
1

Database Systems

Session 1 – Main Theme

Introduction to Database Systems

Dr. Jean-Claude Franchitti

New York University

Computer Science Department

Courant Institute of Mathematical Sciences

Presentation material partially based on textbook slides

Fundamentals of Database Systems (7th Edition)

by Ramez Elmasri and Shamkant Navathe

Slides copyright © 2015

2

2 Databases and Database Users

Agenda

1 Instructor and Course Introduction

3 Database System Concepts and Architecture

4 Summary and Conclusion

3

- Profile -

 33 years of experience in the Information Technology Industry, including twelve years of experience working

for leading IT consulting firms such as Computer Sciences Corporation

 PhD in Computer Science from University of Colorado at Boulder

 Past CEO and CTO

 Held senior management and technical leadership roles in many large IT Strategy and Modernization

projects for fortune 500 corporations in the insurance, banking, investment banking, pharmaceutical, retail,

and information management industries

 Contributed to several high-profile ARPA and NSF research projects

 Played an active role as a member of the OMG, ODMG, and X3H2 standards committees and as a

Professor of Computer Science at Columbia initially and New York University since 1997

 Proven record of delivering business solutions on time and on budget

 Original designer and developer of jcrew.com and the suite of products now known as IBM InfoSphere

DataStage

 Creator of the Enterprise Architecture Management Framework (EAMF) and main contributor to the creation

of various maturity assessment methodology

 Developed partnerships between several companies and New York University to incubate new

methodologies (e.g., EA maturity assessment methodology), develop proof of concept software, recruit

skilled graduates, and increase the companies’ visibility

Who am I?

4

How to reach me?

Cell (212) 203-5004

Email jcf@cs.nyu.edu

AIM, Y! IM, ICQ jcf2_2003

MSN IM jcf2_2003@yahoo.com

LinkedIn http://www.linkedin.com/in/jcfranchitti

Twitter http://twitter.com/jcfranchitti

Skype jcf2_2003@yahoo.com

Come on…what else
did you expect?

Woo hoo…find the word
of the day…

5

What is the class about?

Course description and syllabus:

» http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001

» http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/

 Textbooks:
» Fundamentals of Database Systems (7th Edition)

 Ramez Elmasri and Shamkant Navathe

 Addition Wesley

 ISBN-10: 0133970779, ISBN-13: 978-0133970777 - 7th Edition (06/18/15)

http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/spring16/CSCI-GA.2433-001/

6

Icons / Metaphors

6

Common Realization

Information

Knowledge/Competency Pattern

Governance

Alignment

Solution Approach

7

Course Objectives

 Gain understanding of fundamental concepts of state-of-the art

databases (more precisely called: Database Management Systems)

 Get to know some of the tools used in the design and

implementations of databases

 Know enough so that it is possible to read/skim a database system

manual and

 Start designing and implementing small data bases

 Start managing and interacting with existing small to large databases

 Experiment and practice with industry leading vendor solutions:

 CA’s Erwin for design of relational database

 Oracle, IBM DB2, and other DB products for writing relational queries

8

 Methodology used for modeling a business application

during the database design process, focusing on entity-

relationship model and entity relationship diagrams

 Relational model and implementing an entity-relationship

diagram

 Relational algebra (using SQL syntax)

 SQL as data manipulation language

 SQL as data definition language

 Refining a relational implementation, including the

normalization process and the algorithms to achieve

normalization

Key Material Covered (1/2)

9

 Physical design of the database using various file organization and

indexing techniques for efficient query processing

 Concurrency Control

 Recovery

 Query execution

 Data warehouses

 Additional topics may be covered as time allows, these topics are

covered in greater depth in other courses but PowerPoint presentations

for them will still be provided

 The course material is partially derived from the textbook slides and

material covered as part of the Database Systems course offered at

NYU Courant in previous semesters

Key Material Covered (2/2)

10

Software Requirements

 Software tools will be available from the Internet or from the

course Web site under demos as a choice of freeware or

commercial tools

 Database Modeling Tools

 Database Management Software Tools

 etc.

 References will be provided on the course Web site

11

2 Databases and Database Users

Agenda

1 Instructor and Course Introduction

3 Database System Concepts and Architecture

4 Summary and Conclusion

12

 Section Outline

 Types of Databases and Database Applications

 Basic Definitions

 Typical DBMS Functionality

 Example of a Database (UNIVERSITY)

 Main Characteristics of the Database Approach

 Types of Database Users

 Advantages of Using the Database Approach

 Historical Development of Database Technology

 Extending Database Capabilities

 When Not to Use Databases

13

 Types of Databases and Database Applications

 Traditional database applications

 Store textual or numeric information

 More recent applications:
» Object Databases (ODMSs)

» Graph Databases

» Multimedia databases

 Store images, audio clips, and video streams digitally

» Geographic information systems (GIS)

 Store and analyze maps, weather data, and satellite images

» Biological and Genome Databases

» Data warehouses and online analytical processing (OLAP) systems

 Extract and analyze useful business information from very large databases

 Support decision making

» Mobile databases

» Real-time and active databases

 Control industrial and manufacturing processes

 Business Intelligence Platforms

 Unstructured vs. Structured Databases

» Big Data

14

 Recent Developments

 Social Networks started capturing a lot of information about people

and about communications among people-posts, tweets, photos,

videos in systems such as:

» Facebook

» Twitter

» Linked-In

 All of the above constitutes data

 Search Engines (Google, Bing, Yahoo): collect their own repository of

web pages for searching purposes

 New Technologies are emerging from the so-called non-database

software vendors to manage vast amounts of data generated on the

web:

 Big Data storage systems involving large clusters of distributed

computers

 NOSQL (Not Only SQL) systems

 A large amount of data now resides on the “cloud” which means it is in

huge data centers using thousands of machines.

15

Many Historical “Paradigm Shifts” in the Database Field

 “Paradigm Shifts”
 http://vimeo.com/103246683

 https://www.youtube.com/watch?v=wOXWSg_PyTQ

 https://www.youtube.com/watch?v=Aesl6HeiwOg

 https://www.youtube.com/watch?v=x0iRj8_9KhA&index=2&list=PLBCCA5F25EF30184C

 From Managing the Storage of Data to Managing a

Wealth of Information …
» i.e., Database Systems vs. Data Science

http://vimeo.com/103246683
https://www.youtube.com/watch?v=x0iRj8_9KhA&index=2&list=PLBCCA5F25EF30184C

16

 Basic Definitions

 Database

 Collection of related data

 Logically coherent collection of data with inherent meaning

 Built for a specific purpose

 Data

 Known facts that can be recorded and have an implicit meaning

 Mini-world or Universe of Discourse (UoD)

 Represents some aspect of the real world about which data is stored in a database

(e.g., student grades and transcripts at a university)

 Example of a large commercial database

 Amazon.com

 Database management system (DBMS)
» A software package/ system to facilitate the creation and maintenance of a

computerized database

 Database system

 The DBMS software together with the data itself. Sometimes, the applications are

also included

17

 Impact of Databases and Database Technology

 Businesses:

» Banking, Insurance, Retail, Transportation, Healthcare,

Manufacturing

 Service Industries:

» Financial, Real-estate, Legal, Electronic Commerce,

Small businesses

 Education :

» Resources for content and Delivery

 More recently:

» Social Networks, Environmental and Scientific

Applications, Medicine and Genetics

 Personalized Applications:

» Based on smart mobile devices

18

 Simplified Database System Environment

19

 Typical DBMS Functionality

 Define a particular database in terms of its data

types, structures, and constraints

 Construct or Load the initial database contents on a

secondary storage medium

 Manipulating the database:

» Retrieval: Querying, generating reports

» Modification: Insertions, deletions and updates to

its content

» Accessing the database through Web applications

 Processing and Sharing by a set of concurrent users

and application programs – yet, keeping all data valid

and consistent

20

 Application Activities Against a Database

 Applications interact with a database by

generating

- Queries: that access different parts of data and

formulate the result of a request

- Transactions: that may read some data and “update”

certain values or generate new data and store that in

the database

 Applications must not allow unauthorized users to

access data

 Applications must keep up with changing user

requirements against the database

21

 Additional DBMS Functionality

 DBMS may additionally provide:

» Protection or Security measures to prevent

unauthorized access

» “Active” processing to take internal actions on

data

» Presentation and Visualization of data

» Maintenance of the database and associated

programs over the lifetime of the database

application

• Called database, software, and system maintenance

22

 Example of a Database (with a Conceptual Data Model)

 Mini-world for the example:

» Part of a UNIVERSITY environment.

 Some mini-world entities:

» STUDENTs

» COURSEs

» SECTIONs (of COURSEs)

» (academic) DEPARTMENTs

» INSTRUCTORs

23

 Example of a Database (with a Conceptual Data Model)

 Some mini-world relationships:

» SECTIONs are of specific COURSEs

» STUDENTs take SECTIONs

» COURSEs have prerequisite COURSEs

» INSTRUCTORs teach SECTIONs

» COURSEs are offered by DEPARTMENTs

» STUDENTs major in DEPARTMENTs

 Note: The above entities and relationships are typically

expressed in a conceptual data model, such as the

ENTITY-RELATIONSHIP data model

24

 Example of a Simple Database

25

 Main Characteristics of the Database Approach

 Self-describing nature of a database system:

» A DBMS catalog stores the description of a particular

database (e.g. data structures, types, and constraints)

» The description is called meta-data*.

» This allows the DBMS software to work with different

database applications.

 Insulation between programs and data:

» Called program-data independence.

» Allows changing data structures and storage organization

without having to change the DBMS access programs.

* Some newer systems such as a few NOSQL systems need

no meta-data: they store the data definition within its structure

making it self describing

26

 Example of a Simplified Database Catalog

27

 Main Characteristics of the Database Approach (continued)

 Data Abstraction:

» A data model is used to hide storage details and

present the users with a conceptual view of the

database.

» Programs refer to the data model constructs

rather than data storage details

 Support of multiple views of the data:

» Each user may see a different view of the

database, which describes only the data of

interest to that user.

28

 Main Characteristics of the Database Approach (continued)

 Sharing of data and multi-user transaction processing:

» Allowing a set of concurrent users to retrieve from and to

update the database.

» Concurrency control within the DBMS guarantees that each

transaction is correctly executed or aborted

» Recovery subsystem ensures each completed transaction has

its effect permanently recorded in the database

» OLTP (Online Transaction Processing) is a major part of

database applications. This allows hundreds of concurrent

transactions to execute per second.

29

 Database Users

 Users may be divided into

» Those who actually use and control the

database content, and those who design,

develop and maintain database applications

(called “Actors on the Scene”), and

» Those who design and develop the DBMS

software and related tools, and the computer

systems operators (called “Workers Behind the

Scene”).

30

 Database Users – Actors on the Scene

 Actors on the scene

» Database administrators:

• Responsible for authorizing access to the database,

for coordinating and monitoring its use, acquiring

software and hardware resources, controlling its use

and monitoring efficiency of operations.

» Database Designers:

• Responsible to define the content, the structure, the

constraints, and functions or transactions against

the database. They must communicate with the end-

users and understand their needs.

31

 Database End Users

 Actors on the scene (continued)

» End-users: They use the data for queries,
reports and some of them update the database
content. End-users can be categorized into:

• Casual: access database occasionally when
needed

• Naïve or Parametric: they make up a large section
of the end-user population.

– They use previously well-defined functions in the form of
“canned transactions” against the database.

– Users of Mobile Apps mostly fall in this category

– Bank-tellers or reservation clerks are parametric users who
do this activity for an entire shift of operations.

– Social Media Users post and read information from
websites

32

 Database End Users (continued)

• Sophisticated:

– These include business analysts, scientists, engineers,

others thoroughly familiar with the system capabilities.

– Many use tools in the form of software packages that work

closely with the stored database.

• Stand-alone:

– Mostly maintain personal databases using ready-to-use

packaged applications.

– An example is the user of a tax program that creates its

own internal database.

– Another example is a user that maintains a database of

personal photos and videos.

33

 Database Users – Actors on the Scene (continued)

• System Analysts and Application Developers

 This category currently accounts for a very large proportion

of the IT work force.

– System Analysts: They understand the user

requirements of naïve and sophisticated users and design

applications including canned transactions to meet those

requirements.

– Application Programmers: Implement the

specifications developed by analysts and test and debug

them before deployment.

– Business Analysts: There is an increasing need for

such people who can analyze vast amounts of business

data and real-time data (“Big Data”) for better decision

making related to planning, advertising, marketing etc.

34

 Database Users – Actors Behind the Scene

• System Designers and Implementors: Design and

implement DBMS packages in the form of modules and

interfaces and test and debug them. The DBMS must interface

with applications, language compilers, operating system

components, etc.

• Tool Developers: Design and implement software

systems called tools for modeling and designing databases,

performance monitoring, prototyping, test data generation,

user interface creation, simulation etc. that facilitate building of

applications and allow using database effectively.

• Operators and Maintenance Personnel: They

manage the actual running and maintenance of the database

system hardware and software environment

35

 Advantaged of Using the Database Approach

 Controlling redundancy in data storage and in

development and maintenance efforts.

» Sharing of data among multiple users.

 Restricting unauthorized access to data. Only the

DBA staff uses privileged commands and

facilities.

 Providing persistent storage for program Objects

» E.g., Object-oriented DBMSs make program objects

persistent

 Providing Storage Structures (e.g. indexes) for

efficient Query Processing

36

 Advantaged of Using the Database Approach (continued)

 Providing optimization of queries for efficient

processing.

 Providing backup and recovery services.

 Providing multiple interfaces to different classes

of users.

 Representing complex relationships among data.

 Enforcing integrity constraints on the database.

 Drawing inferences and actions from the stored

data using deductive and active rules and

triggers.

37

 Additional Implications of Using the Database Approach

 Potential for enforcing standards:

» This is very crucial for the success of database

applications in large organizations. Standards

refer to data item names, display formats,

screens, report structures, meta-data

(description of data), Web page layouts, etc.

 Reduced application development time:

» Incremental time to add each new application

is reduced.

38

 Additional Implications of Using the Database Approach (continued)

 Flexibility to change data structures:

» Database structure may evolve as new

requirements are defined.

 Availability of current information:

» Extremely important for on-line transaction

systems such as shopping, airline, hotel, car

reservations.

 Economies of scale:

» Wasteful overlap of resources and personnel

can be avoided by consolidating data and

applications across departments.

39

 Historical Development of Database Technology

 Early Database Applications:

» The Hierarchical and Network Models were introduced in

mid 1960s and dominated during the seventies.

» A bulk of the worldwide database processing still occurs

using these models, particularly, the hierarchical model

using IBM’s IMS system.

 Relational Model based Systems:

» Relational model was originally introduced in 1970, was

heavily researched and experimented within IBM Research

and several universities.

» Relational DBMS Products emerged in the early 1980s

40

 Historical Development of Database Technology (continued)

 Object-oriented and emerging applications:

» Object-Oriented Database Management Systems

(OODBMSs) were introduced in late 1980s and early 1990s

to cater to the need of complex data processing in CAD and

other applications.

• Their use has not taken off much.

» Many relational DBMSs have incorporated object database

concepts, leading to a new category called object-relational

DBMSs (ORDBMSs)

» Extended relational systems add further capabilities (e.g. for

multimedia data, text, XML, and other data types)

41

 Historical Development of Database Technology (continued)

 Data on the Web and E-commerce Applications:

» Web contains data in HTML (Hypertext markup language)
with links among pages.

» This has given rise to a new set of applications and E-
commerce is using new standards like XML (eXtended
Markup Language).

» Script programming languages such as PHP and JavaScript
allow generation of dynamic Web pages that are partially
generated from a database

• Also allow database updates through Web pages

42

 Extending Database Capabilities

 New functionality is being added to DBMSs in the
following areas:

» Scientific Applications – Physics, Chemistry, Biology - Genetics

» Earth and Atmospheric Sciences and Astronomy

» XML (eXtensible Markup Language)

» Image Storage and Management

» Audio and Video Data Management

» Data Warehousing and Data Mining – a very major area for future
development using new technologies (see Chapters 28-29)

» Spatial Data Management and Location Based Services

» Time Series and Historical Data Management

 The above gives rise to new research and development in
incorporating new data types, complex data structures,
new operations and storage and indexing schemes in
database systems.

43

 Extending Database Capabilities (continued)

 Background since the advent of the 21st Century:

» First decade of the 21st century has seen tremendous

growth in user generated data and automatically
collected data from applications and search engines.

» Social Media platforms such as Facebook and Twitter
are generating millions of transactions a day and
businesses are interested to tap into this data to
“understand” the users

» Cloud Storage and Backup is making unlimited amount
of storage available to users and applications

44

 Extending Database Capabilities (continued)

 Emergence of Big Data Technologies and NOSQL databases

» New data storage, management and analysis technology was necessary
to deal with the onslaught of data in petabytes a day (10**15 bytes or
1000 terabytes) in some applications – this started being commonly called
as “Big Data”.

» Hadoop (which originated from Yahoo) and Mapreduce Programming
approach to distributed data processing (which originated from Google)
as well as the Google file system have given rise to Big Data
technologies. Further enhancements are taking place in the form of Spark
based technology.

» NOSQL (Not Only SQL- where SQL is the de facto standard language for
relational DBMSs) systems have been designed for rapid search and
retrieval from documents, processing of huge graphs occurring on social
networks, and other forms of unstructured data with flexible models of
transaction processing.

45

 When Not to Use a DBMS

 Main inhibitors (costs) of using a DBMS:

» High initial investment and possible need for additional

hardware.

» Overhead for providing generality, security, concurrency

control, recovery, and integrity functions.

 When a DBMS may be unnecessary:

» If the database and applications are simple, well defined,

and not expected to change.

» If access to data by multiple users is not required.

 When a DBMS may be infeasible:

» In embedded systems where a general purpose DBMS may

not fit in available storage

46

 When Not to Use a DBMS (continued)

 When no DBMS may suffice:

» If there are stringent real-time requirements

that may not be met because of DBMS

overhead (e.g., telephone switching systems)

» If the database system is not able to handle the

complexity of data because of modeling

limitations (e.g., in complex genome and

protein databases)

» If the database users need special operations

not supported by the DBMS (e.g., GIS and

location based services).

47

 Summary

 Types of Databases and Database Applications

 Basic Definitions

 Typical DBMS Functionality

 Example of a Database (UNIVERSITY)

 Main Characteristics of the Database Approach

 Types of Database Users

 Advantages of Using the Database Approach

 Historical Development of Database Technology

 Extending Database Capabilities

 When Not to Use Databases

48

2 Databases and Database Users

Agenda

1 Instructor and Course Introduction

3 Database System Concepts and Architecture

4 Summary and Conclusion

49

 Section Outline

 Data Models and Their Categories

 History of Data Models

 Schemas, Instances, and States

 Three-Schema Architecture

 Data Independence

 DBMS Languages and Interfaces

 Database System Utilities and Tools

 Centralized and Client-Server Architectures

 Classification of DBMSs

50

 Data Models

 Data Model:

» A set of concepts to describe the structure of a database, the

operations for manipulating these structures, and certain

constraints that the database should obey.

 Data Model Structure and Constraints:

» Constructs are used to define the database structure

» Constructs typically include elements (and their data types) as

well as groups of elements (e.g. entity, record, table), and

relationships among such groups

» Constraints specify some restrictions on valid data; these

constraints must be enforced at all times

 Data Model Operations:

» These operations are used for specifying database retrievals and updates

by referring to the constructs of the data model.

» Operations on the data model may include basic model operations (e.g.

generic insert, delete, update) and user-defined operations (e.g.

compute_student_gpa, update_inventory)

51

 Categories of Data Models

 Conceptual (high-level, semantic) data models:

» Provide concepts that are close to the way many users
perceive data.

• (Also called entity-based or object-based data models.)

 Physical (low-level, internal) data models:

» Provide concepts that describe details of how data is stored
in the computer. These are usually specified in an ad-hoc
manner through DBMS design and administration manuals

 Implementation (representational) data models:

» Provide concepts that fall between the above two, used by
many commercial DBMS implementations (e.g. relational
data models used in many commercial systems).

 Self-Describing Data Models:

» Combine the description of data with the data values.
Examples include XML, key-value stores and some NOSQL
systems.

52

 Schemas vs. Instances

 Database Schema:
» The description of a database.

» Includes descriptions of the database structure, data types, and
the constraints on the database.

 Schema Diagram:
» An illustrative display of (most aspects of) a database schema.

 Schema Construct:
» A component of the schema or an object within the schema, e.g.,

STUDENT, COURSE.

 Database State:

» The actual data stored in a database at a particular moment in

time. This includes the collection of all the data in the database.

» Also called database instance (or occurrence or snapshot).

• The term instance is also applied to individual database components,

e.g. record instance, table instance, entity instance

53

 Database Schema vs. Database State

 Database State:

» Refers to the content of a database at a moment in time.

 Initial Database State:

» Refers to the database state when it is initially loaded into the

system.

 Valid State:

» A state that satisfies the structure and constraints of the database

 Distinction

» The database schema changes very infrequently.

» The database state changes every time the database is updated.

 Schema is also called intension.

 State is also called extension.

54

 Example of a Database Schema

55

 Example of a Database State

56

 Three-Schema Architecture

 Proposed to support DBMS characteristics of:
» Program-data independence.

» Support of multiple views of the data.

 Not explicitly used in commercial DBMS products, but has

been useful in explaining database system organization

 Defines DBMS schemas at three levels:
» Internal schema at the internal level to describe physical storage

structures and access paths (e.g indexes).

• Typically uses a physical data model.

» Conceptual schema at the conceptual level to describe the structure and

constraints for the whole database for a community of users.

• Uses a conceptual or an implementation data model.

» External schemas at the external level to describe the various user

views.

• Usually uses the same data model as the conceptual schema.

57

 The Three-Schema Architecture

58

 Three-Schema Architecture

 Mappings among schema levels are

needed to transform requests and data.

» Programs refer to an external schema, and are

mapped by the DBMS to the internal schema

for execution.

» Data extracted from the internal DBMS level is

reformatted to match the user’s external view

(e.g. formatting the results of an SQL query for

display in a Web page)

59

 Data Independence

 Logical Data Independence:

» The capacity to change the conceptual schema without having to change
the external schemas and their associated application programs.

 Physical Data Independence:

» The capacity to change the internal schema without having to change the
conceptual schema.

» For example, the internal schema may be changed when certain file
structures are reorganized or new indexes are created to improve
database performance

 When a schema at a lower level is changed, only the mappings

between this schema and higher-level schemas need to be changed

in a DBMS that fully supports data independence.

 The higher-level schemas themselves are unchanged.

» Hence, the application programs need not be changed since they refer to

the external schemas.

60

 DBMS Languages

 Data Definition Language (DDL)
» Used by the DBA and database designers to specify the

conceptual schema of a database.

» In many DBMSs, the DDL is also used to define internal and
external schemas (views).

» In some DBMSs, separate storage definition language (SDL)
and view definition language (VDL) are used to define internal
and external schemas.

• SDL is typically realized via DBMS commands provided to the DBA
and database designers

61

 DBMS Languages (continued)

 Data Manipulation Language (DML)

» High-Level or Non-procedural Languages: These include the

relational language SQL

• May be used in a standalone way or may be embedded in a

programming language

» Low Level or Procedural Languages:

• These must be embedded in a programming language

» Used to specify database retrievals and updates

» DML commands (data sublanguage) can be embedded in a

general-purpose programming language (host language), such as

COBOL, C,

C++, or Java.

• A library of functions can also be provided to access the DBMS from a

programming language

» Alternatively, stand-alone DML commands can be applied directly

(called a query language).

62

 Types of DML

 High Level or Non-procedural Language:

» For example, the SQL relational language

» Are “set”-oriented and specify what data to

retrieve rather than how to retrieve it.

» Also called declarative languages.

 Low Level or Procedural Language:

» Retrieve data one record-at-a-time;

» Constructs such as looping are needed to

retrieve multiple records, along with positioning

pointers.

63

 DBMS Interfaces

 Stand-alone query language interfaces

» Example: Entering SQL queries at the DBMS

interactive SQL interface (e.g. SQL*Plus in ORACLE)

 Programmer interfaces for embedding DML in

programming languages

 User-friendly interfaces

» Menu-based, forms-based, graphics-based, etc.

 Mobile Interfaces are interfaces allowing users to

perform transactions using mobile apps

64

 DBMS Programming Language Interfaces

 Programmer interfaces for embedding DML

in a programming languages:
» Embedded Approach: e.g embedded SQL (for C, C++, etc.),

SQLJ (for Java)

» Procedure Call Approach: e.g. JDBC for Java, ODBC (Open

Databse Connectivity) for other programming languages as API’s

(application programming interfaces)

» Database Programming Language Approach: e.g. ORACLE

has PL/SQL, a programming language based on SQL; language

incorporates SQL and its data types as integral components

» Scripting Languages: PHP (client-side scripting) and Python

(server-side scripting) are used to write database programs.

65

 User-Friendly DBMS Interfaces

» Menu-based (Web-based), popular for

browsing on the web

» Forms-based, designed for naïve users used to

filling in entries on a form

» Graphics-based

• Point and Click, Drag and Drop, etc.

• Specifying a query on a schema diagram

» Natural language: requests in written English

» Combinations of the above:

• For example, both menus and forms used

extensively in Web database interfaces.

66

 Other DBMS Interfaces

» Natural language: free text as a query

» Speech : Input query and Output response

» Web Browser with keyword search

» Parametric interfaces, e.g., bank tellers using

function keys.

» Interfaces for the DBA:

• Creating user accounts, granting authorizations

• Setting system parameters

• Changing schemas or access paths

67

 Database Systems Utilities

 To perform certain functions such as:

» Loading data stored in files into a database.

Includes data conversion tools.

» Backing up the database periodically on tape.

» Reorganizing database file structures.

» Performance monitoring utilities.

» Report generation utilities.

» Other functions, such as sorting, user

monitoring, data compression, etc.

68

 Other Tools

 Data dictionary / repository:

» Used to store schema descriptions and other information such as

design decisions, application program descriptions, user

information, usage standards, etc.

» Active data dictionary is accessed by DBMS software and

users/DBA.

» Passive data dictionary is accessed by users/DBA only.

 Application Development Environments and CASE

(computer-aided software engineering) tools:

 Examples:

» PowerBuilder (Sybase)

» JBuilder (Borland)

» JDeveloper 10G (Oracle)

69

 The Database System Environment

 DBMS component modules

 Buffer management

 Stored data manager

 DDL compiler

 Interactive query interface

• Query compiler

• Query optimizer

 Pre-compiler

 Runtime database processor

 System catalog

 Concurrency control system

 Backup and recovery system

70

 Typical DBMS Component Modules

71

 Centralized and Client-Server DBMS Architectures

 Centralized DBMS:

» Combines everything into single system

including- DBMS software, hardware,

application programs, and user interface

processing software.

» User can still connect through a remote

terminal – however, all processing is done at

centralized site.

72

 A Physical Centralized DBMS Architecture

73

 Basic 2-tier Client / Server Architectures

 Specialized Servers with Specialized

functions

» Print server

» File server

» DBMS server

» Web server

» Email server

 Clients can access the specialized servers

as needed

74

 Logical and Physical Two-Tier Client / Server Architecture

75

 DBMS Clients

 Provide appropriate interfaces through a

client software module to access and utilize

the various server resources.

 Clients may be diskless machines or PCs

or Workstations with disks with only the

client software installed.

 Connected to the servers via some form of

a network.

» (LAN: local area network, wireless network,

etc.)

76

Three-Tier and n-Tier Architectures for Web Applications

 Provides database query and transaction services to the
clients

 Relational DBMS servers are often called SQL servers,
query servers, or transaction servers

 Applications running on clients utilize an Application
Program Interface (API) to access server databases via
standard interface such as:

» ODBC: Open Database Connectivity standard

» JDBC: for Java programming access

 DBMS Server

77

Three-Tier and n-Tier Architectures for Web Applications

 Client and server must install appropriate client module
and server module software for ODBC or JDBC

 A client program may connect to several DBMSs,

sometimes called the data sources.

 In general, data sources can be files or other non-DBMS

software that manages data.

 Two Tier Client-Server Architecture

78

Three-Tier and n-Tier Architectures for Web Applications
 Common for Web applications

 Intermediate Layer called Application Server or Web

Server:

» Stores the web connectivity software and the business logic

part of the application used to access the corresponding

data from the database server

» Acts like a conduit for sending partially processed data

between the database server and the client.

 Three-tier Architecture Can Enhance Security:

» Database server only accessible via middle tier

» Clients cannot directly access database server

» Clients contain user interfaces and Web browsers

» The client is typically a PC or a mobile device connected to

the Web

 Three Tier Client-Server Architecture

79

 Three-Tier Client/Server Architecture

80

 Classification of Database Management Systems

 Based on the data model used
» Legacy: Network, Hierarchical.

» Currently Used: Relational, Object-oriented, Object-
relational

» Recent Technologies: Key-value storage systems,
NOSQL systems: document based, column-based,
graph-based and key-value based. Native XML
DBMSs.

 Other classifications
» Single-user (typically used with personal computers)

vs. multi-user (most DBMSs).

» Centralized (uses a single computer with one
database) vs. distributed (multiple computers, multiple
DBs)

81

 Variations of Distributed DBMSs (DDBMSs)

 Homogeneous DDBMS

 Heterogeneous DDBMS

 Federated or Multidatabase Systems

» Participating Databases are loosely coupled

with high degree of autonomy.

 Distributed Database Systems have now

come to be known as client-server based

database systems because:

» They do not support a totally distributed

environment, but rather a set of database

servers supporting a set of clients.

82

 Cost Considerations for DBMSs

 Cost Range: from free open-source systems to
configurations costing millions of dollars

 Examples of free relational DBMSs: MySQL, PostgreSQL,
others

 Commercial DBMS offer additional specialized modules,
e.g. time-series module, spatial data module, document
module, XML module

» These offer additional specialized functionality when
purchased separately

» Sometimes called cartridges (e.g., in Oracle) or blades

 Different licensing options: site license, maximum number
of concurrent users (seat license), single user, etc.

83

 Other Considerations

 Type of access paths within database

system

» E.g.- inverted indexing based (ADABAS is one

such system).Fully indexed databases provide

access by any keyword (used in search

engines)

 General Purpose vs. Special Purpose

» E.g.- Airline Reservation systems or many

others-reservation systems for hotel/car etc.

Are special purpose OLTP (Online Transaction

Processing Systems)

84

 History of Data Models (Additional Material)

 Network Model

 Hierarchical Model

 Relational Model

 Object-oriented Data Models

 Object-Relational Models

85

 History of Data Models – Network Model

 Network Model:

» The first network DBMS was implemented by
Honeywell in 1964-65 (IDS System).

» Adopted heavily due to the support by
CODASYL (Conference on Data Systems
Languages) (CODASYL - DBTG report of
1971).

» Later implemented in a large variety of systems
- IDMS (Cullinet - now Computer Associates),
DMS 1100 (Unisys), IMAGE (H.P. (Hewlett-
Packard)), VAX -DBMS (Digital Equipment
Corp., next COMPAQ, now H.P.).

86

 History of Data Models – Network Model

 Advantages:
» Network Model is able to model complex relationships

and represents semantics of add/delete on the
relationships.

» Can handle most situations for modeling using record
types and relationship types.

» Language is navigational; uses constructs like FIND,
FIND member, FIND owner, FIND NEXT within set,
GET, etc.

• Programmers can do optimal navigation through the database.

 Disadvantages:

» Navigational and procedural nature of processing

» Database contains a complex array of pointers that

thread through a set of records.

• Little scope for automated “query optimization”

87

 History of Data Models – Network Model

 Types of access path options

 General or special-purpose

88

 History of Data Models – Hierarchical Model

 Hierarchical Data Model:

» Initially implemented in a joint effort by IBM and North

American Rockwell around 1965. Resulted in the IMS

family of systems.

» IBM’s IMS product had (and still has) a very large

customer base worldwide

» Hierarchical model was formalized based on the IMS

system

» Other systems based on this model: System 2k (SAS

inc.)

89

 History of Data Models – Hierarchical Model

 Advantages:

» Simple to construct and operate

» Corresponds to a number of natural hierarchically organized

domains, e.g., organization (“org”) chart

» Language is simple:

• Uses constructs like GET, GET UNIQUE, GET NEXT, GET

NEXT WITHIN PARENT, etc.

 Disadvantages:

» Navigational and procedural nature of processing

» Database is visualized as a linear arrangement of records

» Little scope for "query optimization"

90

 History of Data Models – Relational Model

 Relational Model:

» Proposed in 1970 by E.F. Codd (IBM), first commercial

system in 1981-82.

» Now in several commercial products (e.g. DB2, ORACLE,

MS SQL Server, SYBASE, INFORMIX).

» Several free open source implementations, e.g. MySQL,

PostgreSQL

» Currently most dominant for developing database

applications.

» SQL relational standards: SQL-89 (SQL1), SQL-92 (SQL2),

SQL-99, SQL3, …

91

 History of Data Models – Object-Oriented Data Models

 Object-oriented Data Models:

» Several models have been proposed for implementing in a

database system.

» One set comprises models of persistent O-O Programming

Languages such as C++ (e.g., in OBJECTSTORE or

VERSANT), and Smalltalk (e.g., in GEMSTONE).

» Additionally, systems like O2, ORION (at MCC - then

ITASCA), IRIS (at H.P.- used in Open OODB).

» Object Database Standard: ODMG-93, ODMG-version 2.0,

ODMG-version 3.0.

92

 History of Data Models – Object-Relational Models

 Object-Relational Models:

» The trend to mix object models with relational was

started with Informix Universal Server.

» Relational systems incorporated concepts from object

databases leading to object-relational.

» Exemplified in the versions of Oracle, DB2, and SQL

Server and other DBMSs.

» Current trend by Relational DBMS vendors is to extend

relational DBMSs with capability to process XML, Text

and other data types.

» The term “Object-relational” is receding in the

marketplace.

93

 Section Summary

 Data Models and Their Categories

 Schemas, Instances, and States

 Three-Schema Architecture

 Data Independence

 DBMS Languages and Interfaces

 Database System Utilities and Tools

 Database System Environment

 Centralized and Client-Server Architectures

 Classification of DBMSs

 History of Data Models

94

2 Databases and Database Users

Agenda

1 Instructor and Course Introduction

3 Database System Concepts and Architecture

4 Summary and Conclusion

95

Course Assignments

 Individual Assignments

 Reports based on case studies / class presentations

 Textbook problem sets

 Project-Related Assignments

 All assignments (other than the individual assessments) will

correspond to milestones in the course project

96

Assignments & Readings

 Readings

» Slides and Handouts posted on the course web site

» Textbook: Chapters 1 & 2

 Assignment #1 – Database R&D Exercise (Report)

» (a) select a product from the following types of database systems:

» XML Database, ODBMs, Unstructured Databases, Graph

Databases, etc.

» (b) write a short report to explain the capabilities and inner-workings

» (c) demonstrate the use of the database systems of your choice on small

example(s) of your choice

http://www.amazon.com/gp/reader/0136086209/ref=sib_dp_kd

97

Next Session: Relational Data Model and Relational Database Constraints

98

Any Questions?

