
1

Programming Languages

Sessions 7 & 8 – Main Theme

Program Structure

and

Object-Oriented Programming

Dr. Jean-Claude Franchitti

New York University

Computer Science Department

Courant Institute of Mathematical Sciences

Adapted from course textbook resources

Programming Language Pragmatics (3rd Edition)

Michael L. Scott, Copyright © 2009 Elsevier

2

2 Program Structure

Agenda

1 Session Overview

4 Conclusion

3 Object-Oriented Programming

3

What is the course about?

Course description and syllabus:

» http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001

» http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-

001/index.html

Textbook:
» Programming Language Pragmatics (3rd Edition)

 Michael L. Scott

 Morgan Kaufmann

 ISBN-10: 0-12374-514-4, ISBN-13: 978-0-12374-514-4, (04/06/09)

Additional References:
» Osinski, Lecture notes, Summer 2010

» Grimm, Lecture notes, Spring 2010

» Gottlieb, Lecture notes, Fall 2009

» Barrett, Lecture notes, Fall 2008

http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html
http://www.cs.nyu.edu/courses/summer14/CSCI-GA.2110-001/index.html

4

Session Agenda

 Session Overview

 Program Structure

 Object-Oriented Programming

 Conclusion

5

Icons / Metaphors

5

Common Realization

Information

Knowledge/Competency Pattern

Governance

Alignment

Solution Approach

6

Session 6 Review

 Data Types
» Strong vs. Weak Typing

» Static vs. Dynamic Typing

 Type Systems
» Type Declarations

 Type Checking
» Type Equivalence

» Type Inference

» Subtypes and Derived Types

 Scalar and Composite Types
» Records, Variant Records, Arrays, Strings, Sets

 Pointers and References
» Pointers and Recursive Types

 Function Types

 Files and Input / Output

 Conclusions

7

2 Program Structure

Agenda

1 Session Overview

4 Conclusion

3 Object-Oriented Programming

8

 Key Concepts

» Modules

» Packages

» Interfaces

» Abstract types and information hiding

 Review Session 2

» Textbook Sections 3.3.4, 3.3.5, 3.7

Program Structure

9

 Tony Hoare:

» here are two ways of constructing a software design: one way is

to make it so simple that there are obviously no deficiencies, and

the other is to make it so complicated that there are no obvious

deficiencies.

 Edsger Dijkstra:

» Computing is the only profession in which a single mind is

obliged to span the distance from a bit to a few hundred

megabytes, a ratio of 1 to 109, or nine orders of magnitude.

Compared to that number of semantic levels, the average

mathematical theory is almost flat. By evoking the need for deep

conceptual hierarchies, the automatic computer confronts us

with a radically new intellectual challenge that has no precedent

in our history.

 Steve McConnell:

» Software’s Primary Technical Imperative has to be managing

complexity.

Software Complexity

10

 Problem Decomposition: Minimize the amount of

essential complexity that has to be dealt with at

any one time. In most cases, this is the top

priority

 Information Hiding: Encapsulate complexity so

that it is not accessible outside of a small part of

the program

» Additional benefits of information hiding:

• Reduces risk of name conflicts

• Safeguards integrity of data

• Helps to compartmentalize run-time errors

Dealing with Complexity

11

 Programs are built out of components

 Each component:

» has a public interface that defines entities exported by

the component

» may depend on the entities defined in the interface of

another component (weak external coupling)

» may include other (private) entities that are not

exported

» should define a set of logically related entities (strong

internal coupling)

» “Strong (internal) cohesion – Low (external) coupling”

 We call these components modules

Modules

12

 Different languages use different terms

» different languages have different semantics for this

construct (sometimes very different)

» a module is somewhat like a record, but with an

important distinction:

• record => consists of a set of names called fields, which refer

to values in the record

• module => consists of a set of names, which can refer to

values, types, routines, other language-specific entities, and

possibly other modules

 Note that the similarity is between a record and

a module, not a record type and a module

Modules - Definition

13

 Issues:

» public interface

» private implementation

» dependencies between modules

» naming conventions of imported entities

» relationship between modules and files

 Language Choices

» Ada : package declaration and body, with and use clauses,

renamings

» C : header files, #include directives

» C++ : header files, #include directives, namespaces, using

declarations/directives, namespace alias definitions

» Java : packages, import statements

» ML : signature, structure and functor definitions

Language Constructs for Modularity

14

Ada Packages

15

Private Parts and Information Hiding

16

Implementation of Queues

17

Predicates on Queues

18

Operator Overloading

19

Client Can Only Use Visible Interface

Notes: The “use” keyword specifies that a function name which cannot be resolved locally

should be searched for in this library. “with” is approximately equal to “#include”: in the above example,

it means that you want to work with the functions available in the “Ada.Text_IO” package. The rest is

pretty straightforward: you want to put out the text “lousy implementation”, and the Put_Line function

you are interested in is the one in Ada.Text_IO.

20

Implementation

 package body holds bodies of

subprograms that implement interface

 package may not require a body:

21

Syntactic Sugar: Use and Renames

 Visible entities can be denoted with an expanded name:

 with Text_IO ;

 ...

 Text_IO . Put_Line (" hello ");

 Use clause makes name of entity directly usable:

 with Text_IO ; use Text_IO ;

 ...

 Put_Line (" hello ");

 Renames clause makes name of entity more

manageable:

 with Text_IO ;

 package T renames Text_IO ;

 ...

 T. Put_Line (" hello ");

22

Sugar Can Be Indispensable

 with Queues ;

 procedure Test is

 Q1, Q2: Queues.Queue ;

 begin

 if Q1 = Q2 then ...

 -- error : "=" is not directly visible

 -- must write instead : Queues ."="(Q1 , Q2)

Two solutions:

 import all entities:

» use Queues ;

 import operators only:

» use type Queues.Queue ;

23

C++ Namespaces

 Late addition to the language

 an entity requires one or more declarations and a single

definition

 A namespace declaration can contain both, but

definitions may also be given separately

24

Dependencies Between Modules in C++

 Files have semantic significance: #include

directives means textual substitution of one file

in another

 Convention is to use header files for shared

interfaces

25

Header Files Are Visible Interfaces

26

Namespace Definitions

27

Syntactic Sugar Using Declarations

28

Wholesale Import: The Using Directive

29

Shortening Names

 Sometimes, we want to qualify names, but

with a shorter name.

 In Ada:

 package PN renames A.Very_Long.Package_Name;

 In C++:

 namespace pn = a::very_long::package_name;

 We can now use PN as the qualifier

instead of the long name.

30

Visibility: Koenig Lookup

 When an unqualified name is used as the postfix-

expression in a function call (expr.call), other

namespaces not considered during the usual unqualified

look up (basic.lookup.unqual) may be searched; this

search depends on the types of the arguments.

 For each argument type T in the function call, there is a

set of zero or more associated namespaces to be

considered

» The set of namespaces is determined entirely by the types of the

function arguments. typedef names used to specify the types do

not contribute to this set

31

Koenig Lookup Details

 The set of namespaces are determined in the following

way:

» If T is a fundamental type, its associated set of namespaces is

empty.

» If T is a class type, its associated namespaces are the

namespaces in which the class and its direct and indirect base

classes are defined.

» If T is a union or enumeration type, its associated namespace is

the namespace in which it is defined.

» If T is a pointer to U, a reference to U, or an array of U, its

associated namespaces are the namespaces associated with U.

» If T is a pointer to function type, its associated namespaces are

the namespaces associated with the function parameter types

and the namespaces associated with the return type. [recursive]

32

Koenig Lookup

33

Linking

 An external declaration for a variable indicates

that the entity is defined elsewhere

 extern int x; // will be found later

 A function declaration indicates that the body is

defined elsewhere

 Multiple declarations may denote the same

entity

 extern int x; // in some other file

 An entity can only be defined once

 Missing/multiple definitions cannot be detected

by the compiler: link-time errors

34

Include Directives = Multiple Declarations

 Definitions are legal if textually identical (but

compiler can’t check!)

 Headers are safer than cut-and-paste, but not as

good as a proper module system

35

Modules in Java

 Package structure parallels file system

 A package corresponds to a directory

 A class is compiled into a separate object file

 Each class declares the package in which it appears

(open structure)

 Default: anonymous package in current directory

36

Dependencies Between Classes

 Dependencies indicated with import statements:

 No syntactic sugar across packages: use

expanded names

 None needed in same package: all classes in

package are directly visible to each other

37

Modules in ML

 There are three entities:

» signature : an interface

» structure : an implementation

» functor : a parameterized structure

 A structure implements a signature if it

defines everything mentioned in the

signature (in the correct way)

38

ML Signature

 An ML signature specifies an interface for

a module

39

ML Structure

 A structure provides an implementation

40

Comparison

 Relation between interface and

implementation:

» Ada :

• one package (interface) , one package body

» ML :

• one signature can be implemented by many

structures

• one structure can implement many signatures

41

2 Program Structure

Agenda

1 Session Overview

4 Conclusion

3 Object-Oriented Programming

42

 Key Concepts

» Objects

» Classes

 Review Session 6

» Textbook Section 7.7

Object-Oriented Data Types and Representation

43

 The object idea:

» bundling of data (data members) and operations

(methods) on that data

» restricting access to the data

 An object contains:

» data members : arranged as a set of named fields

» methods : routines which take the object they are

associated with as an argument (known as member

functions in C++)

» constructors : routines which create a new object

 A class is a construct which defines the data,

methods and constructors associated with all of

its instances (objects)

What is OOP ? (Part I)

44

 The inheritance and dynamic binding ideas:

» classes can be extended (inheritance):

• by adding new fields

• by adding new methods

• by overriding existing methods (changing behavior)

 If class B extends class A, we say that B is a subclass

or derived class of A, and A is a superclass or base

class of B

» dynamic binding : wherever an instance of a class is

required, we can also use an instance of any of its

subclasses; when we call one of its methods, the

overridden versions are used

» There should be an is-a relationship between a

derived class and its base class

What is OOP ? (Part II)

45

 In class-based OOLs, each object is an

instance of a class (Java, C++, C#, Ada95,

Smalltalk, OCaml, etc.)

 In prototype-based OOLS, each object is a

clone of another object, possibly with

modifications and/or additions (Self,

Javascript)

Styles of OOLs

46

 Multiple inheritance

» C++

» Java (of interfaces only)

» problem: how to handle diamond shaped

inheritance hierarchy

 Classes often provide package-like

capabilities:

» visibility control

» ability to define types and classes in addition

to data fields and methods

Other Common OOP Features

47

 Control or PROCESS abstraction is a very

old idea (subroutines!), though few

languages provide it in a truly general form

(Scheme comes close)

 Data abstraction is somewhat newer,

though its roots can be found in Simula67

» An Abstract Data Type is one that is defined

in terms of the operations that it supports (i.e.,

that can be performed upon it) rather than in

terms of its structure or implementation

Object-Oriented Programming

48

 Why abstractions?

» easier to think about - hide what doesn't matter

» protection - prevent access to things you

shouldn't see

» plug compatibility

• replacement of pieces, often without recompilation,

definitely without rewriting libraries

• division of labor in software projects

Object-Oriented Programming

49

 We talked about data abstraction some
back in the session on naming and scoping

 Recall that we traced the historical
development of abstraction mechanisms

» Static set of var Basic

» Locals Fortran

» Statics Fortran, Algol 60, C

» Modules Modula-2, Ada 83

» Module types Euclid

» Objects Smalltalk, C++, Eiffel, Java
 Oberon, Modula-3, Ada 95

Object-Oriented Programming

50

 Statics allow a subroutine to retain values

from one invocation to the next, while

hiding the name in-between

 Modules allow a collection of subroutines

to share some statics, still with hiding

» If you want to build an abstract data type,

though, you have to make the module a

manager

Object-Oriented Programming

51

 Module types allow the module to be the
abstract data type - you can declare
a bunch of them

» This is generally more intuitive
• It avoids explicit object parameters to many

operations

• One minor drawback: If you have an operation
that needs to look at the innards of two different
types, you'd define both types in the same
manager module in Modula-2

• In C++ you need to make one of the classes (or
some of its members) "friends" of the other class

Object-Oriented Programming

52

 Objects add inheritance and dynamic

method binding

 Simula 67 introduced these, but didn't

have data hiding

 The 3 key factors in OO programming

» Encapsulation (data hiding)

» Inheritance

» Dynamic method binding

Object-Oriented Programming

53

 Visibility rules

» Public and Private parts of an object
declaration/definition

» 2 reasons to put things in the declaration
• so programmers can get at them

• so the compiler can understand them

» At the very least the compiler needs to know
the size of an object, even though the
programmer isn't allowed to get at many or
most of the fields (members) that contribute
to that size

• That's why private fields have to be in declaration

Encapsulation and Inheritance

54

 C++ distinguishes among

» public class members
• accessible to anybody

» protected class members
• accessible to members of this or derived classes

» private
• accessible just to members of this class

 A C++ structure (struct) is simply a class
whose members are public by default

 C++ base classes can also be public,
private, or protected

Encapsulation and Inheritance – Classes (C++)

55

 Example:
class circle : public shape { ...

anybody can convert (assign) a circle* into a shape*

class circle : protected shape { ...

only members and friends of circle or its derived classes
can convert (assign) a circle* into a shape*

class circle : private shape { ...

only members and friends of circle can convert (assign)
a circle* into a shape*

Encapsulations and Inheritance – Classes (C++)

56

 Disadvantage of the module-as-manager
approach: include explicit create/initialize &
destroy/finalize routines for every abstraction
» Even w/o dynamic allocation inside module, users

don't have necessary knowledge to do initialization

» Ada 83 is a little better here: you can provide
initializers for pieces of private types, but this is NOT a
general approach

» Object-oriented languages often give you constructors
and maybe destructors

• Destructors are important primarily in the absence of garbage
collection

Encapsulation and Inheritance – Classes (C++)

57

 A few C++ features you may not have

learned:

» classes as members
foo::foo (args0) : member1

(args1), member2 (args2) { ...

args1 and args2 need to be specified in terms

of args0

• The reason these things end up in the header of

foo is that they get executed before foo's

constructor does, and the designers consider it

good style to make that clear in the header of

foo::foo

Encapsulations and Inheritance – Classes (C++)

58

 A few C++ features (2):

» initialization v. assignment
foo::operator=(&foo) v.

foo::foo(&foo)

 foo b;

 foo f = b;

 // calls constructor

 foo b, f;

 // calls no-argument constructor

 f = b;

 // calls operator=

Encapsulations and Inheritance – Classes (C++)

59

 A few C++ features (3):

» virtual functions (see the next dynamic

method binding section for details):

Key question: if child is derived from parent

and I have a parent* p (or a parent& p) that

points (refers) to an object that's actually a

child, what member function do I get when I

call p->f (p.f)?

• Normally I get p's f, because p's type is parent*.

• But if f is a virtual function, I get c's f.

Encapsulations and Inheritance – Classes (C++)

60

 A few C++ features (4):

» virtual functions (continued)

• If a virtual function has a "0" body in the parent class,

then the function is said to be a pure virtual function and

the parent class is said to be abstract

• You can't declare objects of an abstract class; you have

to declare them to be of derived classes

• Moreover any derived class must provide a body for the

pure virtual function(s)

• multiple inheritance in Standard C++ (see next)

» friends

• functions

• classes

Encapsulations and Inheritance – Classes (C++)

61

 Texbook’s section 3.2 defines the lifetime of

an object to be the interval during which it

occupies space and can hold data

» Most object-oriented languages provide some sort

of special mechanism to initialize an object

automatically at the beginning of its lifetime

• When written in the form of a subroutine, this mechanism

is known as a constructor

• A constructor does not allocate space

» A few languages provide a similar destructor

mechanism to finalize an object automatically at

the end of its lifetime

Initialization and Finalization

62

Issues:

 choosing a constructor

 references and values

» If variables are references, then every object must be created

explicitly - appropriate constructor is called

» If variables are values, then object creation can happen

implicitly as a result of elaboration

 execution order

» When an object of a derived class is created in C++, the

constructors for any base classes will be executed before the

constructor for the derived class

 garbage collection

Initialization and Finalization

63

 Virtual functions in C++ are an example of

dynamic method binding

» you don't know at compile time what type the object

referred to by a variable will be at run time

 Simula also had virtual functions (all of

which are abstract)

 In Smalltalk, Eiffel, Modula-3, and Java all

member functions are virtual

Dynamic Method Binding

64

 Note that inheritance does not obviate the need

for generics

» You might think: hey, I can define an abstract list

class and then derive int_list, person_list, etc. from it,

but the problem is you won't

be able to talk about the elements because you won't

know their types

» That's what generics are for: abstracting over types

 Generics were added to Java in 2004 and are

implemented as (checked) dynamic casts

» http://www.jelovic.com/articles/why_java_is_slow.htm

Dynamic Method Binding

65

// Removes 4-letter words from c. Elements must be strings

// (using inconvenient/unsafe casting to the type of element that is stored
in the collection)

static void expurgate(Collection c) {

 for (Iterator i = c.iterator(); i.hasNext();)

 if (((String) i.next()).length() == 4)

 i.remove();

}

// Removes the 4-letter words from c

// (using clear and safe code based on generics that eliminates an unsafe
cast and a number of extra parentheses)

static void expurgate(Collection<String> c) {

 for (Iterator<String> i = c.iterator(); i.hasNext();) if (i.next().length() == 4)

i.remove();

}

Note: “Collection<String> c” above reads as “Collection of String c”

Dynamic Method Binding – More on Generics

66

 Data members of classes are

implemented just like structures (records)

» With (single) inheritance, derived classes

have extra fields at the end

» A pointer to the parent and a pointer to the

child contain the same address - the child just

knows that the struct goes farther than the

parent does

Dynamic Method Binding

67

 Non-virtual functions require no space at run

time; the compiler just calls the appropriate

version, based on type of variable

» Member functions are passed an extra, hidden, initial

parameter: this (called current in Eiffel and self in

Smalltalk)

 C++ philosophy is to avoid run-time overhead

whenever possible(Sort of the legacy from C)

» Languages like Smalltalk have (much) more run-time

support

Dynamic Method Binding

68

 Virtual functions are the only thing that requires
any trickiness (see next slide)
» They are implemented by creating a dispatch table

(vtable) for the class and putting a pointer to that table
in the data of the object

» Objects of a derived class have a different dispatch
table

• In the dispatch table, functions defined in the parent come
first, though some of the pointers point to overridden versions

• You could put the whole dispatch table in the object itself

– That would save a little time, but potentially waste a LOT of
space

Dynamic Method Binding

69

Figure 9.3 Implementation of virtual methods. The representation of object F begins with

the address of the vtable for class foo. (All objects of this class will point to the same

vtable.) The vtable itself consists of an array of addresses, one for the code of each

virtual method of the class. The remainder of F consists of the representations of its

fields.

Dynamic Method Binding

70

Figure 9.4 Implementation of single inheritance. As in Figure 9.3, the representation of

object B begins with the address of its class’s vtable. The first four entries in the table

represent the same members as they do for foo, except that one —m— has been overridden

and now contains the address of the code for a different subroutine. Additional fields of bar

follow the ones inherited from foo in the representation of B; additional virtual methods follow

the ones inherited from foo in the vtable of class.

Dynamic Method Binding

71

 Note that if you can query the type of an

object, then you need to be able to get

from the object to run-time type info

» The standard implementation technique is to

put a pointer to the type info at the beginning

of the vtable

» Of course you only have a vtable in C++ if

your class has virtual functions

• That's why you can't do a dynamic_cast on a

pointer whose static type doesn't have virtual

functions

Dynamic Method Binding

72

 In C++, you can say
class professor : public teacher,

public researcher {

 ...

 }

Here you get all the members of teacher and all

the members of researcher

» If there's anything that's in both (same name and

argument types), then calls to the member are

ambiguous; the compiler disallows them

Multiple Inheritance

73

 You can of course create your own member in
the merged class
 professor::print () {
 teacher::print ();

 researcher::print (); ...

 }

Or you could get both:
 professor::tprint () {
 teacher::print ();

 }

 professor::rprint () {

 researcher::print ();

 }

Multiple Inheritance

74

 Virtual base classes: In the usual case if

you inherit from two classes that are both

derived from some other class B, your

implementation includes two copies of B's

data members

 That's often fine, but other times you want

a single copy of B

» For that you make B a virtual base class

Multiple Inheritance

75

 Anthropomorphism is central to the OO

paradigm - you think in terms of real-world

objects that interact to get things done

 Many OO languages are strictly sequential, but

the model adapts well to parallelism as well

 Strict interpretation of the term

» uniform data abstraction - everything is an object

» inheritance

» dynamic method binding

Object-Oriented Programming

76

 Lots of conflicting uses of the term out

there object-oriented style available in

many languages

» data abstraction crucial

» inheritance required by most users of the term

O-O

» centrality of dynamic method binding a matter

of dispute

Object-Oriented Programming

77

 SMALLTALK is the canonical object-oriented

language

» It has all three of the characteristics listed above

» It's based on the thesis work of Alan Kay at Utah in

the late 1960‘s

» It went through 5 generations at Xerox PARC, where

Kay worked after graduating

» Smalltalk-80 is the current standard

Object-Oriented Programming

78

 Other languages are described in what

follows:

 Modula-3

» single inheritance

» all methods virtual

» no constructors or destructors

Object-Oriented Programming

79

 Ada 95

» tagged types

» single inheritance

» no constructors or destructors

» class-wide parameters:

• methods static by default

• can define a parameter or pointer that grabs the object-

specific version of all methods

– base class doesn't have to decide what will be virtual

» notion of child packages as an alternative to friends

Object-Oriented Programming

80

 Java

» interfaces, mix-in inheritance

» alternative to multiple inheritance

• basically you inherit from one real parent and one

or more interfaces, each of which contains only

virtual functions and no data

• this avoids the contiguity issues in multiple

inheritance above, allowing a very simple

implementation

» all methods virtual

Object-Oriented Programming - Java

81

 An imperative language (like C++, Ada, C, Pascal)

 is interpreted (like Scheme, APL)

 is garbage-collected (like Scheme, ML, Smalltalk, Eiffel,

Modula-3)

 can be compiled

 is object-oriented (like Eiffel, more so than C++, Ada)

 a successful hybrid for a specific-application domain

 a reasonable general-purpose language for non-real-

time applications

 Work in progress: language continues to evolve

 C# is latest, incompatible variant

Object-Oriented Programming - Java

82

 Original Design Goals (1993 White Paper):

» simple

» object-oriented (inheritance, polymorphism)

» distributed

» interpreted

» multi-threaded

» robust

» secure

» architecture-neutral

 Obviously, “simple” was dropped

Object-Oriented Programming - Java

83

 Portability:

» Critical concern: write once – run everywhere

» Consequences:

• portable interpreter

• definition through virtual machine: the JVM

• run-time representation has high-level semantics

• supports dynamic loading

• high-level representation can be queried at run-

time to provide reflection

• dynamic features make it hard to fully compile,

safety requires numerous run-time checks

Object-Oriented Programming - Java

84

 Contrast with Conventional Systems Languages

» Conventional imperative languages are fully compiled:

• run-time structure is machine language

• minimal run-time type information

• language provides low-level tools for accessing storage

• safety requires fewer run-time checks because compiler (least for

Ada and somewhat for C++) can verify correctness statically

• languages require static binding, run-time image cannot be easily

modified

• different compilers may create portability problems

» Notable omissions:

• no operator overloading (syntactic annoyance)

• no separation of specification and body

• no enumerations until latest language release

• no generic facilities until latest language release

Object-Oriented Programming - Java

85

 Statements:

» Most statements are like their C counterparts:

• switch (including C’s falling through behavior)

• for

• if

• while

• do ... while

• break and continue

– Java also has labeled versions of break and continue,

like Ada.

• return

• Java has no goto!

Object-Oriented Programming - Java

86

Object-Oriented Programming – The Simplest Java Program

87

 Encapsulation of type and related operations

Object-Oriented Programming – Classes in Java

88

Object-Oriented Programming – Extending a Class in Java

89

Object-Oriented Programming – Dynamic Dispatching in Java

90

Object-Oriented Programming – Java Interfaces

 A Java interface allows otherwise unrelated

classes to satisfy a given requirement

 This is orthogonal to inheritance.

» inheritance: an A is-a B (has the attributes of a B,

and possibly others)

» interface: an A can-do X (and possibly other

unrelated actions)

» interfaces are a better model for multiple inheritance

 See textbook section 9.4.3 for implementation

details

91

Object-Oriented Programming – Java Interface Comparable

92

 Is C++ object-oriented?

» Uses all the right buzzwords

» Has (multiple) inheritance and generics

(templates)

» Allows creation of user-defined classes that

look just like built-in ones

» Has all the low-level C stuff to escape the

paradigm

» Has friends

» Has static type checking

Object-Oriented Programming – C++

93

 The same classes, translated into C++:

Object-Oriented Programming – Classes in C++

94

Object-Oriented Programming – Extending a Class in C++

95

Object-Oriented Programming – Dynamic Dispatching in C++

96

 A typical implementation of a class in C++;

using Point as an example:

Object-Oriented Programming – C++ Implementation of a Class

97

 For ColoredPoint, we have:

 Non-virtual member functions are never put in the

vtable

Object-Oriented Programming – Extended Vtable in C++

98

 Access modifiers:

» public

» protected

» package

» private

 abstract

 static

 final

 synchronized

 native

 strictfp (strict floating point)

Object-Oriented Programming – Method Modifiers in C++

99

Object-Oriented Programming – Java and C++ Comparison

100

 In the same category of questions related

to classifying languages:

» Is Prolog a logic language?

» Is Common Lisp functional?

 However, to be more precise:

» Smalltalk is really pretty purely object-oriented

» Prolog is primarily logic-based

» Common Lisp is largely functional

» C++ can be used in an object-oriented style

Object-Oriented Programming

101

 Simulating a first-class function with an object:

Object-Oriented Programming – First-Class Functions

102

 A simple unsuspecting object (in Java, for variety):

Object-Oriented Programming – First-Class Functions

103

 The corresponding first-class function:

Object-Oriented Programming – First-Class Functions

104

 ML datatypes and OO inheritance organize data and

routines in orthogonal ways:

Object-Oriented Programming – ML Data Types vs. Inheritance

105

 A couple of facts:

» In mathematics, an ellipse (from the Greek for

absence) is a curve where the sum of the distances

from any point on the curve to two fixed points is

constant. The two fixed points are called foci (plural of

focus).

 from http://en.wikipedia.org/wiki/Ellipse

» A circle is a special kind of ellipse, where the two foci

are the same point.

 If we need to model circles and ellipses using

OOP, what happens if we have class Circle

inherit from class Ellipse?

Object-Oriented Programming – OOP Pitfalls

106

Object-Oriented Programming – OOP Pitfalls

107

Object-Oriented Programming – OOP Pitfalls

 In Java, if class B is a subclass of class A,

then Java considers “array of B” to be a

subclass of “array of A”:

 The problem is that arrays are mutable;

they allow us to replace an element with a

different element.

108

2 Program Structure

Agenda

1 Session Overview

4 Conclusion

3 Object-Oriented Programming

109

Assignments & Readings

 Readings

» Chapter Section 9

 Programming Assignment #3

» TBA

» Due on: TBA

110

Next Session: Control Abstractions and Concurrency

111

Appendix – Quick Survey of Various Languages

112

FORTRAN

 The earliest algorithmic language (50’s)

 Invented the idea of a*b+c*d

 Multi-dimensional arrays

 Subprograms (but no recursion)

 Separate and independent compilation

 Control structures depend heavily on goto

113

FORTRAN, an oddity

 One oddity in Fortran, no separation

between tokens, blanks ignored

 Following are equivalent

» DO 10 I = 1,100

» DO10I=1,100

 More diabolical

» DO10I = 1.10

DO 10 I = 1.10

114

FORTRAN, later history

 FORTRAN-66
» First standardized version

 Fortran-77
» Updated, but no very major changes

 Fortran-90
» Big language with lots of extensions

» Including comprehensive aggregates and slicing
notations.

 HPF (high performance Fortran)
» Parallelization constructs

115

Algol-60

 European contemporary of Fortran

» A bit later

 Designed then implemented

» Algol-60 report

 Features

» Structured programming (if, loop)

» Beginnings of a type system

» Recursive procedures

» I/O etc provided by library procedures

116

Algol-60 Call by Name

 Call by name means that an expression is

passed and then evaluated with current

values of variables when referenced.

 Jensen’s device

» Sum (j*j + 1, j, 1, 10)

» Means sum j*j+1 for j from 1 to 10

» Can even call Sum recursively

• Sum (sum (j*k+j+j, j, 1, 10), k, 2, 100)

117

Algol-60 Call by Name

 Here is how sum is coded

» real procedure sum (x, i, from, to);
 integer x, i
 integer from, to;
begin
 integer s;
 s := 0;
 for i := from step 1 until to do
 s := s + x;
 sum := s;
 end

118

LISP

 LISP is quite early, developed during 60’s

 Invented

» Functional programming

» Use of lambda forms

» Higher order functions

» Lists

» Garbage collection

 Pretty much what scheme is today

119

LISP grew up on the IBM 709(0)

 This machine had 36 bit words

 Divided into prefix/CDR/index/CAR

» CDR and CAR could hold pointers

 So why is CAR the first of the list

» Because in the assembly language, the CAR
field was given as the first operand, and the
CDR as the second

» CAR = Contents of the Address Register

» CDR = Contents of the Decrement Register

120

LISP has dynamic scoping

 In a block structured language like Pascal,

if you reference a non-local variable, you

get the statically enclosing one.

 With dynamic scoping, you get the most

recently declared one whether or not you

are statically enclosed in its scope

121

Lisp, Dynamic Scoping

 Define a function f with a parameter x

 f calls separate function g (not nested)

 g has no x declared but references x

 It gets the x that is the parameter value

passed to f

122

COBOL

 Another early language (late 50’s)

 Designed for information processing

 Important features

» Scaled decimal arithmetic, 18 digits

» Dynamic binding (at runtime) for subroutines

» Can add new subroutines at runtime

» CALL string-expression USING parameters

• String-expression is evaluated at run time

123

COBOL

 Uses english language flavor
» Idea: managers can read code (a bit bogus)

 Example
» PROCESS-BALANCE.

 IF BALANCE IS NEGATIVE
 PERFORM SEND-BILL
 ELSE
 PERFORM RECORD-CREDIT
 END-IF.
SEND-BILL.
 …
RECORD-CREDIT.
 …

124

COBOL, A horrible feature

 PARA.
 GOTO .
…
ALTER PARA TO PROCEED TO LABEL-
1

 UGH!

» Copied from machine code for 1401

 ANSI committed tried to remove this

» Were threatened with multiple law suits

» So it is still there 

125

COBOL High Level Features

 Built in indexed files with multiple indexes

 Built in high level functions

» Search and replace strings

» Sort

» Edit

• Uses pictures

• PIC ZZZ,ZZ9.99

• If you move 1234.56 to above field you get

• 1,234.56 (with two leading blanks)

126

COBOL History

 COBOL-66 First standard

 COBOL-74 upgrade, nothing too major

 COBOL-91 full structured programming

 Latest COBOL (date?)

» Full very elaborate object oriented stuff

 Still very widely used

» Particularly on mainframes

» Mainframes are still widely used!

127

PL/1

 Systematic attempt by IBM to combine the ideas
in
» Fortran

» COBOL

» Algol-60

» Also added concurrency (a la IBM mainframe OS)

 Not very successful, but still used

 Widely derided as kitchen sink, committee work

 PL/1 is not as bad as its reputation

 Hurt badly by poor performance of compilers

128

Algol Developments

 Algol-X, Algol-Y, Algol-W

» Variants adding various features including notably

records.

 Burroughs built Algol machines and used only

Algol for all work (no assembler!)

 JOVIAL
» Jules Own Version of the International ALgoritmic Language

» Widely used by DoD (still used in some projects)

 Algol-68

» Major update

129

Algol-68

 Designed by distinguished committee

 Under auspices of IFIP WG2.1

» First comprehensive type system

» Garbage collection required

» Full pointer semantics

» Includes simple tasking facilities

 Used in the UK, but not really successful

» Lack of compilers

» Building compilers was a really hard task

130

Algol-68 Modules

 An interesting addition to Algol-60

 Module facility

 First comprehensive attempt at separate

compilation semantics

 Influenced later languages including Ada

131

Algol-68 Reactions

 Several important people thought Algol-68

had got far too complex, voted against

publication, lost vote, and stormed out

» Wirth

» Hoare

» Djikstra

» Per Brinch Hansen (sp?)

» And several others

132

Pascal

 Designed by Wirth as a reaction to A68

 Retained reasonably comprehensive type

system

» Pointers, records, but only fixed length arrays

 Emphasis on simplicity

 Widely used for teaching

133

Pascal follow ons

 Borland picked up Pascal

 And developed it into a powerful language

 This is the language of Delphi, added:

» Modules

» String handling

» Object oriented facilities

 Still in use (e.g. MTA)

134

Simula-67

 Another Algol development

 First object oriented language

 Objects are concurrent tasks

 So message passing involves

synchronization

 Widely used in Europe in the 70’s

135

Another thread, BCPL

 BCPL is a low level language

 Simple recursive syntax

 But weakly typed

 Really has only bit string type

 Quite popular in the UK

136

B came from BCPL

 Don’t know much about this

 Seems to have disappeared into the mists

of time 

 Important only for the next slide

137

C, partly inspired by B

 An attempt to create a nice simple
language

 Powerful

 But easy to compile

 Formed the basis of Unix

 32 users simultaneously using C and Unix
on a PDP-11 (equivalent in power to a
very early 5MHz PC, with 128K bytes
memory!)

138

C++

 C catches the complexity bug 

 Adds

» Abstraction

» Comprehensive type system

» Object oriented features

» Large library, including STL

139

Eiffel

 Pure object oriented language

 In the Pascal tradition

 Emphasizes Programming-By-Contract ™

» The idea is to include assertions that

illuminate the code, and form the basis of

proof by correctness

» Code is correct if the implementation

conforms to the contract

140

Interpreted Languages

 UCSD Pascal

» First language to use a byte code interpretor

» Widely implemented on many machines

» Lots of applications that could run anywhere

» Widely used commercially

» Died because of transition to PC

• Which it did not make successfully

141

C#

 Designed by Microsoft

 Similar goals to Java, but

» Design virtual machine (.NET) first

» Then derive corresponding language

» Object oriented

» Cleans up C

• Garbage collection

• Full type safety

142

C# continued

 Very similar to Java

 But tries to be closer to C and C++

» For example, overloading is retained

 Full interface to COM (what a surprise )

 A nice comparison of C# and Java is at

» http://www.csharphelp.com/archives/archive96.html

143

Very High Level Languages

 Another thread entirely

 Languages with high level semantics and

data structures

144

String Processing Languages

 Languages where strings are first class
citizens (intended for language processing
etc)

» COMMIT (language translation project at
University of Chicago)

» SNOBOL and SNOBOL3 (Bell Labs)

» SNOBOL4
• Comprehensive pattern matching

» ICON
• Particularly develops notion of back tracking

145

SETL

 A language designed in the 70’s

 Based on ZF Set theory

» Here is printing of primes up to 100

» Print ({x in 2 .. 100 |

 notexists d in 2 .. X-1 |

 x mod d = 0})

» Notexists here should use nice math symbol!

» General mappings and sets

146

Functional Languages

 MIRANDA

» Introduced notion of lazy evaluation

» Don’t evaluate something till needed

» Provides pure referential transparency

» Suppose we have

• define f (x, y) = y

• Can replace f (expr1, expr2) by expr2

• Even if computing expr1 would cause infinite loop

with strict semantics (strict as opposted to lazy)

147

HASKEL

 Comprehensive attempt at defining

modern usable functional language

 Uses more familiar syntax (not so reliant

on parens )

 Has lazy evaluation

 And large library of stuff

