Programming Languages

Sessions 7 & 8 — Main Theme
Program Structure
and
Object-Oriented Programming

Dr. Jean-Claude Franchitti

- ” -
7 P — -
> vy —
/ /)
Z oA
—
77 L7
L -
TSI y
S
CE I TTTTETITTo ”
TP P
ST
/4//////1111
SIS
T LR Ll ook b

////__/,?‘/

New York University
Computer Science Department
Courant Institute of Mathematical Sciences

7”

VT T 5T T T
, LT LT LD T LT T T 5T LT 5555 7 78

Y25

Adapted from course textbook resources
Programming Language Pragmatics (3" Edition)
Michael L. Scott, Copyright © 2009 Elsevier =

LT U 7

T ///gﬂé—/lll/.czz_/ <

7

-a . 4
Wl oo strvctie

4 Conclusion

What is the course about?

= Course description and syllabus:

» http://lwww.nyu.edu/classes/jcf/CSCI-GA.2110-001

» http://www.cs.nyu.edu/courses/summerl14/CSCI-GA.2110-
001/index.html

= Textbook:

uuuuuuuuuuuu

w5 | » Programming Language Pragmatics (3" Edition)

il Michael L. Scott

Morgan Kaufmann

ISBN-10: 0-12374-514-4, ISBN-13: 978-0-12374-514-4, (04/06/09)

= Additional References:

» Osinski, Lecture notes, Summer 2010
» Grimm, Lecture notes, Spring 2010

» Gottlieb, Lecture notes, Fall 2009

» Barrett, Lecture notes, Fall 2008

http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html

Session Agenda

= Session Overview
= Program Structure
= QObject-Oriented Programming

= Conclusion

Icons / Metaphors

Session 6 Review

= Data Types
» Strong vs. Weak Typing
» Static vs. Dynamic Typing
= Type Systems
» Type Declarations
= Type Checking
» Type Equivalence
» Type Inference
» Subtypes and Derived Types

» Scalar and Composite Types
» Records, Variant Records, Arrays, Strings, Sets

= Pointers and References
» Pointers and Recursive Types

= Function Types
* Files and Input / Output
= Conclusions

[l Session oversien T
- Wm0
(3] oviectoriented programming

4 Conclusion

Program Structure

= Key Concepts
» Modules
» Packages
» Interfaces

» Abstract types and information hiding

= Review Session 2
» Textbook Sections 3.3.4, 3.3.5, 3.7

Software Complexity

= Tony Hoare:

» here are two ways of constructing a software design: one way Is
to make it so simple that there are obviously no deficiencies, and
the other is to make it so complicated that there are no obvious
deficiencies.

» Edsger Dijkstra:

» Computing is the only profession in which a single mind is
obliged to span the distance from a bit to a few hundred
megabytes, a ratio of 1 to 10°, or nine orders of magnitude.
Compared to that number of semantic levels, the average
mathematical theory is almost flat. By evoking the need for deep
conceptual hierarchies, the automatic computer confronts us
with a radically new intellectual challenge that has no precedent
In our history.

= Steve McConnell:

» Software’s Primary Technical Imperative has to be managing
complexity.

Dealing with Complexity

* Problem Decomposition: Minimize the amount of
essential complexity that has to be dealt with at
any one time. In most cases, this is the top

priority
» Information Hiding: Encapsulate complexity so

that it is not accessible outside of a small part of
the program

» Additional benefits of information hiding:
 Reduces risk of name conflicts

« Safeguards integrity of data
* Helps to compartmentalize run-time errors

Modules

= Programs are built out of components

= Each component:

» has a public interface that defines entities exported by
the component

» may depend on the entities defined in the interface of

another component (weak external coupling)

» may include other (private) entities that are not
exported

» should define a set of logically related entities (strong
iInternal coupling)

» “Strong (internal) cohesion — Low (external) coupling’
= We call these components modules

]

Modules - Definition

» Different languages use different terms

» different languages have different semantics for this
construct (sometimes very different)

» a module is somewhat like a record, but with an
Important distinction:

e record => consists of a set of names called fields, which refer
to values in the record

* module => consists of a set of names, which can refer to
values, types, routines, other language-specific entities, and
possibly other modules

= Note that the similarity is between a record and
a module, not a record type and a module

Language Constructs for Modularity

" |ssues:
» public interface
» private implementation
» dependencies between modules
» naming conventions of imported entities
» relationship between modules and files

= Language Choices

» Ada : package declaration and body, with and use clauses,
renamings

C : header files, #include directives

C++ : header files, #include directives, namespaces, using
declarations/directives, namespace alias definitions

Java : packages, import statements
ML : signature, structure and functor definitions

Ada Packages

package Queues is
Size: constant Integer := 1000;

type Queue is private; -- informatiion hiding

procedure Enqueue (Q: in out Queue, Elem: Integer);
procedure Dequeue (Q: in out Queue; Elem: out Integer};
function Empty (Q: Queue) return Boolean;

function Full (Q: Queue) return Boolean;

function Slack (Q: Queue) return Integer;

-- overloaded operator "=":
function "=" (Q1, Q2: Queune) return Boolean;
private

-- concern of timplementation, not of package client
end Queunes;

14

Private Parts and Information Hiding

package [(ueues is
-- wistble declarations
private
type Storage is
array (Integer range <>) of Integer;
type Queue is record

Front: Integer := 0; -- next elem fto remove

Back: Integer := 0; -- next available slot
Contents: Storage (0 .. Size-1); -- actual contents
Num: Integer := 0;

end record:
end Queues;

15

Implementation of Queues

package body Queues is
procedure Enqueue (: in out Queue;
Elem: Integer) is
begin
if Full(Q) then
-- need to signal error: raise exception

else
Q.Contents(Q.Back) := Elem;
end if;
Q.Num := Q.Num + 1;
Q.Back := (Q.Back + 1) mod Size:

end Enqueue;

16

I
0

Q =
g
\eg ‘:/?/}’
4 9 Y

Predicates on Queues

=36

function Empty (Q: Queue) return Boolean is

begin
return Q.Num = 0O; -— ¢lient cannot access
S Num directly
end Empty,;

function Full (Q: Queue) return Boolean is
begin

return @Q.Num = Size;
end Full;

function Slack (Q: Queue) return Integer is
begin

return Size - . Num;
end Slack;

17

Operator Overloading

function "=" (Q1, Q2 : Queue) return Boolean is
begin
if Q1.Num /= Q2.Num then
return False;
else
for J in 1 .. Q1.Num loop
-- check corresponding elements
if Q1.Contents ((Q1.Front + J - 1) mod Size) /=
Q2.Contents ((Q2.Front + J - 1) mod Size)

then
return False;
end 1if;
end loop;
return True; -- all elemenis are equal
end if;
end "="; -- operator "/=" implicitly defined

-- as negation of "="

18

Client Can Only Use Visible Interface

with Queunes; use [Queunes; with Text_I0;

procedure Test is

1, Q2: Queune; -- local objects of a private Ltype
Val : Integer;
begin
Enqueue (Q1, 200); -- wvisible operation
for J in 1 .. 25 loop

Enqueue (Q1, J);
Enqueue (Q2, J);

end loop;

Degeue(Q1l, Val); -- wvisible operation

if Q1 /= Q2 then
Text_I0.Put_Line("lousyyimplementation");

end if;

end Test;

Notes: The “use” keyword specifies that a function name which cannot be resolved locally

should be searched for in this library. “with” is approximately equal to “#include”: in the above example,
it means that you want to work with the functions available in the “Ada.Text_10” package. The rest is
pretty straightforward: you want to put out the text “lousy implementation”, and the Put_Line function
you are interested in is the one in Ada.Text_|O.

19

Implementation

» package body holds bodies of
subprograms that implement interface

= package may not require a body:

package Days 1is
type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sumn);

subtype Weekday is Day range Mom .. Fri;

Tomorrow: constant array (Day) of Day
= (Tue, Wed, Thu, Fri, Sat, Sun, Mon);

Next_Work_Day: constant array (Weekday) of Weekday
:= (Tue, Wed, Thu, Fri, Mon);
end Days,;

20

Syntactic Sugar: Use and Renames

* Visible entities can be denoted with an expanded name:

with Text IO ;

Text IO . Put Line (" hello ");
= Use clause makes name of entity directly usable:

with Text IO ; use Text IO ;

Put Line (" hello ");

= Renames clause makes name of entity more
manageable:

with Text IO ;

package T renames Text IO ;

T. Put Line (" hello ");

21

Sugar Can Be Indispensable

120
.5 Ky
< 3",\0" .?j]u(
Y

with Queues ;
procedure Test 1s

01, Q2: Queues.Queue ;

begin
1f Q1 = Q2 then ...
—-— error : "=" 1s not directly visible
-— must write instead : Queues ."="(Q01 , Q0Z2)

Two solutions:
= import all entities:
» use Queues ;

" Import operators only:
» use type Queues.Queue ;

22

C++ Namespaces

= |[ate addition to the language

" an entity requires one or more declarations and a single
definition

= A namespace declaration can contain both, but
definitions may also be given separately

// in .h file
namespace util {
int £ (int); /#* declaration of f */

}

// in .cpp file
namespace util {
int £ (int i) {
// definition provides body of function

23

Dependencies Between Modules in C++

* Files have semantic significance: #include
directives means textual substitution of one file
In another

= Convention Is to use header files for shared
Interfaces

#include <iostream> // import declarations

int main () {
std::cout << "C++yisgyreallyydifferent”
<< std::endl;
return 0;

}

24

Header Files Are Visible Interfaces <%

Do

=
‘:/?/}’
2L

26

L

namespace stack { // in file stack.h
void push (char);
char pop ();

¥

#include "stack.h" // tmport into client file

void £ () {
stack::push(’c’);
if (stack::pop() != ’c?) error("impossible");

),

25

Q >
£
e g

~':"{&) 2{]&(

Namespace Definitions

#include "stack.h" // import declaratiions

namespace stack { // the definition

const unsigned int MaxSize = 200;
char v[MaxSize]:
unsigned int numElems = 0;

void push (char c) {
if (numElems >= MaxSize)
throw std::out_of_range("stackyoverflow");

v [numElems++] = c;

}

char pop () {
if (numElems == 0)
throw std::out_of_range("stack,underflow");
return v[--numElems];

}

26

P30

L
R
a4

Syntactic Sugar Using Declarations

==

namespace queue { // works on single queue
void enqueue (int);
int dequeue ();

¥

#include "queue.h" // in client file
using queue::dequeue; // selective: a single entity

void £ () {
queue ::enqueue (10); // prefixz needed for enqueue
gqueue :: enqueue (-999);
if (dequeue() !'= 10) // but not for dequeue
error ("buggy,implementation");

27

Wholesale Import: The Using Directive

Do

'y
=
“ 5
e
2 S

b

#include "queue.h" // in clieni file
using namespace queue; // import everything

void £ () {
enqueue (10); // prefiz not needed
enqueue (-999) ;
if (dequeue() != 10) // for anything
error ("buggyyimplementation");

28

Shortening Names

= Sometimes, we want to qualify names, but
with a shorter name.

" In Ada:

package PN renames A.Very Long.Package Name;
" |n C++:

namespace pn = a::very long::package name;

= We can now use PN as the qualifier
Instead of the long name.

29

Visibility: Koenig Lookup

= When an unqualified name is used as the postfix-
expression in a function call (expr.call), other
namespaces not considered during the usual unqualified

look up (basic.lookup.unqual) may be searched; this
search depends on the types of the arguments.

For each argument type T in the function call, there is a

set of zero or more associated namespaces to be
considered

» The set of namespaces is determined entirely by the types of the

function arguments. typedef names used to specify the types do
not contribute to this set

Koenig Lookup Details

* The set of namespaces are determined in the following
way:

»

If T is a fundamental type, its associated set of namespaces is
empty.

If T is a class type, its associated namespaces are the
namespaces in which the class and its direct and indirect base
classes are defined.

If T is a union or enumeration type, its associated namespace is
the namespace in which it is defined.

If T is a pointer to U, a reference to U, or an array of U, its
associated namespaces are the namespaces associated with U.

If T is a pointer to function type, its associated namespaces are
the namespaces associated with the function parameter types
and the namespaces associated with the return type. [recursive]

Koenig Lookup

Example

namespace NS

{

class A {};
void £(A) {}

int main()

{
NS::A a;
£f(a): //calls NS::f

Example

#include<iostreams

int main()
{
// Where does operator<<() come from?

std::cout << "Hello, World" << std::endl;
return 0;

32

Linking

An external declaration for a variable indicates
that the entity is defined elsewhere
extern int x; // will be found later

A function declaration indicates that the body is
defined elsewhere

Multiple declarations may denote the same
entity

extern int x; // in some other file
An entity can only be defined once

Missing/multiple definitions cannot be detected
by the compiler: link-time errors

33

Include Directives = Multiple Declarations

#include "queue.h" // as 1f declaration were
// terxtually present

void £ () { ... }

#include "queue.h" // second declaration in
// different client

void g () { ... }

= Definitions are legal if textually identical (but
compiler can’t check!)

» Headers are safer than cut-and-paste, but not as
good as a proper module system

34

Modules in Java

Package structure parallels file system
A package corresponds to a directory
= A class is compiled into a separate object file

Each class declares the package in which it appears
(open structure)

package polynomials;
class poly {

/7 in file .../alg/polynomials/poly. java
L

package polynomials;
class iterator A

/7 in file .../alg/polynomials/iterator. java
L

Default: anonymous package in current directory

35

Dependencies Between Classes

= Dependencies indicated with import statements:

import java.awt.Rectangle; // declared in java.awt

import java.awt.*; // import all classes
// in package

= No syntactic sugar across packages: use
expanded names

= None needed in same package: all classes in
package are directly visible to each other

36

Modules in ML

= There are three entities:
» sighature : an interface
» structure : an implementation
» functor : a parameterized structure

= A structure implements a signature if it
defines everything mentioned in the
signhature (in the correct way)

37

351&*(

Q = ©
5 g

|\~ 3 :/:1/)

> o

<

<!
O

—

ML Signature

= An ML signature specifies an interface for
a module

signature STACKS =

sig
type stack
exception Underflow
val empty : stack
val push : char #* stack -> stack
val pop : stack -> char # stack
val isEmpty : stack -> bool

end

38

ML Structure

Q [*]
e '3

AL o :/?/)

& Wy »

~‘9-<:C(.?-:;u(

= A structure provides an implementation

satructure Stacks : STACKS =
struct

end

type stack = char 1list
exception Underflow
val empty = []

val push = op::

fun pop (c::cs8) = (c, cs)

| pop [= raise Underflow
fun isEmpty [] = true

| isEmpty _ = false

39

Comparison

Ada C4+ Java ML
used to avoid name clashes v v v

access control v weak v
is closed v X X v

= Relation between interface and

Implementation:

» Ada :
* one package (interface) , one package body

» ML :

 One signature can be implemented by many
structures

 one structure can implement many signatures

-

4 Conclusion

41

Object-Oriented Data Types and Representation

= Key Concepts
» Objects
» Classes

= Review Session 6

» Textbook Section 7.7

What is OOP ? (Part |)

* The object idea:

» bundling of data (data members) and operations
(methods) on that data

» restricting access to the data

= An object contains:

» data members : arranged as a set of named fields

» methods : routines which take the object they are
associated with as an argument (known as member
functions in C++)

» constructors : routines which create a new object
= A class is a construct which defines the data,

methods and constructors associated with all of
Its instances (objects)

What is OOP ? (Part Il)

= The inheritance and dynamic binding ideas:

» classes can be extended (inheritance):
* by adding new fields
* by adding new methods
by overriding existing methods (changing behavior)
If class B extends class A, we say that B is a subclass

or derived class of A, and A is a superclass or base
class of B

» dynamic binding : wherever an instance of a class is
required, we can also use an instance of any of its
subclasses; when we call one of its methods, the
overridden versions are used

» There should be an is-a relationship between a
derived class and its base class

Styles of OOLs

* |[n class-based OOLs, each object Is an
Instance of a class (Java, C++, C#, Ada95,
Smalltalk, OCaml, etc.)

* |n prototype-based OOLS, each objectis a

clone of another object, possibly with
modifications and/or additions (Self,
Javascript)

Other Common OOP Features

= Multiple inheritance
» C++
» Java (of interfaces only)

» problem: how to handle diamond shaped
iInheritance hierarchy

» Classes often provide package-like
capabillities:
» Vvisibility control

» ability to define types and classes in addition
to data fields and methods

Object-Oriented Programming

= Control or PROCESS abstraction Is a very
old idea (subroutines!), though few
languages provide it in a truly general form
(Scheme comes close)

» Data abstraction iIs somewhat newer,
though its roots can be found in Simula67

» An Abstract Data Type Is one that is defined
In terms of the operations that it supports (i.e.,
that can be performed upon it) rather than in
terms of its structure or implementation

Object-Oriented Programming

= Why abstractions?
» easler to think about - hide what doesn't matter

» protection - prevent access to things you
shouldn't see

» plug compatibility

 replacement of pieces, often without recompilation,
definitely without rewriting libraries

« division of labor in software projects

Object-Oriented Programming

= \We talked about data abstraction some
back in the session on haming and scoping

» Recall that we traced the historical
development of abstraction mechanisms

» Static set of var
» Locals

» Statics

» Modules

» Module types

» Objects

Basic

Fortran

Fortran, Algol 60, C
Modula-2, Ada 83
Euclid

Smalltalk, C++, Eiffel, Java
Oberon, Modula-3, Ada 95

Object-Oriented Programming

= Statics allow a subroutine to retain values
from one Invocation to the next, while

hiding the name In-
» Modules allow a co

oetween

lection of subroutines

to share some statics, still with hiding

» If you want to build an abstract data type,
though, you have to make the module a
manager

Object-Oriented Programming

= Module types allow the module to be the
abstract data type - you can declare
a bunch of them

» This IS generally more intuitive

* [t avoids explicit object parameters to many
operations

« One minor drawback: If you have an operation
that needs to look at the innards of two different
types, you'd define both types in the same
manager module in Modula-2

* In C++ you need to make one of the classes (or
some of its members) "friends" of the other class

Object-Oriented Programming

= Objects add inheritance and dynamic
method binding

= Simula 67 introduced these, but didn't
have data hiding

* The 3 key factors in OO programming
» Encapsulation (data hiding)
» Inheritance
» Dynamic method binding

Encapsulation and Inheritance

= Visibility rules
» Public and Private parts of an object
declaration/definition

» 2 reasons to put things in the declaration
e SO programmers can get at them

* s0 the compiler can understand them

» At the very least the compiler needs to know
the size of an object, even though the
programmer isn't allowed to get at many or
most of the fields (members) that contribute
to that size

« That's why private fields have to be in declaration

Encapsulation and Inheritance - Classes (C++)

= C++ distinguishes among
» public class members
 accessible to anybody

» protected class members
» accessible to members of this or derived classes

» private
 accessible just to members of this class

= A C++ structure (struct) is simply a class
whose members are public by default

= C++ base classes can also be public,
private, or protected

Encapsulations and Inheritance — Classes (C++) o]

= Example:
class circle : public shape {
anybody can convert (assign) a circle* into a shape*

class circle : protected shape {
only members and friends of circle or its derived classes
can convert (assign) a circle* into a shape*

class circle : private shape {
only members and friends of circle can convert (assign)
a circle* into a shape*

55

Encapsulation and Inheritance - Classes (C++)

» Disadvantage of the module-as-manager
approach: include explicit create/initialize &
destroy/finalize routines for every abstraction

» Even w/o dynamic allocation inside module, users
don't have necessary knowledge to do initialization

» Ada 83 is a little better here: you can provide

Initializers for pieces of private types, but this is NOT a
general approach

» Object-oriented languages often give you constructors

and maybe destructors

» Destructors are important primarily in the absence of garbage
collection

Encapsulations and Inheritance — Classes (C++)

= A few C++ features you may not have
learned:

» classes as members
foo::foo (args(0) : memberl

(argsl), member2?2 (args2) {

argsl and args2 need to be specified in terms
of argsO

* The reason these things end up in the header of
foo Is that they get executed before foo's
constructor does, and the designers consider it
good style to make that clear in the header of
foo::foo

57

Encapsulations and Inheritance — Classes (C++)

= A few C++ features (2).

» Initialization v. assignment
foo::operator=(&foo) v.
foo::foo (&f00)
foo b;
foo £ = b;
/[calls constructor
foo b, £;
/[calls no-argument constructor
f = b;
/[calls operator=

58

Encapsulations and Inheritance — Classes (C++)

= A few C++ features (3):

» virtual functions (see the next dynamic
method binding section for details):
Key guestion: if child is derived from parent
and | have a parent* p (or a parent& p) that
points (refers) to an object that's actually a
child, what member function do | get when |
call p->f (p.f)?
 Normally | get p's f, because p's type is parent*.
« But if f is a virtual function, | get c's f.

59

Encapsulations and Inheritance — Classes (C++)

= A few C++ features (4).

» virtual functions (continued)

- If a virtual function has a "0" body in the parent class,
then the function is said to be a pure virtual function and
the parent class is said to be abstract

* You can't declare objects of an abstract class; you have
to declare them to be of derived classes

« Moreover any derived class must provide a body for the
pure virtual function(s)

« multiple inheritance in Standard C++ (see next)
» friends

* functions
» classes

60

Initialization and Finalization

= Texbook’s section 3.2 defines the lifetime of

an object to be the interval during which it
occupies space and can hold data

» Most object-oriented languages provide some sort
of special mechanism to initialize an object
automatically at the beginning of its lifetime

 When written in the form of a subroutine, this mechanism
IS known as a constructor

» A constructor does not allocate space

» A few languages provide a similar destructor
mechanism to finalize an object automatically at
the end of its lifetime

Initialization and Finalization

|ISsues:
*= choosing a constructor

= references and values

» |If variables are references, then every object must be created
explicitly - appropriate constructor is called

» |f variables are values, then object creation can happen

iImplicitly as a result of elaboration
= execution order

» When an object of a derived class is created in C++, the
constructors for any base classes will be executed before the
constructor for the derived class

= garbage collection

Dynamic Method Binding

= Virtual functions in C++ are an example of
dynamic method binding

» you don't know at compile time what type the object
referred to by a variable will be at run time

= Simula also had virtual functions (all of

which are abstract)

= |[n Smalltalk, Eiffel, Modula-3, and Java all
member functions are virtual

Dynamic Method Binding

= Note that inheritance does not obviate the need
for generics

» You might think: hey, | can define an abstract list
class and then derive int_list, person_list, etc. from it,
but the problem is you won't
be able to talk about the elements because you won't

know thelir types
» That's what generics are for: abstracting over types

= Generics were added to Java in 2004 and are
Implemented as (checked) dynamic casts

» http://www.jelovic.com/articles/why java is_slow.htm

Dynamic Method Binding — More on Generics ey

Il Removes 4-letter words from c. Elements must be strings

/I (using inconvenient/unsafe casting to the type of element that is stored
in the collection)

static void expurgate(Collection c) {
for (Iterator i = c.iterator(); i.hasNext();)
if (((String) 1.next()).length() == 4)
l.remove();

}

/| Removes the 4-letter words from ¢

/Il (using clear and safe code based on generics that eliminates an unsafe
cast and a number of extra parentheses)

static void expurgate(Collection<String> c) {
for (Iterator<String> i = c.iterator(); i.hasNext();) if (i.next().length() == 4)
l.remove();

}

Note: “Collection<String> c” above reads as “Collection of String ¢’

65

Dynamic Method Binding

= Data members of classes are

Implemented just like structures (records)

» With (single) inheritance, derived classe
have extra fields at the end

» A pointer to the parent and a pointer to t
child contain the same address - the chi

S

ne
d just

knows that the struct goes farther than t
parent does

ne

Dynamic Method Binding

= Non-virtual functions require no space at run
time; the compiler just calls the appropriate
version, based on type of variable

» Member functions are passed an extra, hidden, initial
parameter: this (called current in Eiffel and self in
Smalltalk)

= C++ philosophy is to avoid run-time overhead
whenever possible(Sort of the legacy from C)

» Languages like Smalltalk have (much) more run-time
support

Dynamic Method Binding

= Virtual functions are the only thing that requires
any trickiness (see next slide)

» They are implemented by creating a dispatch table
(vtable) for the class and putting a pointer to that table
In the data of the object

» Objects of a derived class have a different dispatch

table

* In the dispatch table, functions defined in the parent come
first, though some of the pointers point to overridden versions

* You could put the whole dispatch table in the object itself

— That would save a little time, but potentially waste a LOT of
space

7 =14

O . e
(Ce, S
) = <Q

Dynamic Method Binding

e

class foo A
int a;
double b;
char c; a

F foo's vtable
)'q

 J

virtual void k(... b
virtual int 1(...
virtual void m():
virtual double n(...

1
public: m —f— codeform
n

} F;

Figure 9.3 Implementation of virtual methods. The representation of object F begins with
the address of the vtable for class foo. (All objects of this class will point to the same
vtable.) The vtable itself consists of an array of addresses, one for the code of each
virtual method of the class. The remainder of F consists of the representations of its
fields.

69

Dynamic Method Binding

class bar : public foo { B bar’s vtable
int w; » ke
public: a 1
void m(); //override S code for bar’s m
virtual double s(... b .
virtual char #t(n —t+—»code for foo'sn
c s —f—» codeforbar’s =
} B: W t

Figure 9.4 Implementation of single inheritance. As in Figure 9.3, the representation of
object B begins with the address of its class’s vtable. The first four entries in the table
represent the same members as they do for foo, except that one —m— has been overridden
and now contains the address of the code for a different subroutine. Additional fields of bar
follow the ones inherited from foo in the representation of B; additional virtual methods follow
the ones inherited from foo in the vtable of class.

70

Dynamic Method Binding

= Note that If you can query the type of an
object, then you need to be able to get
from the object to run-time type Info

» The standard implementation technique is to
put a pointer to the type info at the beginning

of the vtable

» Of course you only have a vtable in C++ if
your class has virtual functions
« That's why you can't do a dynamic_cast on a

pointer whose static type doesn't have virtual
functions

Multiple Inheritance X

= |n C++, you can say
class professor : public teacher,

public researcher {

}
Here you get all the members of teacher and all

the members of researcher

» If there's anything that's in both (same name and
argument types), then calls to the member are
ambiguous; the compiler disallows them

72

O , Phrma. ©
L~ L 0 /)
& 5 5

Multiple Inheritance

V'
i
=320 Sso

* You can of course create your own member in
the merged class
professor::print () {

teacher::print (),
researcher::print ();

}
Or you could get both:
professor::tprint () {
teacher::print (),

}

professor::rprint ()
researcher: :print ();

}

73

Multiple Inheritance

* Virtual base classes: In the usual case if
you Inherit from two classes that are both
derived from some other class B, your

Implementation includes two copies of B's
data members

= That's often fine, but other times you want
a single copy of B

» For that you make B a virtual base class

Object-Oriented Programming

= Anthropomorphism is central to the OO
paradigm - you think in terms of real-world
objects that interact to get things done

= Many OO languages are strictly sequential, but
the model adapts well to parallelism as well

= Strict interpretation of the term

» uniform data abstraction - everything is an object
» Inheritance

» dynamic method binding

Object-Oriented Programming

= |ots of conflicting uses of the term out
there object-oriented style available In
many languages
» data abstraction crucial

» Inheritance required by most users of the term
O-0

» centrality of dynamic method binding a matter
of dispute

Object-Oriented Programming

= SMALLTALK is the canonical object-oriented
language
» |t has all three of the characteristics listed above

» It's based on the thesis work of Alan Kay at Utah in
the late 1960°s

» It went through 5 generations at Xerox PARC, where
Kay worked after graduating

» Smalltalk-80 Is the current standard

Object-Oriented Programming

= Other languages are described in what
follows:

= Modula-3
» single inheritance

» all methods virtual
» NO constructors or destructors

Object-Oriented Programming

= Ada 95

» tagged types
» single inheritance
» N0 constructors or destructors

» class-wide parameters:
* methods static by default

« can define a parameter or pointer that grabs the object-
specific version of all methods

— base class doesn't have to decide what will be virtual
» notion of child packages as an alternative to friends

Object-Oriented Programming - Java

= Java
» Interfaces, mix-in inheritance

» alternative to multiple inheritance

« basically you inherit from one real parent and one
or more interfaces, each of which contains only

virtual functions and no data

* this avoids the contiguity issues in multiple
Inheritance above, allowing a very simple
Implementation

>» all methods virtual

Object-Oriented Programming - Java

An imperative language (like C++, Ada, C, Pascal)
IS Interpreted (like Scheme, APL)

IS garbage-collected (like Scheme, ML, Smalltalk, Eiffel,
Modula-3)

can be compiled

IS object-oriented (like Eiffel, more so than C++, Ada)
a successful hybrid for a specific-application domain

a reasonable general-purpose language for non-real-
time applications

Work in progress: language continues to evolve
C# is latest, incompatible variant

Object-Oriented Programming - Java

* QOriginal Design Goals (1993 White Paper):
» simple
» object-oriented (inheritance, polymorphism)
» distributed
» Interpreted
» multi-threaded
» robust
» secure
» architecture-neutral

= Obviously, “simple” was dropped

Object-Oriented Programming - Java

= Portability:
» Critical concern: write once — run everywhere

» Conseguences:
 portable interpreter

« definition through virtual machine: the JVM
* run-time representation has high-level semantics
 supports dynamic loading

* high-level representation can be queried at run-
time to provide reflection

« dynamic features make it hard to fully compile,
safety requires numerous run-time checks

Object-Oriented Programming - Java

= Contrast with Conventional Systems Languages
» Conventional imperative languages are fully compiled:

run-time structure is machine language
minimal run-time type information
language provides low-level tools for accessing storage

safety requires fewer run-time checks because compiler (least for
Ada and somewhat for C++) can verify correctness statically

languages require static binding, run-time image cannot be easily
modified

different compilers may create portability problems

» Notable omissions:

no operator overloading (syntactic annoyance)
no separation of specification and body

no enumerations until latest language release
no generic facilities until latest language release

Object-Oriented Programming - Java

= Statements:
» Most statements are like their C counterparts:
« switch (including C’s falling through behavior)
* for
o if
 while
e do ... while

* break and continue

— Java also has labeled versions of break and continue,
like Ada.

* return
 Java has no goto!

Object-Oriented Programming — The Simplest Java Program

class HelloWorld {
public static void main (Stringl[] args) A
System.out.println("Hello ,, world");

¥

86

Object-Oriented Programming — Classes in Java

= Encapsulation of type and related operations

class Point {
private double x, y; // private data members

public Point (double x, double y) { // constructor
this.x = x; this.y = y;
e

public void move (double dx, double dy) {
Xx += dx; y += dy;
}

public double distance (Point p) {

double =xdist = x - p.x, ydist =y - p.y;

return Math.sqrt(xdist * =xdist + ydist * ydist);
}

public wveoid display () { ... }

87

Object-Oriented Programming — Extending a Class in Java

class ColoredPoint extends Point {
private Color color;

public ColoredPoint (double x, double y,
Coleor c) A
super(x, y);
color = c¢;

}

public ColoredPoint (Coler c) {
super (0.0, 0.0);
color = ¢

}
public Celor getColor () { returm color; }

public void display () { ... } // nmow in color!

88

P30

L
R
a4

Object-Oriented Programming — Dynamic Dispatching in Java

==

Point pl = new Point (2.0, 3.0);
ColoredPoint cpl = new ColoredPoint(2.0, 3.0, Blue);

Point p2 = pi; // OK
Point p3 = cpl; // OK

ColoredPoint cp2 = cpl; // OK
ColoredPoint cp3 = pil; // Error

cpl.move(1.0, 1.0); // cpl and p3 affected
pl.display (); // Point’s display

cpl.display(); // ColoredPoint’s display
p3.display (); // ColoredPoint’s display

89

Object-Oriented Programming - Java Interfaces

= A Java interface allows otherwise unrelated
classes to satisfy a given requirement
* This is orthogonal to inheritance.

» Inheritance: an A is-a B (has the attributes of a B,
and possibly others)

» Interface: an A can-do X (and possibly other
unrelated actions)

» Interfaces are a better model for multiple inheritance

» See textbook section 9.4.3 for implementation
details

Object-Oriented Programming — Java Interface Comparable

public interface Comparable A
public int CompareTo (Object x) throws
ClassCastException;
// returns -1 if this < z,
S/ 0 if this = =z,
s +1 if this > =
};

// Implementation needs to cast = to the proper class.
S/ Any class that may appear in a container should

// implement Comparable, so the container can support
// sorting.

91

Object-Oriented Programming — C++

» |s C++ object-oriented?
» Uses all the right buzzwords

» Has (multiple) inheritance and generics
(templates)

» Allows creation of user-defined classes that
ook just like built-in ones

Has all the low-level C stuff to escape the
paradigm

Has friends
Has static type checking

£

Q S e ©
(Ce ‘v?/)
& 3 »

rl
O

o ¥
o

Object-Oriented Programming — Classes in C++

= The same classes, translated into C++;

class Point {
double m_x, m_y; // private data members

public:

Point (double x, double y) // constructor
: m_x(x), m_y(y) { }

virtual ~Point () { }

virtual void move (double dx, double dy) {
m_xX += dx; m_y += dy;

e

virtual double distance (const Point& p) {
double xzdist = m_x - p.m_x, ydist = m_y - p.m_y;

return sqrt(xdist * xdist + ydist * ydist);
}

virtual veid display () { ... }

93

Object-Oriented Programming — Extending a Class in C++

class ColoredPeint : public Point {
Color color;

public:
ColoredPoint (double x, double Y,

Color c¢) : Poimnt(x, y), color(c) {
color = ¢;

}
ColoredPoint (Color c¢) : Point{(0.0, 0.0), color(ec) { }

virtual Color getColor () { return color; }

virtual veid display () { ... } // now in color!
s

94

Object-Oriented Programming — Dynamic Dispatching in C++

Point *pl = new Point (2.0, 3.0);
ColoredPoint #*cpl = new ColoredPoint(2.0, 3.0, Blue);

Point =#*p2 = pi; // OK
Point #*p3 = cp1l; // OK

ColoredPoint *cp2 = cpl; // OK
ColoredPoint =*cp3 pl; // Error

cpl->move (1.0, 1.0); // cpl and p3 affected

pl->display(); // Point’s display
cpl->display(); // ColoredPoint’s display
p3->display(); // ColoredPoint’s display

95

Object-Oriented Programming — C++ Implementation of a Class

= A typical implementation of a class in C++;

using Point as an example:

Point mstance

Point vtable

L

d’tor

—= Point version

1mMove

—= Point version

distance

— Point version

display

— Point version

120
.5 Ky
~3'<,\Q" .?j]u(
VL
4l

96

Object-Oriented Programming — Extended Vtable in C++

= For ColoredPoint, we have:

ColoredPoint mstance ColoredPoint vtable

L~ ColoredPoint version

—= Point version

—= Point version

- d’tor

X move
y distance
color display

L~ ColoredPoint version

getColor

= ColoredPoint version

= Non-virtual member functions are never put in the

vtable

97

Object-Oriented Programming — Method Modifiers in C++

Access modifiers:
» public
» protected
» package
» private

abstract

static

final

synchronized

native

strictfp (strict floating point)

Object-Oriented Programming — Java and C++ Comparison

Java

C++

methods

public/protected / private
members

static members

abstract methods

final methods
interface

implementation of an
interface

virtual member functions
similar

same

pure virtual member
functions

no analogous feature

pure virtual class with no

data members

virtual inheritance

Object-Oriented Programming

* |n the same category of questions related
to classifying languages:
» Is Prolog a logic language?
» Is Common Lisp functional?

= However, to be more precise:
» Smalltalk is really pretty purely object-oriented
» Prolog iIs primarily logic-based
» Common Lisp is largely functional
» C++ can be used in an object-oriented style

o =2

Object-Oriented Programming - First-Class Functions o]

==

» Simulating a first-class function with an object:

A simple first-class function:

fun mkAdder nomlocal = (fn arg => arg + nonlocal)

The corresponding C++ class:

class Adder {
int nonlocal ;
public:
Adder (imnt i) : mnomlocal(i) { }
int operator () (int arg) { return arg + nonlocal; }

};

mkAdder 10 is roughly equivalent to Adder (10).

101

351&*(

Q . %; ©

& ’V.; :17\1/)
b &
{

Object-Oriented Programming - First-Class Functions

—

26

= A simple unsuspecting object (in Java, for variety):

class Account {
private float theBalance;
private float theRate;

Account (float b, float r) { theBalance = b
theRate = r; }

.
¥

public void deposit (float =) {

theBalance = theBalance + x;
}
public void compound () {

theBalance = theBalance * (1.0 + rate);
}

public float balance () { return theBalance; }

102

351&*(

Q . %; ©

& ’V.; :17\1/)
b &
{

Object-Oriented Programming - First-Class Functions

—

26

* The corresponding first-class function:

The corresponding first-class function:

(define (Account b 1)
(let ((theBalance b) (theRate r))
(lambda (method)
(case method
((deposit)
(lambda (x) (set! theBalance
(+ theBalance x))))
((compound)
(set! theBalance (* theBalance
(+ 1.0 theRate))))
((balance)
theBalance)))))

new Account(100.0, 0.05) is roughly equivalent to
(Account 100.0 0.05).

103

Object-Oriented Programming — ML Data Types vs. Inheritance

= ML datatypes and OO inheritance organize data and
routines in orthogonal ways:

data variants data operations

datatypes
classes

datatypes

classes

all together /closed scattered /open
scattered /open all together/closed

easy to add new operations
harder to add new variants
easy to add new variants
harder to add new operations

Object-Oriented Programming — OOP Pitfalls

» A couple of facts:

» In mathematics, an ellipse (from the Greek for
absence) is a curve where the sum of the distances
from any point on the curve to two fixed points is
constant. The two fixed points are called foci (plural of
focus).

from http://en.wikipedia.org/wiki/Ellipse
» A circle is a special kind of ellipse, where the two foci
are the same point.
* |f we need to model circles and ellipses using
OOP, what happens if we have class Circle
Inherit from class Ellipse?

I
30

[*) e
5
\eg ‘:/?/}’
b 4 o

Object-Oriented Programming — OOP Pitfalls

=36

class Ellipse {

public move (double dx, double dy) { ... %}

public resize (double x, double y) { ... }
¥

class Circle extends Ellipse {

public resize (double x, double y) { 777 }
L

We can't implement a resize for Circle that lets us make it asymmetric!

106

Object-Oriented Programming — OOP Pitfalls

* |n Java, If class B Is a subclass of class A,
then Java considers “array of B” to be a
subclass of “array of A”:

class A { ... 1}

class B extends A { ... }

E[]l] b = new BI[5];:

A[l] a = b; S/ allowed (a and b are now aliases)

alll] = new A(); // Bzzzt! (Type error)

* The problem is that arrays are mutable;
they allow us to replace an element with a
different element.

107

‘ 4 Conclusion

108

Assignments & Readings

n Readings
ifly > Chapter Section 9

= Programming Assignment #3
» TBA
» Due on: TBA

109

Next Session: Control Abstractions and Concurrency

110

Appendix — Quick Survey of Various Languages

111

FORTRAN

* The earliest algorithmic language (50’s)

* |nvented the idea of a*b+c*d

= Multi-dimensional arrays

= Subprograms (but no recursion)

= Separate and independent compilation

= Control structures depend heavily on goto

112

FORTRAN, an oddity

= One oddity In Fortran, no separation
between tokens, blanks ignored
» Following are equivalent

»DO 101=1,100
» DO10I=1,100

= More diabolical

» D010l =1.10
DO 101=1.10

113

FORTRAN, later history

= FORTRAN-66
» First standardized version

» Fortran-7/7
» Updated, but no very major changes

= Fortran-90
» Big language with lots of extensions

» Including comprehensive aggregates and slicing
notations.

= HPF (high performance Fortran)
» Parallelization constructs

114

Algol-60

= European contemporary of Fortran
» A bit later

» Designed then implemented
» Algol-60 report

» Features
» Structured programming (if, loop)
» Beginnings of a type system
» Recursive procedures
» 1/O etc provided by library procedures

115

®
Algol-60 Call by Name i

= Call by name means that an expression Is
passed and then evaluated with current
values of variables when referenced.

» Jensen’s device
»Sum (J*1 + 1,], 1, 10)
» Means sum J*j+1 for j from 1 to 10

» Can even call Sum recursively
« Sum (sum (j*k+j+j, |, 1, 10), k, 2, 100)

116

Algol-60 Call by Name

= Here Is how sum IS coded

» real procedure sum (X, I, from, to);

Integer X, |
iInteger from, to;

begin
Integer s;
s =0;
for 1 := from step 1 until to do

S =S +X;

sum = s;

end

117

LISP

» LISP is quite early, developed during 60’s

* |nvented
» Functional programming
» Use of lambda forms
» Higher order functions
» LIStS
» Garbage collection

» Pretty much what scheme Is today

118

LISP grew up on the IBM 709(0)

= This machine had 36 bit words
» Divided into prefix/CDR/index/CAR
» CDR and CAR could hold pointers

= So why Is CAR the first of the list

» Because In the assembly language, the CAR
field was given as the first operand, and the

CD
» CA
» CD

R as the second
R = Contents of the Address Register

R = Contents of the Decrement Register

119

®
LISP has dynamic scoping ‘,t

* |n a block structured language like Pascal,
If you reference a non-local variable, you
get the statically enclosing one.

= With dynamic scoping, you get the most
recently declared one whether or not you
are statically enclosed in its scope

120

Lisp, Dynamic Scoping

= Define a function f with a parameter x
» f calls separate function g (not nested)
* g has no x declared but references x

= |t gets the x that Is the parameter value
passed to f

121

COBOL

= Another early language (late 50’s)
» Designed for information processing

* |[mportant features
» Scaled decimal arithmetic, 18 digits
» Dynamic binding (at runtime) for subroutines
» Can add new subroutines at runtime

» CALL string-expression USING parameters
 String-expression is evaluated at run time

122

COBOL

» Uses english language flavor
» |dea: managers can read code (a bit bogus)

= Example

» PROCESS-BALANCE.
IF BALANCE IS NEGATIVE
PERFORM SEND-BILL
ELSE
PERFORM RECORD-CREDIT
END-IF.
SEND-BILL.

RECORD-CREDIT.

123

COBOL, A horrible feature

= PARA.
GOTO .

ALTER PARA TO PROCEED TO LABEL-
1

= UGH!
» Copied from machine code for 1401

= ANSI committed tried to remove this
» Were threatened with multiple law suits
» So it is still there ®

124

COBOL High Level Features

» Built in indexed files with multiple indexes

= Built in high level functions
» Search and replace strings
» Sort

» Edit
« Uses pictures
« PIC Z2ZZ7,279.99

* |If you move 1234.56 to above field you get
« 1,234.56 (with two leading blanks)

125

COBOL History

= COBOL-66 First standard
= COBOL-74 upgrade, nothing too major

= COBOL-91 full structured programming

= Latest COBOL (date?)
» Full very elaborate object oriented stuff

= Still very widely used
» Particularly on mainframes
» Mainframes are still widely used!

126

PLA

= Systematic attempt by IBM to combine the ideas
In
» Fortran
» COBOL
» Algol-60
» Also added concurrency (a la IBM mainframe OS)

= Not very successful, but still used

= Widely derided as kitchen sink, committee work
= PL/1 is not as bad as its reputation

= Hurt badly by poor performance of compilers

127

Algol Developments

= Algol-X, Algol-Y, Algol-W
» Variants adding various features including notably
records.

= Burroughs built Algol machines and used only
Algol for all work (no assembler!)

= JOVIAL
» Jules Own Version of the International ALgoritmic Language
» Widely used by DoD (still used in some projects)

= Algol-68
» Major update

128

Algol-68

» Designed by distinguished committee

= Under auspices of IFIP WG2.1
» First comprehensive type system
» Garbage collection required
» Full pointer semantics
» Includes simple tasking facilities

» Used in the UK, but not really successful
» Lack of compilers
» Building compilers was a really hard task

129

Algol-68 Modules

= An Interesting addition to Algol-60
= Module facility

* First comprehensive attempt at separate
compilation semantics

» |Influenced later languages including Ada

130

Algol-68 Reactions

= Several important people thought Algol-68
had got far too complex, voted against
publication, lost vote, and stormed out

» Wirth

»

»

»

Hoare
Djikstra

Per Brinch Hansen (sp?)

» And several others

131

Pascal

= Designed by Wirth as a reaction to A68

» Retained reasonably comprehensive type
system

» Pointers, records, but only fixed length arrays
= Emphasis on simplicity
= Widely used for teaching

132

Pascal follow ons

» Borland picked up Pascal
= And developed it into a powerful language

= This Is the language of Delphi, added:
» Modules
» String handling
» Object oriented faclilities

= Still In use (e.g. MTA)

133

Simula-67

= Another Algol development
* First object oriented language
= Objects are concurrent tasks

* SO0 message passing involves
synchronization

= Widely used in Europe in the 70’s

134

Another thread, BCPL

= BCPL is a low level language
= Simple recursive syntax

= But weakly typed

» Really has only bit string type
* Quite popular in the UK

135

B came from BCPL

= Don’t know much about this

= Seems to have disappeared into the mists
of time ©

» |mportant only for the next slide

136

C, partly inspired by B

= An attempt to create a nice simple
language

= Powerful

= But easy to compile

* Formed the basis of Unix

» 32 users simultaneously using C and Unix
on a PDP-11 (equivalent in power to a
very early 5SMHz PC, with 128K bytes
memory!)

137

C++

= C catches the complexity bug ©

= Adds

» Abstraction

» Comprehensive type system
» Object oriented features

» Large library, including STL

138

Eiffel

= Pure object oriented language
* |[n the Pascal tradition

» Emphasizes Programming-By-Contract ™

» The iIdea Is to include assertions that
Hluminate the code, and form the basis of
proof by correctness

» Code Is correct if the implementation
conforms to the contract

139

Interpreted Languages

= UCSD Pascal

» First language to use a byte code interpretor
» Widely implemented on many machines

» Lots of applications that could run anywhere
» Widely used commercially

» Died because of transition to PC
« Which it did not make successfully

140

» Designed by Microsoft

= Similar goals to Java, but
» Design virtual machine (.NET) first
» Then derive corresponding language
» Object oriented

» Cleans up C
« Garbage collection
 Full type safety

141

C# continued

* Very similar to Java

= But tries to be closer to C and C++
» For example, overloading Is retained

= Full interface to COM (what a surprise ©)
= A nice comparison of C# and Java Is at

» http://www.csharphelp.com/archives/archive96.htmi

142

Very High Level Languages

= Another thread entirely

» Languages with high level semantics and
data structures

143

String Processing Languages

= Languages where strings are first class
citizens (intended for language processing
etc)

» COMMIT (language translation project at
University of Chicago)

» SNOBOL and SNOBOL3 (Bell Labs)

» SNOBOL4
« Comprehensive pattern matching

» |CON
 Particularly develops notion of back tracking

144

SETL

» A language designed in the 70’s

» Based on ZF Set theory

» Here Is printing of primes up to 100

»Print ({xin2..100 |
notexistsd in 2 .. X-1 |
xmod d=0})

» Notexists here should use nice math symbol!
» General mappings and sets

145

Functional Languages

* MIRANDA

» Introduced notion of lazy evaluation
» Don’t evaluate something till needed
» Provides pure referential transparency

» Suppose we have
« definef(x,y) =y
« Can replace f (exprl, expr2) by expr2

« Even if computing exprl would cause infinite loop
with strict semantics (strict as opposted to lazy)

146

HASKEL

= Comprehensive attempt at defining
modern usable functional language

» Uses more familiar syntax (not so reliant
on parens ©)

= Has lazy evaluation
= And large library of stuff

147

