
1

Data Communications & Networks

Session 9 – Main Theme

Network Congestion
Causes, Effects, Controls, and TCP Applications

Dr. Jean-Claude Franchitti

New York University

Computer Science Department

Courant Institute of Mathematical Sciences

Adapted from course textbook resources

Computer Networking: A Top-Down Approach, 5/E

Copyright 1996-2013

J.F. Kurose and K.W. Ross, All Rights Reserved

2

2 Network Congestion Principles

Agenda

1 Session Overview

5 Summary and Conclusion

3 Internet Transport Protocols Review

4 TCP Congestion Control

3

What is the class about?

Course description and syllabus:

»http://www.nyu.edu/classes/jcf/csci-ga.2262-001/

»http://cs.nyu.edu/courses/spring14/CSCI-GA.2262-

001/index.html

Textbooks:
» Computer Networking: A Top-Down Approach (6th Edition)

 James F. Kurose, Keith W. Ross

Addison Wesley

ISBN-10: 0132856204, ISBN-13: 978-0132856201, 6th Edition (02/24/12)

http://www.nyu.edu/classes/jcf/csci-ga.2262-001/
http://www.nyu.edu/classes/jcf/csci-ga.2262-001/
http://www.nyu.edu/classes/jcf/csci-ga.2262-001/
http://www.nyu.edu/classes/jcf/csci-ga.2262-001/
http://www.nyu.edu/classes/jcf/csci-ga.2262-001/
http://www.nyu.edu/classes/jcf/csci-ga.2262-001/
http://www.nyu.edu/classes/jcf/csci-ga.2262-001/
http://www.nyu.edu/classes/jcf/csci-ga.2262-001/
http://www.nyu.edu/classes/jcf/csci-ga.2262-001/
http://www.nyu.edu/classes/jcf/csci-ga.2262-001/
http://www.nyu.edu/classes/jcf/csci-ga.2262-001/
http://www.nyu.edu/classes/jcf/csci-ga.2262-001/
http://www.nyu.edu/classes/jcf/csci-ga.2262-001/
http://www.nyu.edu/classes/jcf/csci-ga.2262-001/
http://cs.nyu.edu/courses/spring14/CSCI-GA.2262-001/index.html
http://cs.nyu.edu/courses/spring14/CSCI-GA.2262-001/index.html
http://cs.nyu.edu/courses/spring14/CSCI-GA.2262-001/index.html
http://cs.nyu.edu/courses/spring14/CSCI-GA.2262-001/index.html
http://cs.nyu.edu/courses/spring14/CSCI-GA.2262-001/index.html
http://cs.nyu.edu/courses/spring14/CSCI-GA.2262-001/index.html
http://cs.nyu.edu/courses/spring14/CSCI-GA.2262-001/index.html
http://cs.nyu.edu/courses/spring14/CSCI-GA.2262-001/index.html
http://cs.nyu.edu/courses/spring14/CSCI-GA.2262-001/index.html
http://cs.nyu.edu/courses/spring14/CSCI-GA.2262-001/index.html
http://cs.nyu.edu/courses/spring14/CSCI-GA.2262-001/index.html
http://cs.nyu.edu/courses/spring14/CSCI-GA.2262-001/index.html
http://cs.nyu.edu/courses/spring14/CSCI-GA.2262-001/index.html
http://cs.nyu.edu/courses/spring14/CSCI-GA.2262-001/index.html
http://cs.nyu.edu/courses/spring14/CSCI-GA.2262-001/index.html
http://cs.nyu.edu/courses/spring14/CSCI-GA.2262-001/index.html
http://cs.nyu.edu/courses/spring14/CSCI-GA.2262-001/index.html
http://cs.nyu.edu/courses/spring14/CSCI-GA.2262-001/index.html

4

Course Overview

 Computer Networks and the Internet

 Application Layer

 Fundamental Data Structures: queues, ring buffers, finite state machines

 Data Encoding and Transmission

 Local Area Networks and Data Link Control

 Wireless Communications

 Packet Switching

 OSI and Internet Protocol Architecture

 Congestion Control and Flow Control Methods

 Internet Protocols (IP, ARP, UDP, TCP)

 Network (packet) Routing Algorithms (OSPF, Distance Vector)

 IP Multicast

 Sockets

5

Course Approach

 Introduction to Basic Networking Concepts (Network Stack)

 Origins of Naming, Addressing, and Routing (TCP, IP, DNS)

 Physical Communication Layer

 MAC Layer (Ethernet, Bridging)

 Routing Protocols (Link State, Distance Vector)

 Internet Routing (BGP, OSPF, Programmable Routers)

 TCP Basics (Reliable/Unreliable)

 Congestion Control

 QoS, Fair Queuing, and Queuing Theory

 Network Services – Multicast and Unicast

 Extensions to Internet Architecture (NATs, IPv6, Proxies)

 Network Hardware and Software (How to Build Networks, Routers)

 Overlay Networks and Services (How to Implement Network Services)

 Network Firewalls, Network Security, and Enterprise Networks

6

Network Congestion in Brief

 Session Overview

 Network Congestion Principles

 Internet Transport Protocols Review

 TCP Congestion Control

 Summary & Conclusion

7

Icons / Metaphors

Common Realization

Information

Knowledge/Competency Pattern

Governance

Alignment

Solution Approach

8

2 Network Congestion Principles

Agenda

1 Session Overview

5 Summary and Conclusion

3 Internet Transport Protocols Review

4 TCP Congestion Control

9

 What is Congestion?

 Effects of Congestion

 Causes/Costs of Congestion

 Approaches Towards Congestion Control

Subtopics

10

What is Congestion?

 Congestion occurs when the number of packets being

transmitted through the network approaches the packet

handling capacity of the network

 Congestion control aims to keep number of packets

below level at which performance falls off dramatically

 Data network is a network of queues (e.g., router buffers)

 Generally 80% utilization is critical

 Finite queues mean data may be lost (e.g., as router

buffers become congested)

 A top-10 problem!

11

Queues at a Node

12

Effects of Congestion

 Packets arriving are stored at input buffers

 Routing decision made

 Packet moves to output buffer

 Packets queued for output transmitted as fast as

possible

 Statistical time division multiplexing

 If packets arrive to fast to be routed, or to be output,

buffers will fill

 Can discard packets

 Can use flow control

 Can propagate congestion through network

13

Interaction of Queues

14

Causes/Costs of Congestion: Scenario 1

• two senders, two

receivers

• one router, infinite

buffers

• no retransmission

• no flow control

• no congestion control

• large delays when

congested

• maximum achievable

throughput

Host A per connection throughput

(# of bytes/sec at receiver) as a function

of the connection sending rate

C: Router outgoing link capacity

Congestion cost:

Average delay increases when

operating near link capacity

15

Causes/Costs of Congestion: Scenario 2 (1/2)

• one router, finite buffers

• sender retransmits lost packet (i.e. reliable connection assumed)

“offered load to network”

Performance depends on how retransmission is performed:

(a) Host A only sends a packet when a buffer is free -> no loss (offered load = sending rate)

(b) Sender only retransmits when a packet is known to be lost (timeout large enough…)

-> congestion cost: sender must retransmit to compensate for loss due to buffer overflow

(c) Sender retransmits prematurely a delayed packet that is not lost

-> congestion cost: unneeded retransmissions in the face of large delays

16

Causes/Costs of Congestion: Scenario 2 (2/2)

• always: (’in = in)

• “perfect” retransmission only when loss:

• retransmission of delayed (not lost) packet makes larger

(than perfect case) for same


in


out

=


in


out

>


in


out

“costs” of congestion:

• more work (retrans) for given “goodput”

• unneeded retransmissions: link carries multiple copies of pkt

(a) (b)

Offered load is C/2

(c)

Throughput converges to C/4

if packets are forwarded twice

17

• four senders

• multihop paths

• timeout/retransmit


in

Q: what happens as

and increase ? 
in

Causes/Costs of Congestion: Scenario 3 (1/2)

Small increase in sending rate

results in a throughput increase

As offered load gets larger and

larger, throughput eventually goes

to zero

Congestion cost: waste of

upstream transmission capacity to

packet drop point is wasted

18

Another “cost” of congestion:

• when packet dropped, any “upstream transmission capacity

used for that packet becomes wasted!

Causes/Costs of Congestion: Scenario 3 (2/2)

19

Approaches Towards Congestion Control

End-end congestion

control:

• no explicit feedback from

network

• congestion inferred from

end-system observed loss,

delay

• approach taken by TCP

(via indication of timeout

of triple duplicate ack)

Network-assisted

congestion control:

• routers provide feedback

to end systems

• single bit indicating

congestion (SNA,

DECbit, TCP/IP ECN,

ATM ABR)

• explicit rate sender

should send at

• indications: choke

packets, packet field

update

Two broad approaches towards congestion control:

20

Case Study: ATM ABR Congestion Control

 ABR: available bit

rate:

• “elastic service”

• if sender’s path

“underloaded”:

• sender should use

available bandwidth

• if sender’s path

congested:

• sender throttled to

minimum guaranteed

rate

RM (resource management)
cells:

• sent by sender, interspersed
with data cells (one per 32)

• bits in RM cell set by
switches (“network-assisted”)

– NI bit: no increase in rate
(mild congestion)

– CI bit: congestion
indication

• RM cells returned to sender
by receiver, with bits intact

21

 two-byte ER (explicit rate) field in RM cell

» congested switch may lower ER value in cell

» sender’ send rate thus minimum supportable rate on path

 EFCI (Explicit Forward Congestion Indication) bit in

data cells: set to 1 in congested switch

» if data cell preceding RM cell has EFCI set, destination sets CI

bit in returned RM cell

Case Study: ATM ABR Congestion Control

22

2 Network Congestion Principles

Agenda

1 Session Overview

5 Summary and Conclusion

3 Internet Transport Protocols Review

4 TCP Congestion Control

23

 Internet Transport Protocols

 Transport Layer Addressing

 Standard Services and Port Numbers

 TCP Overview

 Reliability in an Unreliable World

 TCP Flow Control

 Why Startup / Shutdown Difficult?

 TCP Connection Management

 Timing Problem

 Implementation Policy Options

 UDP: User Datagram Protocol

Subtopics

24

Internet Transport Protocols

 Two Transport Protocols Available

 Transmission Control Protocol (TCP)

 connection oriented

 most applications use TCP

 RFC 793

 User Datagram Protocol (UDP)

 Connectionless

 RFC 768

25

TCP/UDP Service Models

 Transport Layer Multiplexing and Demultiplexing

 Extend IP’s delivery svc between two end systems to

a delivery svc between tow processes running on the

end systems

 Segment Integrity Checking

 TCP Only:

 Reliable data transfer (flow control, seq #s,

acknowledgements, and timers)

 Congestion control

26

Transport Layer Addressing in Support of Multiplexing/Demultiplexing

 Communications endpoint addressed by:

 IP address (32 bit) in IP Header

 Port numbers (16 bit) in TP Header1

 Transport protocol (TCP or UDP) in IP

Datagram Header

1
 TP => Transport Protocol (UDP or TCP)

27

Standards Services and “Well-Known” Port Numbers (0-1023)
RFC 1700 / 3232– http://www.ianna.org

service tcp udp

echo 7 7

daytime 13 13

netstat 15

ftp-data 20

ftp 21

telnet 23

smtp 25

time 37 37

domain 53 53

finger 79

http 80

pop-2 109

pop 110

sunrpc 111 111

uucp-path 117

nntp 119

talk 517

28

TCP: Overview
RFCs: 793, 1122, 1323, 2018, 2581

 point-to-point:

 one sender, one receiver

(no multicasting possible)

 reliable, in-order byte

steam:

 no “message boundaries”

 pipelined:

 TCP congestion and flow

control set window size

 send & receive buffers

 full duplex data:

 bi-directional data flow in

same connection

 MSS: maximum segment

size (app layer data size)

 connection-oriented:

 handshaking (exchange of

control msgs) init’s sender,

receiver state before data

exchange

 flow controlled:

 sender will not overwhelm

receiver

socket

door

TCP

send buf fer

TCP

receive buf f er

socket

door

segment

application

writes data

application

reads data

29

TCP Header / Segment Structure

• Data offset: specifies length of TCP header in 32-bit

words

• Options field: used when a sender and receiver negotiate

the MSS or as a window scaling factor for use in high-

speed networks or for timestamping (RFC 854/1323)

30

TCP Segment Structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

rcvr window size

ptr urgent data checksum

F S R P A U
head
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

31

Reliability in an Unreliable World

 IP offers best-effort (unreliable) delivery

 TCP uses IP

 TCP provides completely reliable transfer

 How is this possible? How can TCP realize:

 Reliable connection startup?

 Reliable data transmission?

 Graceful connection shutdown?

32

Reliable Data Transmission

 Positive acknowledgment

 Receiver returns short message when data arrives

 Called acknowledgment

 Retransmission

 Sender starts timer whenever message is transmitted

 If timer expires before acknowledgment arrives,

sender retransmits message

 THIS IS NOT A TRIVIAL PROBLEM! – more on this

later

33

TCP Flow Control

 Receiver

 Advertises available buffer space

 Called window

 This is a known as a CREDIT policy

 Sender

 Can send up to entire window before ACK arrives

 Each acknowledgment carries new window information

 Called window advertisement

 Can be zero (called closed window)

 Interpretation: I have received up through X, and can

take Y more octets

34

Credit Scheme

 Decouples flow control from ACK

 May ACK without granting credit and vice versa

 Each octet has sequence number

 Each transport segment has seq number, ack number and window

size in header

35

Use of Header Fields

 When sending, seq number is that of first octet in

segment

 ACK includes AN=i, W=j

 All octets through SN=i-1 acknowledged

 Next expected octet is i

 Permission to send additional window of W=j octets

 i.e. octets through i+j-1

36

Credit Allocation

37

TCP Flow Control

receiver: explicitly

informs sender of

(dynamically

changing) amount of

free buffer space

– RcvWindow field

in TCP segment

sender: keeps the amount

of transmitted,

unACKed data less

than most recently
received RcvWindow

sender won’t overrun
receiver’s buffers by

transmitting too much,
 too fast

flow control

receiver buffering

RcvBuffer = size of TCP Receive Buffer

RcvWindow = amount of spare room in Buffer

38

TCP Seq. #’s and ACKs

Seq. #’s:

– byte stream
“number” of first
byte in segment’s
data

ACKs:

– seq # of next byte
expected from
other side

– cumulative ACK

Q: how receiver handles
out-of-order segments

– A: TCP spec
doesn’t say, - up to
implementor

Host A Host B

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time

simple telnet scenario

39

TCP ACK Generation
[RFC 1122, RFC 2581]

Event

in-order segment arrival,

no gaps,

everything else already ACKed

in-order segment arrival,

no gaps,

one delayed ACK pending

out-of-order segment arrival

higher-than-expect seq. #

gap detected

arrival of segment that

partially or completely fills gap

TCP Receiver action

delayed ACK. Wait up to 500ms

for next segment. If no next segment,

send ACK

immediately send single

cumulative ACK

send duplicate ACK, indicating seq. #

of next expected byte

immediate ACK if segment starts

at lower end of gap

40

TCP: Retransmission Scenarios

Host A

loss

ti
m

e
ou

t

time lost ACK scenario

Host B

X

Host A

S
eq

=9
2

 t
im

eo
ut

time premature timeout,

cumulative ACKs

Host B

S
eq

=1
0

0
 t

im
eo

ut

41

Why Startup / Shutdown Difficult?

 Segments can be

 Lost

 Duplicated

 Delayed

 Delivered out of order

 Either side can crash

 Either side can reboot

 Need to avoid duplicate ‘‘shutdown’’ message from

affecting later connection

42

TCP Connection Management

 Recall: TCP sender, receiver

establish “connection” before

exchanging data segments

 initialize TCP variables:

» seq. #s

» buffers, flow control info (e.g.

RcvWindow)

 client: connection initiator

 Socket clientSocket = new

Socket("hostname","port

number");

 server: contacted by client

 Socket connectionSocket =

welcomeSocket.accept();

Three way handshake:

Step 1: client end system sends

TCP SYN control segment to

server

– specifies initial seq #

Step 2: server end system receives

SYN, replies with SYNACK

control segment

– ACKs received SYN

– allocates buffers

– specifies server-> receiver

initial seq. #

43

TCP Connection Management (OPEN)

client server

opening

opening

closed

established

44

TCP Connection Management (cont.)

Closing a connection:

client closes socket:

clientSocket.close

();

Step 1: client end system
sends TCP FIN control
segment to server

Step 2: server receives FIN,
replies with ACK. Closes
connection, sends FIN.

client server

close

close

closed
ti

m
ed

 w
ai

t

45

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

– Enters “timed wait” -
will respond with ACK
to received FINs

Step 4: server, receives ACK.
Connection closed.

Note: with small modification,
can handle simultaneous
FINs.

client server

closing

closing

closed

ti
m

ed
 w

ai
t

closed

46

TCP Connection Management (cont.)

TCP client
lifecycle

TCP server
lifecycle

47

Timing Problem!

The delay required for data to reach a destination and an

acknowledgment to return depends on traffic in the internet as

well as the distance to the destination. Because it allows

multiple application programs to communicate with multiple

destinations concurrently, TCP must handle a variety of delays

that can change rapidly.

How does TCP handle this

48

48

Solving Timing Problem

 Keep estimate of round trip time on each

connection

 Use current estimate to set retransmission timer

 Known as adaptive retransmission

 Key to TCP’s success

49

TCP Round Trip Time & Timeout

 Q: how to set TCP

timeout value?

 longer than RTT

» note: RTT will vary

 too short: premature

timeout

» unnecessary

retransmissions

 too long: slow

reaction to segment

loss

Q: how to estimate RTT?

• SampleRTT: measured time

from segment transmission until

ACK receipt

– ignore retransmissions,

cumulatively ACKed

segments

• SampleRTT will vary, want

estimated RTT “smoother”

– use several recent

measurements, not just
current SampleRTT

50

TCP Round Trip Time & Timeout

EstimatedRTT = (1-x)*EstimatedRTT + x*SampleRTT

• Exponential weighted moving average (EWMA)

• Influence of given sample decreases exponentially

fast

• Typical value of x: 1/8 (RFC 6298)

Setting the timeout

 EstimatedRTT plus “safety margin”

 large variation in EstimatedRTT -> larger

safety margin (y typically 0.25)

 Timeout = EstimatedRTT + 4*Deviation

Deviation = (1-y)*Deviation +

 y*|SampleRTT-EstimatedRTT|

51

Implementation Policy Options

 Send

 Deliver

 Accept

 Retransmit

 Acknowledge

52

Send

 If no push or close TCP entity transmits at its own

convenience (IFF send window allows!)

 Data buffered at transmit buffer

 May construct segment per data batch

 May wait for certain amount of data

53

Deliver (to application)

 In absence of push, deliver data at own convenience

 May deliver as each in-order segment received

 May buffer data from more than one segment

54

Accept

 Segments may arrive out of order

 In order

 Only accept segments in order

 Discard out of order segments

 In windows

 Accept all segments within receive window

55

Retransmit

 TCP maintains queue of segments transmitted

but not acknowledged

 TCP will retransmit if not ACKed in given time

 First only

 Batch

 Individual

56

Acknowledgement

 Immediate

 as soon as segment arrives.

 will introduce extra network traffic

 Keeps sender’s pipe open

 Cumulative

 Wait a bit before sending ACK (called “delayed ACK”)

 Must use timer to insure ACK is sent

 Less network traffic

 May let sender’s pipe fill if not timely!

57

UDP: User Datagram Protocol [RFC 768]

 “no frills,” “bare bones”

Internet transport

protocol

 “best effort” service,

UDP segments may be:

» lost

» delivered out of order to

app

 connectionless:

» no handshaking between

UDP sender, receiver

» each UDP segment

handled independently of

others

Why is there a UDP?

• no connection
establishment (which can
add delay)

• simple: no connection
state at sender, receiver

• small segment header (8
vs. 20 bytes)

• no congestion control:
UDP can blast away as
fast as desired

• No retransmission

• Good for real-time apps
• Require min sending rate

and reduced delays and
tolerate loss

58

UDP: more

 often used for

streaming multimedia

apps

» loss tolerant

» rate sensitive

 other UDP uses

» DNS

» SNMP

 reliable transfer over

UDP: add reliability at

application layer

» application-specific error

recover!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum

Length, in
bytes of UDP

segment,
including

header

59

UDP Uses

 Inward data collection

 Outward data dissemination

 Request-Response

 Real time application

 Examples:

 DNS

 RIP

 SNMP

60

2 Network Congestion Principles

Agenda

1 Session Overview

5 Summary and Conclusion

3 Internet Transport Protocols Review

4 TCP Congestion Control

61

61

 TCP Congestion Control

 TCP Fairness

Subtopics

62

TCP Congestion Control

 end-end control (no network

assistance)

 sender limits transmission:
 LastByteSent-LastByteAcked  CongWin

 Roughly,

 CongWin is dynamic, function

of perceived network

congestion

How does sender perceive

congestion?

• loss event = timeout or 3

duplicate acks

• TCP sender reduces rate
(CongWin) after loss

event

three mechanisms:

– AIMD

– slow start

– conservative after

timeout events

rate =
CongWin

RTT

Bytes/sec

63

TCP AIMD

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion

window

multiplicative decrease: cut

CongWin in half after loss

event

additive increase: increase
CongWin by 1 MSS

every RTT in the absence

of loss events: probing

Long-lived TCP connection

64

TCP Slow Start

• When connection

begins, CongWin = 1

MSS

• Example: MSS = 500

bytes & RTT = 200

msec

• initial rate = 20 kbps

• available bandwidth

may be >> MSS/RTT

• desirable to quickly

ramp up to

respectable rate

• When connection

begins, increase rate

exponentially fast until

first loss event

65

65

TCP Slow Start (more)

 When connection

begins, increase

rate exponentially

until first loss event:

» double CongWin

every RTT

» done by

incrementing

CongWin for every

ACK received

 Summary: initial

rate is slow but

ramps up

exponentially fast

Host A

R
T

T

Host B

time

66

Refinement

 After 3 dup ACKs:

» CongWin is cut in half

» window then grows

linearly

 But after timeout event:

» CongWin instead set to

1 MSS;

» window then grows

exponentially

» to a threshold, then

grows linearly

• 3 dup ACKs indicates
network capable of
delivering some segments
• timeout before 3 dup
ACKs is “more alarming”

Philosophy:

67

Refinement (more)

 Q: When should

the exponential

increase switch

to linear?

 A: When

CongWin gets

to 1/2 of its

value before

timeout.

Implementation:

• Variable Threshold

• At loss event, Threshold is

set to 1/2 of CongWin just

before loss event

68

Summary: TCP Congestion Control

 When CongWin is below Threshold, sender in slow-start

phase, window grows exponentially

 When CongWin is above Threshold, sender is in

congestion-avoidance phase, window grows linearly

 When a triple duplicate ACK occurs, Threshold set to

CongWin/2 and CongWin set to Threshold

 When timeout occurs, Threshold set to CongWin/2 and

CongWin is set to 1 MSS

69

TCP Fairness

Fairness goal: if K TCP sessions share same

bottleneck link of bandwidth R, each should

have average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

70

70

Why is TCP Fair?

Two competing sessions:
» Additive increase gives slope of 1, as throughout increases

» multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

71

Fairness (more)

Fairness and UDP

• Multimedia apps often do

not use TCP

• do not want rate

throttled by congestion

control

• Instead use UDP:

• pump audio/video at

constant rate, tolerate

packet loss

• Research area: TCP

friendly

Fairness and parallel TCP

connections

• nothing prevents app from

opening parallel connections

between 2 hosts.

• Web browsers do this

• Example: link of rate R

supporting 9 connections;

– new app asks for 1 TCP, gets rate

R/10

– new app asks for 11 TCPs, gets

R/2 !

72

2 Network Congestion Principles

Agenda

1 Session Overview

5 Summary and Conclusion

3 Internet Transport Protocols Review

4 TCP Congestion Control

73

Summary

 Session Overview

 Network Congestion Principles

 Internet Transport Protocols Review

 TCP Congestion Control

 Summary & Conclusion

74

Assignments & Readings

 Readings

» Chapter 3 – Sections 3.3, 3.5, 3.6, and 3.7

» RFC 793 – Introduction, Sections 1 and 2

» RFC 2581

 Assignment #8 previously assigned is due on 04/24/14

75

Next Session: IP Multicast – Network Security

