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I. Due   

 

  Tuesday December 22 2015 by midnight (via email) 

  

II. Objectives 

 

1. Implement file transfer application that runs on top of UDP and provides a 

BitTorrent-like protocol to search for peers and download/upload file parts. 

2. The application should be able to simultaneously download different file parts, 

called “chunks”, from different servers. 

3. The application should implement a reliability, flow control, and congestion 

control protocol (similar to TCP) that ensure fair and efficient network utilization. 

  

As always, the NYU and class policy about plagiarism must be followed in this 

project.  If you use ANY code in your project that is not of your own creation, 

then you MUST attribute that code to the author, even if you modify it (ANY 

modification). 

 

III. References 

  

1. Slides and handouts posted on the course Web site (in particular you should refer 

to the slide deck on Network Congestion posted for Session 9) 

2. Textbook chapters as applicable 

3. Sample code provided 

  

IV. Software Required 

 

1. Microsoft Word 

2. Win Zip as necessary 

3. Programming language and associated IDE of your choice 

4. Network programming custom socket library of your choice 

 

V.  Project Specification 

 



1. Background: 

 

This project is loosely based on the BitTorrent Peer-to-Peer (P2P) file 

transfer protocol. BitTorrent takes a large file and breaks it down into 

separate chunks which can be downloaded from different “peers”. Chunks 

are identified by a “hash-value”, which is the result of computing a well-

known hash function over the data in the chunk. When a client wants to 

download a file, it first grabs a “torrent” file, which contains all of the hash 

values for the desired data file. The torrent lets the client know what 

chunks to request from other peers in the network. 

  

 
 

Figure 1: Diagram of bittorrent chunking and torrents 

 

In a traditional file transfer application, the client knows which server has 

the file, and sends a request to that specific server for the given file. In 

many P2P file transfer applications, the actual location of the file is 

unknown, and the file may be present at multiple locations. The client first 

sends a query to discover which of its many peers have the file it wants, 

and then retrieves the file from one or more of these peers. 

 

While P2P services had already become commonplace, BitTorrent 

introduced some new concepts that made it really popular. First, 

BitTorrent splits the file into different “chunks”. Each chunk can be 

downloaded independently of the others, and then the entire collection of 

chunks is reassembled into the file. In this project, you will be using a 

fixed-size chunk of 512 Kbytes. 

 

BitTorrent uses a central “tracker” that tracks which peers have which 

chunks of a file. A client begins a download by first obtaining a “.torrent” 

file, which lists the information about each chunk of the file. A chunk is 

identified by the cryptographic hash of its contents; after a client has 

downloaded a chunk, it must compute the cryptographic hash to determine 

whether it obtained the right chunk or not. 

 

To download a particular chunk, the receiving peer obtains from the 

tracker a list of peers that contain the chunk, and then directly contacts one 



of those peers to begin the download. BitTorrent uses a “rarest-chunk-

first” heuristic where it tries to fetch the rarest chunk first. The peer can 

download/upload four different chunks in parallel. 

 

You can read more about the BitTorrent protocol details from 

http://www.bittorrent.org/beps/bep_0003.html. Bram Cohen, its originator 

also wrote a paper on the design decisions behind BitTorrent. The paper is 

available at http://www.bittorrent.org/bittorrentecon.pdf. 

 

This project departs from real BitTorrent in several ways: 

 

 Instead of implementing a tracker server, your peers will flood the 

network to find which peers have which chunks of a file. Each peer 

will know the identities of every other peer in the network; you do 

not have to implement routing. 

 To simplify set-up and testing, all file data is actually accessed 

from a single “master data file”. Peers are configured with a file to 

tell them what chunks from this file they “own” upon startup.  

 You do not have to implement BitTorrent’s incentive based 

mechanism to encourage good uploaders and discourage bad ones. 

 

However, the project adds one complexity: BitTorrent obtains chunks 

using TCP. Your application will obtain them using UDP, and you will 

have to implement congestion control and reliability. Therefore, you must 

use UDP for control and data transfer. It is a good idea to review 

congestion control concepts, particularly TCP, from both the lecture and 

the textbook.  

 

2. Recommended Taxonomy: 

 

 master-data-file - The input file that contains ALL the data in the 

network. All nodes will have access to this file, but a peer should only 

read the chunks that it “owns”. A peer owns a chunk if the chunk id 

and hash is listed in that peer’s has-chunk-file. 

 

 master-chunk-file - A file that lists the chunk IDs and corresponding 

hashes for the chunks in the master data file. 

 

 peer-list-file - A file containing a list of all the peers in the network. 

For a sample of the peer-list-file, please look at nodes.map in the 

sample code provided. 

 

 has-chunk-file - A per-node file containing list of chunks that a 

particular node has at startup. However, peers will have access to more 

chunks as they download the chunks from other peers in the network. 

http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/bittorrentecon.pdf


 

 get-chunk-file - A file containing the list of chunk ids and hashes a peer 

wants to download. This filename is provided by the user when 

requesting a new download. 

 

 max-downloads - The maximum number of simultaneous connections 

allowed in each direction (i.e., download/upload) 

 

 peer-identity - The identity of the current peer. This should be used by 

the peer to get its hostname and port from the peer-list-file 

 

 debug-level - The level of debug statements that should be printed out. 

For more information, please look at debug.[h,c] in the sample code 

provided. 

 

3. Operation: 

 

The code you write should produce an executable file named “peer”. 

Suggested command line options for the program are as follows: 

 
peer -p <peer-list-file> -c <has-chunk-file> -m <max-

downloads> -i <peer-identity> -f <master-chunk-file> -

d <debug-level> 

 

The peer program listens on standard input for commands from the user. 

The only command is “GET <get-chunk-file> <output filename>”. This 

instruction from the user should cause your program to open the specified 

chunks file and attempt to download all of the chunks listed in it (you can 

assume the file names contain no spaces). When your program finishes 

downloading the specified file, it should print “GOT <get-chunk-file>” on 

a line by itself. You do not have to handle multiple concurrent file requests 

from the user. In fact the test code provided for illustration purpose will 

not send another GET command until the first has completed; you’re 

welcome to do whatever you want internally. The format of different files 

are given in subsequent sections of this document. 

 

To find hosts to download from, the requesting peer sends a “WHOHAS 

<list>” request to all other peers, where <list> is the list of chunk hashes it 

wants to download. The list specifies the SHA-1 hashes of the chunks it 

wants to retrieve. The entire list may be too large to fit into a single UDP 

packet. You should assume the maximum packet size for UDP as 1500 

bytes. The peer must split the list into multiple WHOHAS queries if the 

list is too large for a single packet. Chunk hashes have a fixed length of 20 

bytes. If the file is too large, your client may send out the GET requests 

iteratively, waiting for responses to a GET request’s chunks to be 

downloaded before continuing. For better performance, your client should 



send these requests in parallel. Upon receipt of a WHOHAS query, a peer 

sends back the list of chunks it contains using the “IHAVE <list>” reply. 

The list again contains the list of hashes for chunks it has. Since the 

request was made to fit into one packet, the response is guaranteed to fit 

into a single packet. The requesting peer looks at all IHAVE replies and 

decides which remote peer to fetch each of the chunks from. It then 

downloads each chunk individually using “GET <chunk-hash>” requests. 

Because you are using UDP, you can think of a “GET” request as 

combining the function of an application-layer “GET” request and a the 

connection-setup function of a TCP SYN packet. 

 

 
Table 1: Codes for different packet types 

 

When a peer receives a GET request for a chunk it owns, it will send back 

multiple “DATA” packets to the requesting peer (see format below) until 

the chunk specified in the GET request has been completely transferred. 

These DATA packets are subject to congestion control, as outlined in a 

later section of this document. The peer may not be able to satisfy the GET 

request if it is already serving maximum number of other peers. The peer 

can ignore the request or queue them up or notify the requester about its 

inability to serve the particular request. Sending this notification is 

optional, and uses the DENIED code. Each peer can only have 1 

simultaneous download from any other peer in the network, meaning that 

the IP address and port in the UDP packet will uniquely determine which 

download a DATA packet belongs to. Each peer can however have 

parallel downloads (one each) from other peers. When a peer receives a 

DATA packet it sends back an ACK packet to the sender to notify that it 

successfully received the packet. Receivers should acknowledge all DATA 

packets. 

   

4. Suggested Packet Format: 

 

All the communication between the peers use UDP as the underlying 

protocol.  

 

All packets begin with a common header as follows: 

 
1. Magic Number [2 bytes] 

2. Version Number [1 byte] 



3. Packet Type [1 byte] 

4. Header Length [2 bytes] 

5. Total Packet Length [2 bytes] 

6. Sequence Number [4 bytes] 

7. Acknowledgment Number [4 bytes] 

 

All multi-byte integer fields must be transmitted in network byte order (the 

magic number, the lengths, and the sequence/acknowledgment numbers). 

Also, all integers must be unsigned. The magic number should be 15441, 

and the version number should be 1. Peers should drop packets that do not 

have these values. The “Packet Type” field determines what kind of 

payload the peer should expect. The codes for different packet types are 

given in Table 1. By changing the header length, the peers can provide 

custom optimizations for all the packets (if you choose). Sequence number 

and Acknowledgment number are used for congestion control mechanisms 

similar to TCP as well as reliable transmission. 

 

If you extend the header length, please begin your extended header with a 

two-byte “extension ID” field that can be used to uniquely identify your 

project to ensure that you can interoperate cleanly with other student’s 

clients. Similarly, if your peer receives an extended header and the 

extension ID does not match your project extension field value, just ignore 

the extensions. 

 

The payload for both WHOHAS and IHAVE contain the number of chunk 

hashes (1 byte), 3 bytes of empty padding space to keep the chunk 32-bit 

aligned, and the list of hashes (20 bytes each) in them. The format of the 

packet is shown in Figure 2(b). The payload of GET packet is even more 

simple: it contains only the chunk hash for the chunk the client wants to 

fetch (20 bytes). Figure 2(c) shows an example DATA packet. DATA and 

ACK packets do not have any payload format defined; normally they 

should just contain file data. The sequence number and acknowledgment 

number fields in the header have meaning only in DATA and ACK packets. 

In this project the sequence numbers always start from 1 for a new “GET 

connection”. A receiving peer should send an ACK packet with 

acknowledgment number 1 to acknowledge that is has received the data 

packet with sequence number 1 and so on. Even though there are both a 

sequence number and an acknowledgment number fields in the header, you 

should not combine DATA and ACK packets. Do not use a DATA packet 

to acknowledge a previous packet and do not send data in an ACK packet. 

This means that for any DATA packet the ACK num will be invalid and 

for any ACK packet the SEQ num field will be invalid. Invalid fields still 

take up space in the packet header, but their value should be ignored by the 

peer receiving the packet. 

 



 
 

Figure 2: Packet headers 

 

5. Suggested File Formats: 

 

Chunks File: 

 
File: <path to the file which needs sharing> 

 

Chunks: 

 
id chunk-hash 

..... 

..... 

 

The master-chunks-file has above format. The first line specifies the file 

that needs to be shared among the peers. The peer should only read the 

chunks it is provided with in the peer’s has-chunks-file parameter. All the 

chunks have a fixed size of 512KB. If the file size is not a multiple of 

512KB then it will be padded appropriately. 

 

All lines after “Chunks:” contain chunk ids and the corresponding hash 

value of the chunk. The hash is the SHA-1 hash of the chunk, represented 

as a hexadecimal number (it will not have a starting “0x”). The chunk id is 

a decimal integer, specifying the offset of the chunk in the master data file. 

If the chunk id is i, then the chunk’s content starts at an offset of i × 512k 

bytes into the master data file. 



 

Has Chunk File: 

 

This file contains a list of the ids and hashes of the chunks a particular peer 

has. As in the master chunk file, the ids are in decimal format and hashes 

are in hexadecimal format. For the same chunk, the id of the chunk in the 

has-chunk-file will be the same as the id of that chunk in the master-

chunks-file. 

 
id chunk-hash 

id chunk-hash 

..... 

 

Get Chunk File: 

 

The format of the file is exactly same as that of the has-chunk-file. It 

contains a list of the ids and hashes the peer wishes to download. As in the 

master chunk file, the ids in decimal format and hashes are in hexadecimal 

format. For the same chunk of data, the id in the get-chunk-file might NOT 

be the same as the id of that chunk in the master-chunks-file. Rather, the id 

here refers to the position of the chunk in the file that the user wants to 

save to. 

 
id chunk-hash 

id chunk-hash 

..... 

 

Peer List File: 

 

This file contains the list of all peers in the network. The format of each 

line is: 

 
<id> <peer-address> <peer-port> 

 

The id is a decimal number, peer-address the IP address in dotted decimal 

format, and the port is port integer in decimal. It will be easiest to just run 

all hosts on different localhost ports. 

 

6. 100% Reliability and Sliding Window Design and Implementation 

Suggestions: 

 

One of the requirements of this project is to implement a 100% reliable 

protocol for file transfer (i.e.: DATA packets) between two peers with a 

simple flow-control protocol. Non-Data traffic (i.e., WHOHAS, IHAVE, GET 

packets) does not have to be transmitted reliably or with flow-control. The 

peers should be able to search the network for available chunks and download 

them from the peers that have them. All different parts of the file should be 



collected at the requesting peer and their validity should be ensured before 

considering the chunks as received. You can check the validity of a 

downloaded chunk by computing its SHA-1 hash and comparing it against the 

specified chunk hash. 

 

To start the project, you can use a fixed-size window of 8 packets
1
. The sender 

should not send packets that fall out of the window. Figure 3 below shows the 

sliding windows for both sides. 
 

 

 

Figure 3: Sliding Window 
 

The sender slides the window forward when it gets an ACK for a higher 

packet number. There is a sequence number associated with each packet and 

the following constraints are valid for the sender (hint: your peers will likely 

want to keep state very similar to that shown here): 

 

Sending side: 

 
o LastPacketAcked ≤ LastPacketSent 

o LastPacketSent ≤ LastPacketAvailable 

o LastPacketAvailable − LastPacketAcked ≤ WindowSize 

o packet between LastPacketAcked and LastPacketAvailable must 

be “buffered” – you can either implement this by buffering the packets or 

by being able to regenerate them from the datafile. 

 

When the sender sends a data packet it starts a timer for it. It then waits for a 

fixed amount of time to get the acknowledgment for the packet. Whenever the 

receiver gets a packet it sends an acknowledgment for NextPacketExpected−1. 

That is, upon receiving a packet with sequence number = 8, the reply would be 

“ACK 8”, but only if all packets with sequence numbers less than 8 have  

already been received. These are called cumulative acknowledgements. The 

                                                           
1
 Note that TCP uses a byte-based sliding window, but your project will use a packet-based sliding window 

as it is a bit simpler to do it by packet. Also, unlike TCP, you only have a sender window, meaning that 

window size does not need to be communicated in the packet header. 



sender has two ways to know if the packets it sent did not reach the receiver: 

either a time-out occurred, or the sender received “duplicate ACKs.” 

 

 If the sender sent a packet and did not receive an acknowledgment for it 

before the timer for the packet expired, it resends the packet. 

 If the sender sent a packet and received duplicate acknowledgments, it 

knows that the next expected packet (at least) was lost. To avoid confusion 

from re-ordering, a sender counts a packet lost only after 3 duplicate 

ACKs in a row. 

 

If the requesting client receives an IHAVE from a host, and then it should 

send a GET to that same host, set a timer to retransmit the GET after some 

period of time (less than 5 seconds). You should have reasonable mechanisms 

in your client to recognize when successive timeouts of DATA or GET traffic 

indicates that a host has likely crashed. Your client should then try to 

download the file from another peer (reflooding the WHOHAS is fine). 

 

Your basic functionality will be tested for grading purpose using a network 

topology similar to Figure 4(a). A more complicated topology like Figure 4(b) 

will be used to test for concurrent downloads and robustness to crashes, as 

well as for measuring performance in the competition. It is recommended to 

start your project by first coding-up basic flow control with a completely loss 

free virtual network to simplify development. 
 

7. Congestion Control Design and Implementation Suggestions: 
 

You should implement a TCP-like congestion control algorithm on top of 

UDP for all DATA traffic (you do not need congestion control for WHOHAS, 

IHAVE, and GET packets). TCP uses an end-to-end congestion control 

mechanism. 

 

Broadly speaking, the idea of TCP congestion control is for each source to 

determine how much capacity is available in the network, so it knows how 

many packets it can safely have “in transit” at the same time. Once a given 

source has this many packets in transit, it uses the arrival of an ACK as a 

signal that one of its packets has left the network, and it is therefore safe to 

insert a new packet into the network without adding to the level of congestion. 

By using ACKs to pace the transmission of packets, TCP is said to be “self-

clocking.” The TCP Congestion Control mechanism consists of the algorithms 

of Slow Start, Congestion Avoidance, Fast Retransmit and Fast Recovery. 

You can read more about these mechanisms in the course slides and textbook. 

 

In the previous section, your window size was fixed at 8 packets. The purpose 

of this section is to dynamically determine the ideal window size. When a new 

connection is established with a host on another network, the window is 

initialized to one packet. Each time an ACK is received, the window is 



increased by one packet. This process is called Slow Start. The sender keeps 

increasing the window size until the first loss is detected or until the window 

size reaches the value ssthresh (slow-start threshold), after which it enters 

Congestion Avoidance mode (see below). For a new connection the ssthresh is 

set to a very big value (e.g., 64 packets). If a packet is lost in slow start, the 

sender sets ssthresh to max(currentwindowsize/2, 2), in case 

the client returns to slow start again during the same connection. 

 

Congestion Avoidance slowly increases the congestion window and backs off 

at the first sign of trouble. In this mode when new data is acknowledged by the 

other end, the window size increases, but the increase is slower than the Slow 

Start mode. The increase in window size should be at most one packet each 

round-trip time (regardless how many ACKs are received in that RTT). This is 

in contrast to Slow Start where the window size is incremented for each ACK. 

Recall that when the sender receives 3 duplicate ACK packets, you should 

assume that the packet with sequence number = acknowledgment number + 1 

was lost, even if a time out has not occurred. This process is called Fast 

Retransmit. Similar to Slow Start, in Congestion Avoidance if there is a loss 

in the network (resulting from either a time out, or duplicate acks), ssthresh is 

set to max(windowsize/2, 2). The window size is then set to 1 and the Slow 

Start process starts again. The last mechanism is Fast Recovery. You do not 

need to implement Fast Recovery for the project. You can read up more about 

these mechanisms in the course slides and textbook. 
 

 
 

Figure 4: Test topologies 
 

Your program must generate a simple output file (named problem2-peer.txt) 

showing how your window size varies over time for each chunk download. 

This will help you debug and test your code, and it will also help assess your 

code and grade your project. The output format is simple and will work with 



many (Unix) graphing programs (e.g., gnuplot). Every time a window size 

changes, you should print the ID of this connection (choose something that 

will be unique for the duration of the flow), the time in milliseconds since 

your program began, and the new window size. Each column should be 

separated by a tab. For example: 

 
f1 45 2 

f1 60 3 

f1 78 4 

f2 84 2 

f1 92 5 

f2 97 3 

.. ... ... 

 

You can get a graph input file for a single chunk download using grep. For 

example: 

 
grep f1 problem2-peer.txt > f1.dat  

 

You can then run gnuplot on any Unix machine, which will give you a gnuplot 

prompt. To draw a plot of the file above, use the command: 

 
plot "f1.dat" using 2:3 title ’flow 1’ with lines 

 

For more information about how to use gnuplot, please refer to the gnuplot 

documentation as needed. 
 

8. Simulating Networks with Loss and Congestion 

 

To test your system, you will need more interesting networks that can have 

loss, delay, and many nodes causing congestion. To help you with this, you 

can leverage the simple network simulator called “Spiffy” (provided as part of 

the sample code) which runs completely on your local machine. The simulator 

is implemented by hupsim.pl, which creates a series of links with limited 

bandwidth and queue sized between nodes specified by the file topo.map (this 

allows you to test congestion control). 

 

To send packets on your virtual network, change your sendto() system calls to 

spiffy sendto(). spiffy sendto() tags each packet with the id of the sender, then 

sends it to the port specified by SPIFFY ROUTER environment variable. 

hupsim.pl listens on that port (which needs to be specified when running 

hupsim.pl), and depending on the identity of the sender, it will route the 

packet through the network specified by topo.map and to the correct 

destination. You can hand spiffy sendto() the exact same packet that you 

would hand to the normal UDP sendto() call. All packets should be sent using 

spiffy and spiffy sendto(). 

 

8.1. Hupsim.pl Details:  



 

hupsim.pl has four parameters which you must set as follows: 
 
hupsim.pl -m <topology file> -n <nodes file> -p <listen 

port> -v <verbosity> 

 

<topology file> is the file containing the configuration of the network that 

hupsim.pl will create. An example is given to you as topo.map. The ids in the 

file should match the ids in the <nodes file>. The format is:  

 
src dst bw delay queue-size 

 

“bw” is the bandwidth of the link in bits per second. “delay” is the delay in 

milliseconds. “queue-size” isin packets. Your code is NOT allowed to read 

this file. If you need values for network characteristics like RTT, you must 

infer them from network behavior. 

 

<nodes file> is the file that contains configuration information for all nodes in 

the network. An example is given to you as nodes.map. 

 

<listen port> is the port that hupsim.pl will listen to. Therefore, this port 

should be DIFFERENT than the ports used by the nodes in the network. 

 

<verbosity> specifies how much of the debugging messages you want to see 

from hupsim.pl. This should be an integer from 1-4. A higher value means 

more debugging output. 

 

8.2 Spiffy Example 

 

The sample server.c and client.c files provided as part of the sample code use 

spiffy to pass messages around as a simple example. 

 

To make: 

 
gcc -c spiffy.c -o spiffy.o 

gcc server.c spiffy.o -o server 

gcc client.c spiffy.o -o client 

 

Usage: 

 
usage: ./server <node id> <port> 

usage: ./client <my node id> <my port> <to port> <magic 

number> 

 

Since server and client use spiffy, you must specify the <node id> and 

<port> to match nodes.map. <magic number> is a number we put into the 

packet header and the server will print the magic number of the packet it 

receives. 



 

Example run: 

 

This example assumes you did not modify the nodes.map or topo.map files 

that are included as part of the sample code. 

 
setenv SPIFFY_ROUTER 127.0.0.1:12345 

./hupsim.pl -m topo.map -n nodes.map -p 12345 -v 0 & 

./server 1 48001 & 

./client 2 48002 48001 123 

 

The client will print 

 
Sent MAGIC: 123 

 

and the server will print 

 
MAGIC: 123 

 

9. Sample Code Details: 

 

The sample code provided for this project includes: 

 

 hupsim.pl - This file emulates a network topology using topo.map 

 sha.[ch] - The SHA-1 hash generator 

 input buffer.[ch] - Handle user input 

 debug.[ch] - helpful utilities for debugging output 

 bt parse.[ch] - utilities for parsing command line arguments 

 peer.c - A skeleton peer file. Handles some of the setup and processing 

 nodes.map - provides the list of peers in the network 

 topo.map - the hidden network topology used by hupsim.pl. This 

should be interpreted only by the hupsim.pl, your project code should 

not read this file. You may need to modify this file when using 

hupsim.pl to test the congestion avoidance part of your program. 

 make-chunks - program to create new chunk files given an input file 

that contains chunk-id, hash pairs, useful for creating more larger file 

download scenarios. 

 

You can leverage all of part of the sample code provided to implement your 

project. 

 

10. Example: 

 

The following example run assumes the use of the various files in the sample 

code provided. However you do not have to use any of the sample code and 

the example run below is only provided for illustrative purpose. 



 

Assume that you have two images A.gif and B.gif you want to share. These 

two files are available in the ‘example’ subdirectory of the sample code 

provided for the project. We strongly suggest that you walk through these 

steps as you read them in order to get a better understanding of what each file 

should contain (note that the hash values mentioned in this document are not 

the actual hash values, to improve readability). 

 

First, create two files whose sizes are multiple of 512K, using: 

 
tar cf - A.gif | dd of=/tmp/A.tar bs=512K conv=sync count=2 

tar cf - B.gif | dd of=/tmp/B.tar bs=512K conv=sync count=2 

 

With padding, A.tar and B.tar are exactly 1MB big (ie: 2 chunks long). 

 

Let’s run two nodes, one on port 1111 and one on port 2222 

 

Suppose that the SHA-1 hash of the first 512KB of A.tar is 0xDE and the 

second 512KB is 0xAD. Similarly, for B.tar the 0-512KB chunk hash is 0x15 

and the 512KB-1MB chunk hash is 0x441. 

 

First, do the following: 

 
cat /tmp/A.tar /tmp/B.tar > /tmp/C.tar 

make-chunks /tmp/C.tar > /tmp/C.chunks 

make-chunks /tmp/A.tar > /tmp/A.chunks 

make-chunks /tmp/B.tar > /tmp/B.chunks 

 

This will create the master data file at /tmp/C.tar. The contents of C.chunks 

will be: 

 
0 00000000000000000000000000000000000000de 

1 00000000000000000000000000000000000000ad 

2 0000000000000000000000000000000000000015 

3 0000000000000000000000000000000000000441 

 

Recall that ids are in decimal format, while the hash is in hexadecimal. The 

contents of A.chunks will be: 
 

0 00000000000000000000000000000000000000de 

1 00000000000000000000000000000000000000ad 

 

The contents of B.chunks will be: 
 

0 0000000000000000000000000000000000000015 

1 0000000000000000000000000000000000000441 

 

Next, edit the C.chunks file to add two lines and save this as C.masterchunks: 

 
File: /tmp/C.tar 



 

Chunks: 

 
0 00000000000000000000000000000000000000de 

1 00000000000000000000000000000000000000ad 

2 0000000000000000000000000000000000000015 

3 0000000000000000000000000000000000000441 

 

Next create a peer file called /tmp/nodes.map It should contain 

 
1 127.0.0.1 1111 

2 127.0.0.1 2222 

 

Finally, you need to create files that describe the initial content of each node. 

Let node 1 have all of file A.tar and none of file B.tar. Let node 2 have all of 

file B.tar and none of A.tar. 

 

Create a file /tmp/A.haschunks whose contents are: 

 
0 00000000000000000000000000000000000000de 

1 00000000000000000000000000000000000000ad 

 

Create a file /tmp/B.haschunks whose contents are: 

 
2 0000000000000000000000000000000000000015 

3 0000000000000000000000000000000000000441 

 

Note that the ids in the above two files are obtained from C.masterchunks, 

which in turn refers to the offset in the master data file. 

 

Now, to run node 1, type: 

 
peer -p /tmp/nodes.map -c /tmp/A.haschunks -f 

/tmp/C.masterchunks -m 4 -i 1 

 

and to run node 2, type (possibly from a different terminal): 

 
peer -p /tmp/nodes.map -c /tmp/B.haschunks -f 

/tmp/C.masterchunks -m 4 -i 2 

 

After the peer for node 1 starts, you can type GET /tmp/B.chunks 

/tmp/newB.tar. This command tells your peer to fetch all chunks listed in 

/tmp/B.chunks and save the downloaded data chunks to the file /tmp/newB.tar 

ordered by the id values in /tmp/B.chunks. 

 

Here is an example of what your code should do (note that messages are 

displayed here in plain text, but the actual packet content will be binary): 

Node 1 should send a ‘‘WHOHAS 2 0000...015 0000..00441’’ (for the 2 

chunks that are named 00...15 and 00.441) to all the peers in nodes.map. It 



will get one IHAVE reply from node 2 that has ‘‘IHAVE 2 0000...015 

0000..00441’’. Node 1 should then send a message to Node 2 saying ‘‘GET 

0000...015’’. Node 2 starts sending Data packets as limited by flow/congestion 

control and Node 1. 

 

11. Evaluation: 

 

This project is worth 100 points. You will be graded on both the completeness 

and accuracy of your program, as follows: 

 

 Basic functionality [10 points]: Having basic functionality implemented 

for retrieval via the stop-and-wait method. 

 Search for and reliably retrieve files [30 points]: the peer program should 

be able to search for chunks and request them from the remote peers. We 

will test if the output file is exactly the same as the file peers aresharing. 

Note, in addition to implementing WHOHAS, IHAVE, and GET, this 

section requires reliability to handle packet loss. 

 Basic congestion control [15 points]: The peer should be able to do the 

basic congestion control by implementing the basic “Slow Start” and 

“Congestion Avoidance” functionality for common cases. 

 Support and Utilize Concurrent Transfers [15 points]: The peer should be 

able to send and retrieve content from more than one node simultaneously 

(note: this does not imply threads!). Your peers should simultaneously take 

advantage of all nodes that have useful data, instead of simply 

downloading a chunk from one host at a time. 

 Congestion control corner cases [15 points]: The congestion control 

should be robust. It must handle issues like lost ACKs, multiple losses, out 

of order packets, etc. Additionally, it should have Fast Retransmit. Your 

code will be stress tested and evaluated against tricky corner cases.  

 Robustness: [10 points]: 

1. Peer crashes: Your implementation should be robust to crashing peers, 

and should attempt to download interrupted chunks from other peers. 

2. General robustness: Your peer should be resilient to peers that send 

corrupt data, etc. Note: While robustness is important, do not spend so 

much time worrying about corner cases that you do not complete the main 

functionality! 

 Style [5 points]:  

1. Coding Style: Well-structured, well documented, clean code, with well 

defined interfaces between components. Appropriate use of comments, 

clearly identified variables, constants, function names, etc. 

2. Assignment Layout:  

o Assignment is neatly assembled on 8 1/2 by 11 paper 

o Cover page with your name (last name first followed by a comma 

then first name), username and section number with a signed 

statement of independent effort is included 



o Program and documentation submitted for Assignment #10 are 

satisfactory 

o File name is correct. 

 

Notice that many of the points are for basic file transmission functionality and 

simple congestion control. Make sure these work well before moving to more 

advanced functionality or worrying about corner-cases. 
 

12. What to Submit 

 

a. All of your source code files.  

b. tests.txt/doc - file containing a brief description of your testing methods for 

the transport protocol 

c. replay.test - a file containing bytes that could be sent to a peer 

d. replay.out - a file containing the bytes that the peer would respond with 

e. vulnerabilities.txt/doc – file identifying at least one vulnerability in your 

current implementation 

f. readme.txt: file containing a thorough description of your design and 

implementation. Please note that all code that you do not freshly write for 

this assignment must be clearly documented in this readme.txt file. The 

readme file must also clearly identify the name of the class that contains 

the main() method or program starting point. 

g. Report document that describes your project briefly, explains your design, 

outlines some of the implementation details, and provides as assessment of 

what went well and not so well in your project.  

 

Submissions that are incomplete or will not compile, link, or run according to 

your instructions will be returned to you and you will have to re-submit and 

accept an incomplete in the course and a loss of one half letter grade when you 

resubmit. No resubmitted assignment will be accepted after December 21, 2013. 

 

13. Email your project solution to the Grader and copy the Instructor. 

 

VI. Deliverables  

 

1. Electronic:  

 

Your project submission archive file must be emailed to the grader. The file must 

be created and sent by the deadline. After the deadline, the project is late. The 

email clock is the official clock.  

Your project submission archive file should contain the report file as well as your 

program source code packaged as a .jar file or as an equivalent binary file if you 

are not using Java. The various files mentioned in section 12 b-f should be placed 

in the .jar file in a separate directory called “project documentation” 



For Java users, to create the .jar file containing your Java source code (please do 

not include the class files), change your working directory to the directory where 

your Java files are located and execute the command: 

jar cvf DCN-Fall2013-FinalProject-xxx.jar *.java 

where xxx is YOUR FULL STUDENT ID. 

Include the jar file in your project zip file and send the zip file as an email 

attachment to the grader. 

You may send questions to the class mailing list ONLY. 

2. Written: 

 

Printout of your project report.  

 

The cover page supplied on the next page must be the first page of your project 

report. Please fill in the blank area for each field.  

 

NOTE: 

 

The sequence of the report submission is: 

1. Cover sheet 

2. Assignment Answer Sheet(s) 

 

 

VII. Sample Cover Sheet: 



Name ________________________ Username: ______________ Date: ____________ 

 (last name, first name) 

Section: ___________ 

 

Assignment 10: Final Project 

 

_____ Basic functionality [Max 10 points] 

_____ Search for and reliably retrieve files [Max 30 points] 

_____ Basic congestion control [Max 15 points] 

_____ Support and Utilize Concurrent Transfers [Max 15 points] 

_____ Congestion control corner cases [Max 15 points] 

_____ Robustness: [Max 10 points]: 

_____ Style [Max 5 points] 

 

_____Total [Max 100 points] 

  

Total in points       ___________________ 

 

Professor’s Comments: 

 

 

 

 

 

Affirmation of my Independent Effort: _____________________________ 

       (Sign here) 

 

 


