GROUP BY may be applied to the result of a JOIN:
 Q25: SELECT Pnumber, Pname, COUNT (*)

 FROM PROJECT, WORKS_ON

 WHERE Pnumber=Pno

 GROUP BY Pnumber, Pname;

91

Grouping: The GROUP BY and HAVING Clauses (2/2)

 HAVING clause

» Provides a condition to select or reject an

entire group:
 Query 26. For each project on which more than two employees

work, retrieve the project number, the project name, and the number

of employees who work on the project.

 Q26: SELECT Pnumber, Pname, COUNT (*)

 FROM PROJECT, WORKS_ON

 WHERE Pnumber=Pno

 GROUP BY Pnumber, Pname

 HAVING COUNT (*) > 2;

92

Combining the WHERE and the HAVING Clause (1/2)

 Consider the query: we want to count the total number of

employees whose salaries exceed $40,000 in each

department, but only for departments where more than

five employees work.

 INCORRECT QUERY:

SELECT Dno, COUNT (*)

FROM EMPLOYEE

WHERE Salary>40000

GROUP BY Dno

HAVING COUNT (*) > 5;

93

Combining the WHERE and the HAVING Clause (2/2)

Correct Specification of the Query:

 Note: the WHERE clause applies tuple by

tuple whereas HAVING applies to entire

group of tuples

94

Use of WITH

 The WITH clause allows a user to define a

table that will only be used in a particular

query (not available in all SQL

implementations)

 Used for convenience to create a

temporary “View” and use that

immediately in a query

 Allows a more straightforward way of

looking a step-by-step query

95

Example of WITH

 See an alternate approach to doing Q28:

 Q28’: WITH BIGDEPTS (Dno) AS

 (SELECT Dno

 FROM EMPLOYEE

 GROUP BY Dno

 HAVING COUNT (*) > 5)

 SELECT Dno, COUNT (*)

 FROM EMPLOYEE

 WHERE Salary>40000 AND Dno IN BIGDEPTS

 GROUP BY Dno;

96

Use of CASE

 SQL also has a CASE construct

 Used when a value can be different based

on certain conditions.

 Can be used in any part of an SQL query

where a value is expected

 Applicable when querying, inserting or

updating tuples

97

EXAMPLE of use of CASE

 The following example shows that

employees are receiving different raises in

different departments (A variation of the

update U6)

 U6’: UPDATE EMPLOYEE

 SET Salary =

 CASE WHEN Dno = 5 THEN Salary + 2000

 WHEN Dno = 4 THEN Salary + 1500

 WHEN Dno = 1 THEN Salary + 3000

98

Recursive Queries in SQL

 An example of a recursive relationship

between tuples of the same type is the

relationship between an employee and a

supervisor.

 This relationship is described by the

foreign key Super_ssn of the EMPLOYEE

relation
 An example of a recursive operation is to retrieve all supervisees

of a supervisory employee e at all levels—that is, all employees e

directly supervised by e, all employees e’ directly supervised by

each employee e, all employees e directly supervised by each

employee e, and so on. Thus the CEO would have each employee

in the company as a supervisee in the resulting table. Example

shows such table SUP_EMP with 2 columns

(Supervisor,Supervisee(any level)):

99

An EXAMPLE of RECURSIVE Query

 Q29: WITH RECURSIVE SUP_EMP (SupSsn, EmpSsn) AS

 SELECT SupervisorSsn, Ssn

 FROM EMPLOYEE

 UNION

 SELECT E.Ssn, S.SupSsn

 FROM EMPLOYEE AS E, SUP_EMP AS S

 WHERE E.SupervisorSsn = S.EmpSsn)

 SELECT *

 FROM SUP_EMP;

 The above query starts with an empty SUP_EMP and

successively builds SUP_EMP table by computing

immediate supervisees first, then second level

supervisees, etc. until a fixed point is reached and no

more supervisees can be added

100

EXPANDED Block Structure of SQL Queries

101

Specifying Constraints as Assertions and Actions as Triggers

 Semantic Constraints: The following are

beyond the scope of the EER and

relational model

 CREATE ASSERTION

» Specify additional types of constraints outside

scope of built-in relational model constraints

 CREATE TRIGGER

» Specify automatic actions that database

system will perform when certain events and

conditions occur

102

Specifying General Constraints as Assertions in SQL

 CREATE ASSERTION

» Specify a query that selects any tuples that

violate the desired condition

» Use only in cases where it goes beyond a
simple CHECK which applies to individual

attributes and domains

103

Introduction to Triggers in SQL

 CREATE TRIGGER statement

» Used to monitor the database

 Typical trigger has three components

which make it a rule for an “active

database “ (more on active databases in

section 26.1) :

» Event(s)

» Condition

» Action

104

USE OF TRIGGERS

 AN EXAMPLE with standard Syntax.(Note

: other SQL implementations like

PostgreSQL use a different syntax.)

R5:

CREATE TRIGGER SALARY_VIOLATION

BEFORE INSERT OR UPDATE OF Salary, Supervisor_ssn ON

EMPLOYEE

FOR EACH ROW

WHEN (NEW.SALARY > (SELECT Salary FROM EMPLOYEE

 WHERE Ssn = NEW. Supervisor_Ssn))

INFORM_SUPERVISOR (NEW.Supervisor.Ssn, New.Ssn)

105

Views (Virtual Tables) in SQL

 Concept of a view in SQL

» Single table derived from other tables called

the defining tables

» Considered to be a virtual table that is not

necessarily populated

106

Specification of Views in SQL (1/2)

 CREATE VIEW command

» Give table name, list of attribute names, and a query

to specify the contents of the view

» In V1, attributes retain the names from base tables. In

V2, attributes are assigned names

107

Specification of Views in SQL (2/2)

 Once a View is defined, SQL queries can

use the View relation in the FROM clause

 View is always up-to-date

» Responsibility of the DBMS and not the user

 DROP VIEW command

» Dispose of a view

108

View Implementation, View Update, and Inline Views

 Complex problem of efficiently

implementing a view for querying

 Strategy1: Query modification

 approach

» Compute the view as and when needed. Do

not store permanently

» Modify view query into a query on underlying

base tables

» Disadvantage: inefficient for views defined via

complex queries that are time-consuming to

execute

109

View Materialization (1/2)

 Strategy 2: View materialization

» Physically create a temporary view table when

the view is first queried

» Keep that table on the assumption that other

queries on the view will follow

» Requires efficient strategy for automatically

updating the view table when the base tables

are updated

 Incremental update strategy for

materialized views
» DBMS determines what new tuples must be inserted,

deleted, or modified in a materialized view table

110

View Materialization (2/2)

 Multiple ways to handle materialization:

» immediate update strategy updates a view

as soon as the base tables are changed

» lazy update strategy updates the view when

needed by a view query

» periodic update strategy updates the view

periodically (in the latter strategy, a view

query may get a result that is not up-to-date).

This is commonly used in Banks, Retail store

operations, etc.

111

View Update

 Update on a view defined on a single table without any

aggregate functions

» Can be mapped to an update on underlying base

table- possible if the primary key is preserved in the

view

 Update not permitted on aggregate views. E.g.,

 UV2: UPDATE DEPT_INFO

 SET Total_sal=100000

 WHERE Dname=‘Research’;

cannot be processed because Total_sal is a computed

value in the view definition

112

 View involving joins

» Often not possible for DBMS to determine

which of the updates is intended

 Clause WITH CHECK OPTION

» Must be added at the end of the view

definition if a view is to be updated to make

sure that tuples being updated stay in the

view

 In-line view

» Defined in the FROM clause of an SQL query

(e.g., we saw its used in the WITH example)

View Update and Inline Views

113

Views as authorization mechanism

 SQL query authorization statements (GRANT

and REVOKE) are described in detail in Chapter

30

 Views can be used to hide certain attributes or

tuples from unauthorized users

 E.g., For a user who is only allowed to see

employee information for those who work for

department 5, he may only access the view
DEPT5EMP:

CREATE VIEW DEPT5EMP AS

SELECT *

FROM EMPLOYEE

WHERE Dno = 5;

114

Schema Change Statements in SQL

 Schema evolution commands

» DBA may want to change the schema while

the database is operational

» Does not require recompilation of the

database schema

115

The DROP Command

 DROP command

» Used to drop named schema elements, such

as tables, domains, or constraint

 Drop behavior options:

»CASCADE and RESTRICT

 Example:

»DROP SCHEMA COMPANY CASCADE;

» This removes the schema and all its elements

including tables,views, constraints, etc.

116

The ALTER table command

 Alter table actions include:

» Adding or dropping a column (attribute)

» Changing a column definition

» Adding or dropping table constraints

 Example:

»ALTER TABLE COMPANY.EMPLOYEE ADD
COLUMN Job VARCHAR(12);

117

Adding and Dropping Constraints

 Change constraints specified on a table

» Add or drop a named constraint

118

Dropping Columns, Default Values

 To drop a column

» Choose either CASCADE or RESTRICT

»CASCADE would drop the column from views

etc. RESTRICT is possible if no views refer to

it.
 ALTER TABLE COMPANY.EMPLOYEE DROP COLUMN

 Address CASCADE;

 Default values can be dropped and altered

:
ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn

DROP DEFAULT;

ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn

SET DEFAULT ‘333445555’;

119

Table 7.2 Summary of SQL Syntax

continued on next slide

120

Table 7.2 (continued) Summary of SQL Syntax

121

Summary (1/2)

 Complex SQL:

» Nested queries, joined tables (in the FROM clause),

outer joins, aggregate functions, grouping

 Handling semantic constraints with CREATE

ASSERTION and CREATE TRIGGER

 CREATE VIEW statement and materialization

strategies

 Schema Modification for the DBAs using ALTER

TABLE , ADD and DROP COLUMN, ALTER

CONSTRAINT etc.

122

 Summary (2/2)

 Topics Covered in Next Section

» Database Programming: Techniques and

Issues

» Embedded SQL, Dynamic SQL, and SQLJ

» Database Programming with Function Calls:

SQL/CLI and JDBC

» Database Stored Procedures

and SQL/PSM

» Comparing the Three Approaches

123

Agenda

1 Session Overview

5 Web Database Programming Using PhP

2 Basic SQL

3 Advanced SQL

4 Introduction to SQL Programming

6 Summary and Conclusion

124

Agenda

 Database Programming: Techniques and Issues

 Embedded SQL, Dynamic SQL, and SQLJ

 Database Programming with Function Calls:

SQL/CLI and JDBC

 Database Stored Procedures

and SQL/PSM

 Comparing the Three Approaches

125

Introduction to SQL Programming Techniques

 Database applications

» Host language

• Java, C/C++/C#, COBOL, or some other

programming language

» Data sublanguage

• SQL

 SQL standards

» Continually evolving

» Each DBMS vendor may have some

variations from standard

Slide 10- 3

126

Database Programming: Techniques and Issues

 Interactive interface

» SQL commands typed directly into a monitor

 Execute file of commands

» @<filename>

 Application programs or database

applications

» Used as canned transactions by the end

users access a database

» May have Web interface

127

Approaches to Database Programming (1/2)

 Embedding database commands in a

general-purpose programming language

» Database statements identified by a special

prefix

» Precompiler or preprocessor scans the

source program code

• Identify database statements and extract them for

processing by the DBMS

» Called embedded SQL

128

Approaches to Database Programming (2/2)

 Using a library of database functions

» Library of functions available to the host

programming language

» Application programming interface (API)

 Designing a brand-new language

» Database programming language designed

from scratch

 First two approaches are more common

129

Impedance Mismatch

 Differences between database model and

programming language model

 Binding for each host programming

language

» Specifies for each attribute type the

compatible programming language types

 Cursor or iterator variable

» Loop over the tuples in a query result

130

Typical Sequence of Interaction in Database Programming

 Open a connection to database server

 Interact with database by submitting

queries, updates, and other database

commands

 Terminate or close connection to database

131

Embedded SQL, Dynamic SQL, and SQLJ

 Embedded SQL

» C language

 SQLJ

» Java language

 Programming language called host

language

132

Retrieving Single Tuples with Embedded SQL (1/4)

 EXEC SQL

» Prefix

» Preprocessor separates embedded SQL

statements from host language code

» Terminated by a matching END-EXEC

• Or by a semicolon (;)

 Shared variables

» Used in both the C program and the

embedded SQL statements

» Prefixed by a colon (:) in SQL statement

133

Figure 10.1 C program variables used in the embedded SQL ex. E1 & E2

134

Retrieving Single Tuples with Embedded SQL (2/4)

 Connecting to the database
CONNECT TO <server name>AS <connection name>

AUTHORIZATION <user account name and password> ;

 Change connection
SET CONNECTION <connection name> ;

 Terminate connection
DISCONNECT <connection name> ;

135

Retrieving Single Tuples with Embedded SQL (3/4)

 SQLCODE and SQLSTATE

communication variables

» Used by DBMS to communicate exception or

error conditions

 SQLCODE variable

» 0 = statement executed successfully

» 100 = no more data available in query result

» < 0 = indicates some error has occurred

136

Retrieving Single Tuples with Embedded SQL (4/4)

 SQLSTATE

» String of five characters

» ‘00000’ = no error or exception

» Other values indicate various errors or

exceptions

» For example, ‘02000’ indicates ‘no more data’

when using SQLSTATE

137

Figure 10.2 Program segment E1, a C pgm segment with embedded SQL

138

Retrieving Multiple Tuples with Embedded SQL Using Cursors (1/2)

 Cursor

» Points to a single tuple (row) from result of

query

 OPEN CURSOR command

» Fetches query result and sets cursor to a

position before first row in result

» Becomes current row for cursor

 FETCH commands

» Moves cursor to next row in result of query

139

Figure 10.3 Program segment E2, a C program segment that uses cursors with

embedded SQL for update purposes

140

Retrieving Multiple Tuples with Embedded SQL Using Cursors (2/2)

 FOR UPDATE OF

» List the names of any attributes that will be

updated by the program

 Fetch orientation

» Added using value: NEXT, PRIOR, FIRST,

LAST, ABSOLUTE i, and RELATIVE i

141

Specifying Queries at Runtime Using Dynamic SQL

 Dynamic SQL

» Execute different SQL queries or updates

dynamically at runtime

 Dynamic update

 Dynamic query

142

Figure 10.4 Program segment E3, a C program segment that uses dynamic SQL for

updating a table

143

SQLJ: Embedding SQL Commands in Java

 Standard adopted by several vendors for

embedding SQL in Java

 Import several class libraries

 Default context

 Uses exceptions for error handling

»SQLException is used to return errors or

exception conditions

144

Figure 10.5 Importing classes needed for including SQLJ in Java programs in Oracle, and

establishing a connection and default context

145

Figure 10.6 Java program variables used in SQLJ examples J1 and J2

146

Figure 10.7 Program segment J1, a Java program segment with SQLJ

147

Retrieving Multiple Tuples in SQLJ Using Iterators

 Iterator

» Object associated with a collection (set or

multiset) of records in a query result

 Named iterator

» Associated with a query result by listing

attribute names and types in query result

 Positional iterator

» Lists only attribute types in query result

148

Figure 10.8 Program segment J2A, a Java program segment that uses a named iterator to

print employee information in a particular department

149

Figure 10.9 Program segment J2B, a Java program segment that uses a positional

iterator to print employee information in a particular department

150

Database Programming with Function Calls: SQL/CLI & JDBC

 Use of function calls

» Dynamic approach for database

programming

 Library of functions

» Also known as application programming

interface (API)

» Used to access database

 SQL Call Level Interface (SQL/CLI)

» Part of SQL standard

151

SQL/CLI: Using C as the Host Language (1/2)

 Environment record

» Track one or more database connections

» Set environment information

 Connection record

» Keeps track of information needed for a

particular database connection

 Statement record

» Keeps track of the information needed for one

SQL statement

152

SQL/CLI: Using C as the Host Language (2/2)

 Description record

» Keeps track of information about tuples or

parameters

 Handle to the record

» C pointer variable makes record accessible to

program

153

Figure 10.10 Program segment CLI1, a C program segment with SQL/CLI

154

Figure 10.11 Program segment CLI2, a C program segment that uses SQL/CLI for a query

with a collection of tuples in its result

155

JDBC: SQL Function Calls for Java Programming (1/2)

 JDBC

» Java function libraries

 Single Java program can connect to

several different databases

» Called data sources accessed by the Java

program
 Class.forName("oracle.jdbc.driver.OracleDriver")

» Load a JDBC driver explicitly

156

JDBC: SQL Function Calls for Java Programming (2/2)

 Connection object

 Statement object has two subclasses:

»PreparedStatement and

CallableStatement

 Question mark (?) symbol

» Represents a statement parameter

» Determined at runtime

 ResultSet object

» Holds results of query

157

Figure 10.12 Program segment JDBC1, a Java program segment with JDBC

158

Figure 10.13 Program segment JDBC2, a Java program segment that uses JDBC for a

query with a collection of tuples in its result

159

Database Stored Procedures and SQL/PSM

 Stored procedures

» Program modules stored by the DBMS at the

database server

» Can be functions or procedures

 SQL/PSM (SQL/Persistent Stored

Modules)

» Extensions to SQL

» Include general-purpose programming

constructs in SQL

160

Database Stored Procedures and Functions (1/2)

 Persistent stored modules

» Stored persistently by the DBMS

 Useful:

» When database program is needed by several

applications

» To reduce data transfer and communication

cost between client and server in certain

situations

» To enhance modeling power provided by

views

161

Database Stored Procedures and Functions (2/2)

 Declaring stored procedures:
CREATE PROCEDURE <procedure name> (<parameters>)

<local declarations>

<procedure body> ;

declaring a function, a return type is necessary,

so the declaration form is

CREATE FUNCTION <function name> (<parameters>)

RETURNS <return type>

<local declarations>

<function body> ;

162

Database Stored Procedures and Functions (3/3)

 Each parameter has parameter type

» Parameter type: one of the SQL data types

» Parameter mode: IN, OUT, or INOUT

 Calling a stored procedure:

CALL <procedure or function name>

(<argument list>) ;

163

SQL/PSM: Extending SQL for Specifying Persistent Stored Modules (1/2)

 Conditional branching statement:
IF <condition> THEN <statement list>

ELSEIF <condition> THEN <statement list>

...

ELSEIF <condition> THEN <statement list>

ELSE <statement list>

END IF ;

164

SQL/PSM (2/2)

 Constructs for looping

165

Figure 10.14 Declaring a function in SQL/PSM

166

Comparing the Three Approaches (1/2)

 Embedded SQL Approach

» Query text checked for syntax errors and

validated against database schema at

compile time

» For complex applications where queries have

to be generated at runtime

• Function call approach more suitable

167

Comparing the Three Approaches (2/2)

 Library of Function Calls Approach

» More flexibility

» More complex programming

» No checking of syntax done at compile time

 Database Programming Language

Approach

» Does not suffer from the impedance mismatch

problem

» Programmers must learn a new language

168

 Summary (1/2)

 Database Programming: Techniques and

Issues

 Embedded SQL, Dynamic SQL, and SQLJ

 Database Programming with Function

Calls: SQL/CLI and JDBC

 Database Stored Procedures

and SQL/PSM

 Comparing the Three Approaches

169

 Summary (2/2)

 Topics Covered in Next Section

» A Simple PHP Example

» Overview of Basic Features of PHP

» Overview of PHP Database Programming

170

Agenda

1 Session Overview

5 Web Database Programming Using PhP

2 Basic SQL

3 Advanced SQL

4 Introduction to SQL Programming

6 Summary and Conclusion

171

Agenda

 A Simple PHP Example

 Overview of Basic Features of PHP

 Overview of PHP Database Programming

172

Web Database Programming Using PHP

 Techniques for programming dynamic

features into Web

 PHP

» Open source scripting language

» Interpreters provided free of charge

» Available on most computer platforms

173

A Simple PHP Example (1/5)

 PHP

» Open source general-purpose scripting

language

» Comes installed with the UNIX operating

system

174

A Simple PHP Example (2/5)

 DBMS

» Bottom-tier database server

 PHP

» Middle-tier Web server

 HTML

» Client tier

175

Figure 11.1a PHP program segment for entering a greeting

continued on next slide

176

Figure 11.1b-d (b) Initial form displayed by PHP program segment. (c) User enters name

John Smith. (d) Form prints welcome message for John Smith

177

A Simple PHP Example (3/5)

 Example Figure 11.1(a)

 PHP script stored in:

» http://www.myserver.com/example/greeting.ph

p

 <?php

» PHP start tag

 ?>

» PHP end tag

 Comments: // or /* */

178

A Simple PHP Example (4/5)

 $_POST

» Auto-global predefined PHP variable

» Array that holds all the values entered through

form parameters

 Arrays are dynamic

 Long text strings

» Between opening <<<_HTML_ and closing

HTML;

179

A Simple PHP Example (5/5)

 PHP variable names

» Start with $ sign

180

Overview of Basic Features of PHP

 Illustrate features of PHP suited for

creating dynamic Web pages that contain

database access commands

181

PHP Variables, Data Types, and Programming Constructs (1/4)

 PHP variable names

» Start with $ symbol

» Can include characters, letters, and
underscore character (_)

 Main ways to express strings and text

» Single-quoted strings

» Double-quoted strings

» Here documents

» Single and double quotes

182

PHP Variables, Data Types, and Programming Constructs (2/4)

» Period (.) symbol

» String concatenate operator

 Single-quoted strings

» Literal strings that contain no PHP program

variables

 Double-quoted strings and here

documents

» Values from variables need to be interpolated

into string

183

PHP Variables, Data Types, and Programming Constructs (3/4)

 Numeric data types

» Integers and floating points

 Programming language constructs

» For-loops, while-loops, and conditional if-

statements

 Boolean expressions

184

Figure 11.2 Illustrating basic PHP string and text values

185

PHP Variables, Data Types, and Programming Constructs (4/4)

 Comparison operators

» == (equal), != (not equal), > (greater than), >=

(greater than or equal), < (less than), and <=

(less than or equal)

186

PHP Arrays (1/3)

 Can hold database query results

» Two-dimensional arrays

» First dimension representing rows of a table

» Second dimension representing columns

(attributes) within a row

 Main types of arrays:

» Numeric and associative

187

PHP Arrays (2/3)

 Numeric array

» Associates a numeric index with each

element in the array

» Indexes are integer numbers

• Start at zero

• Grow incrementally

 Associative array

» Provides pairs of (key => value) elements

188

Figure 11.3 Illustrating basic PHP array processing

189

PHP Arrays (3/3)

 Techniques for looping through arrays in

PHP

 Count function

» Returns current number of elements in array

 Sort function

» Sorts array based on element values in it

190

PHP Functions

 Functions

» Define to structure a complex program and to

share common sections of code

» Arguments passed by value

 Examples to illustrate basic PHP functions

» Figure 11.4

» Figure 11.5

191

Figure 11.4 Rewriting program segment P1 as P1′ using functions

192

Figure 11.5 Illustrating a function with arguments and return value

193

PHP Server Variables and Forms (1/2)

 Built-in entries

»$_SERVER auto-global built-in array variable

» Provides useful information about server

where the PHP interpreter is running

194

PHP Server Variables and Forms (2/2)

» Examples:

•$_SERVER['SERVER_NAME']

•$_SERVER['REMOTE_ADDRESS']

•$_SERVER['REMOTE_HOST']

•$_SERVER['PATH_INFO']

•$_SERVER['QUERY_STRING']

•$_SERVER['DOCUMENT_ROOT']

 $_POST

» Provides input values submitted by the user
through HTML forms specified in <INPUT>

tag

195

Overview of PHP Database Programming

 PEAR DB library

» Part of PHP Extension and Application

Repository (PEAR)

» Provides functions for database access

196

Connecting to a Database

 Library module DB.php must be loaded

 DB library functions accessed using
DB::<function_name>

 DB::connect('string')

» Function for connecting to a database

» Format for 'string' is: <DBMS

software>://<user

account>:<password>@<database

server>

197

Figure 11.6 Connecting to a database, creating a table, and inserting a record

198

Some Database Functions

 Query function

»$d->query takes an SQL command as its

string argument

» Sends query to database server for execution

 $d–

>setErrorHandling(PEAR_ERROR_DI

E)

» Terminate program and print default error

messages if any subsequent errors occur

199

Collecting Data from Forms and Inserting Records

 Collect information through HTML or other

types of Web forms

 Create unique record identifier for each

new record inserted into the database

 PHP has a function $d–>nextID to

create a sequence of unique values for a

particular table

 Placeholders

» Specified by ? symbol

200

Retrieval Queries from Database Tables

 $q

» Variable that holds query result

»$q->fetchRow() retrieve next record in

query result and control loop

 $allresult = $d->getAll(query)

» Holds all the records in a query result in a
single variable called $allresult

201

Figure 11.7 Illustrating database retrieval queries

202

Other techniques (1/2)

 PHP runs on server

» Sends HTML to client

 Many other languages/technologies for

Web Db programming

 Examples:

 Java servlets:

» Java objects on server, interact with client

» Store information about interaction session

203

Other techniques (2/2)

 Java Server Pages (JSP)

» Creates dynamic Web pages through

scripting at server to send to client (somewhat

like PHP)

 JavaScript

» Scripting language, can run at client or server

 Java Script Object Notation (JSON):

» Text-based representation of objects

» Similar function to XML

» Used in many NOSQL systems

204

 Summary

 A Simple PHP Example

 Overview of Basic Features of PHP

 Overview of PHP Database Programming

205

Agenda

1 Session Overview

5 Web Database Programming Using PhP

2 Basic SQL

3 Advanced SQL

4 Introduction to SQL Programming

6 Summary and Conclusion

206

 Summary

 Basic SQL

 Advanced SQL

 Introduction to SQL Programming

 Web Database Programming Using PhP

207

Assignments & Readings

 Readings

» Slides and Handouts posted on the course web site

» Textbook: Chapters 6, 7, 10, and 11

 Assignment #6:

 Textbook exercises: 6.13, 6.14, 6.15, 7.5, 7.8, 7.9

 Programming exercises: 10-7, 10-8, 10-11, 10-12, 10-13, 11.11, and
11.12 (repeat only 10-7 in exercises 10-11 and 10-12)

 Database Project Part I – Data Modeling (continued)

http://www.amazon.com/gp/reader/0136086209/ref=sib_dp_kd

208

Next Session: Functional Dependencies and Normalization

 Refining a relational implementation,

including the normalization process and

the algorithms to achieve normalization

209

Any Questions?

