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- Profile - 

 31 years of experience in the Information Technology Industry, including thirteen years of experience 

working for leading IT consulting firms such as Computer Sciences Corporation 

 PhD in Computer Science from University of Colorado at Boulder 

 Past CEO and CTO 

 Held senior management and technical leadership roles in many large IT Strategy and Modernization 

projects for fortune 500 corporations in the insurance, banking, investment banking, pharmaceutical, retail, 

and information management industries  

 Contributed to several high-profile ARPA and NSF research projects 

 Played an active role as a member of the OMG, ODMG, and X3H2 standards committees and as a 

Professor of Computer Science at Columbia initially and New York University since 1997 

 Proven record of delivering business solutions on time and on budget 

 Original designer and developer of jcrew.com and the suite of products now known as IBM InfoSphere 

DataStage 

 Creator of the Enterprise Architecture Management Framework (EAMF) and main contributor to the creation 

of various maturity assessment methodology 

 Developed partnerships between several companies and New York University to incubate new 

methodologies (e.g., EA maturity assessment methodology developed in Fall 2008), develop proof of 

concept software, recruit skilled graduates, and increase the companies’ visibility 

Who am I? 
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How to reach me? 

Cell (212) 203-5004 

Email jcf@cs.nyu.edu 

AIM, Y! IM, ICQ jcf2_2003 

MSN IM jcf2_2003@yahoo.com 

LinkedIn http://www.linkedin.com/in/jcfranchitti 

Twitter http://twitter.com/jcfranchitti 

Skype jcf2_2003@yahoo.com 

Come on…what else 
did you expect? 

Woo hoo…find the word 
of the day… 
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What is the course about? 

Course description and syllabus: 

»  http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001_su14   

» http://cs.nyu.edu/courses/summer14/G22.2110-001/index.html  

 

Textbook: 
» Programming Language Pragmatics (3rd Edition) 

 Michael L. Scott 

 Morgan Kaufmann 

 ISBN-10: 0-12374-514-4, ISBN-13: 978-0-12374-514-4, (04/06/09)  
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Course goals 

 Intellectual: 

» help you understand benefit/pitfalls of different 

approaches to language design, and how they 

work 

Practical: 

» you may need to design languages in your 

career (at least small ones) 

» understanding how to use a programming  

paradigm can improve your programming even 

in languages that don’t support it 

» knowing how a feature is implemented helps 

understand time/space complexity 
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Icons / Metaphors 

7 

Common Realization 

Information 

Knowledge/Competency Pattern 

Governance 

Alignment 

Solution Approach 
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Introduction to Programming Languages - Sub-Topics 

 Introduction 

 Programming Language Design and Usage Main Themes 

 Programming Language as a Tool for Thought 

 Idioms 

 Why Study Programming Languages 

 Classifying Programming Languages 

 Imperative Languages 

 PL Genealogy 

 Predictable Performance vs. Writeability 

 Common Ideas 

 Development Environment & Language Libraries 

 Compilation vs. Interpretation 

 Programming Environment Tools 

 An Overview of Compilation 

 Abstract Syntax Tree 

 Scannerless Parsing 
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 Why are there so many programming 

languages? 

»evolution -- we've learned better ways of 

doing things over time 

» socio-economic factors: proprietary interests, 

commercial advantage 

»orientation toward special purposes 

»orientation toward special hardware 

»diverse ideas about what is pleasant to use 

Introduction (1/3) 
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 What makes a language successful? 
» easy to learn (BASIC, Pascal, LOGO, Scheme) 

» easy to express things, easy use once fluent, 

"powerful” (C, Common Lisp, APL, Algol-68, Perl) 

» easy to implement (BASIC, Forth) 

» possible to compile to very good (fast/small) code 

(Fortran) 

» backing of a powerful sponsor (COBOL, PL/1, Ada, 

Visual Basic) 

» wide dissemination at minimal cost (Pascal, Turing, 

Java) 

Introduction (2/3) 
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 Why do we have programming 

languages?  What is a language for? 

»way of thinking -- way of expressing 

algorithms 

» languages from the user's point of view 

»abstraction of virtual machine -- way of 

specifying what you want 

» the hardware to do without getting down into 

the bits 

» languages from the implementor's point of 

view 

Introduction (3/3) 
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Programming Language Design and Usage Main Themes (1/2) 

 Model of Computation (i.e., paradigm) 

 Expressiveness 
» Control structures 

» Abstraction mechanisms 

» Types and related operations 

» Tools for programming in the large 

 Ease of use 
» Writeability 

» Readability 

» Maintainability 

» Compactness – writeability/expressibility 

» Familiarity of Model 

» Less Error-Prone 

» Portability 

» Hides Details – simpler model 

» Early detection of errors 

» Modularity – Reuse, Composability, Isolation 

» Performance Transparency 

» Optimizability 

 Note Orthogonal Implementation Issues: 
» Compile time: parsing, type analysis, static checking 

» Run time: parameter passing, garbage collection, method dispatching, remote invocation, just-in-
time compiling, parallelization, etc. 
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Programming Language Design and Usage Main Themes (2/2) 

 Classical Issues in Language Design: 
» Dijkstra, “Goto Statement Considered Harmful”, 

• http://www.acm.org/classics/oct95/#WIRTH66 

» Backus, “Can Programming Be Liberated from the 

von Neumann Style?”  
• http://www.stanford.edu/class/cs242/readings/backus.pdf  

» Hoare, “An Axiomatic Basis For Computer 

Programming”, 
• http://www.spatial.maine.edu/~worboys/processes/hoare%20axiomatic.pdf 

» Hoare, “The Emperor’s Old Clothes”,  
• http://www.braithwaite-lee.com/opinions/p75-hoare.pdf 

» Parnas, “On the Criteria to be Used in Decomposing 

Systems into Modules”, 
• http://www.acm.org/classics/may96/ 

http://www.acm.org/classics/oct95/
http://www.stanford.edu/class/cs242/readings/backus.pdf
http://www.spatial.maine.edu/~worboys/processes/hoare axiomatic.pdf
http://www.braithwaite-lee.com/opinions/p75-hoare.pdf
http://www.braithwaite-lee.com/opinions/p75-hoare.pdf
http://www.braithwaite-lee.com/opinions/p75-hoare.pdf
http://www.braithwaite-lee.com/opinions/p75-hoare.pdf
http://www.braithwaite-lee.com/opinions/p75-hoare.pdf
http://www.acm.org/classics/may96/
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Programming Language as a Tool for Thought 

 Roles of programming language as a 

communication vehicle among programmers is 

more important than writeability 

 All general-purpose languages are Turing 

Complete (i.e., they can all compute the same 

things) 

 Some languages, however, can make the 

representation of certain algorithms 

cumbersome  

 Idioms in a language may be useful inspiration 

when using another language 
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Idioms 

 Copying a string q to p in C: 

» while (*p++ = *q ++) ; 

 Removing duplicates from the list @xs in Perl: 

» my % seen = (); 

 @xs = grep { ! $seen {$_ }++; } @xs ; 

 Computing the sum of numbers in list xs in 

Haskell: 

» foldr (+) 0 xs 

 

Is this natural? … It is if you’re used to it! 
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 Help you choose a language. 

»C vs. Modula-3 vs. C++ for systems 
programming 

»Fortran vs. APL vs. Ada for numerical 
computations 

»Ada vs. Modula-2 for embedded systems 

»Common Lisp vs. Scheme vs. ML for 
symbolic data manipulation 

»Java vs. C/CORBA for networked PC 
programs 

Why Study Programming Languages? (1/6) 
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 Make it easier to learn new languages 

some languages are similar; easy to walk 

down family tree 

»concepts have even more similarity; if you 

think in terms of iteration, recursion, 

abstraction (for example), you will find it 

easier to assimilate the syntax and semantic 

details of a new language than if you try to 

pick it up in a vacuum 

• Think of an analogy to human languages: good 

grasp of grammar makes it easier to pick up new 

languages (at least Indo-European). 

Why Study Programming Languages? (2/6) 
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 Help you make better use of whatever 

language you use 

»understand obscure features: 

• In C, help you understand unions, arrays & 

pointers, separate compilation, varargs, catch and 

throw 

• In Common Lisp, help you understand first-class 

functions/closures, streams, catch and throw, 

symbol internals 

Why Study Programming Languages? (3/6) 
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 Help you make better use of whatever 

language you use (cont.) 

»understand implementation costs: choose 

between alternative ways of doing things, 

based on knowledge of what will be done 

underneath: 
– use simple arithmetic equal (use x*x instead of x**2) 

– use C pointers or Pascal "with" statement to factor 

address calculations 

» http://www.freepascal.org/docs-html/ref/refsu51.html)  

– avoid call by value with large data items in Pascal 

– avoid the use of call by name in Algol 60 

– choose between computation and table lookup (e.g. for 

cardinality operator in C or C++) 

Why Study Programming Languages? (4/6) 

http://www.freepascal.org/docs-html/ref/refsu51.html
http://www.freepascal.org/docs-html/ref/refsu51.html
http://www.freepascal.org/docs-html/ref/refsu51.html
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 Help you make better use of whatever 

language you use (cont.) 

» figure out how to do things in languages that 

don't support them explicitly: 

• lack of suitable control structures in Fortran 

• use comments and programmer discipline for 

control structures 

• lack of recursion in Fortran, CSP, etc 

• write a recursive algorithm then use mechanical 

recursion elimination (even for things that aren't 

quite tail recursive) 

Why Study Programming Languages? (5/6) 
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 Help you make better use of whatever 

language you use (cont.) 

» figure out how to do things in languages that 

don't support them explicitly: 
– lack of named constants and enumerations in Fortran 

– use variables that are initialized once, then never 

changed 

– lack of modules in C and Pascal use comments and 

programmer discipline 

– lack of iterators in just about everything fake them with 

(member?) functions 

Why Study Programming Languages? (6/6) 
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 Group languages by programming paradigms: 

» imperative 

• von Neumann    (Fortran, Pascal, Basic, C, Ada) 

– programs have mutable storage (state) modified by assignments 

– the most common and familiar paradigm 

• object-oriented    (Simula 67, Smalltalk, Eiffel, 

                                                         Ada95, Java, C#) 

– data structures and their operations are bundled together 

– inheritance 

• scripting languages   (Perl, Python, JavaScript, PHP) 

» declarative 

• functional (applicative)   (Scheme, ML, pure Lisp, FP, Haskell) 

– functions are first-class objects / based on lambda calculus 

– side effects (e.g., assignments) discouraged 

• logic, constraint-based    (Prolog, VisiCalc, RPG, Mercury) 

– programs are sets of assertions and rules 

• Functional + Logical    (Curry) 

» Hybrids: imperative + OO   (C++)  

• functional + object-oriented   (O’Caml, O’Haskell) 

• Scripting (used to glue programs together)    (Unix shells, PERL, PYTHON, TCL 

                                                                                  PHP, JAVASCRIPT) 

Classifying Programming Languages (1/2) 
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 Compared to machine or assembly language, all others are high-level 

 But within high-level languages, there are different levels as well 

 Somewhat confusingly, these are also referred to as low-level and high-

level 

» Low-level languages give the programmer more control (at the cost of requiring 

more effort) over how the program is translated into machine code. 

• C, FORTRAN 

»  High-level languages hide many implementation details, often with some 

performance cost 

• BASIC, LISP, SCHEME, ML, PROLOG, 

»  Wide-spectrum languages try to do both: 

• ADA, C++, (JAVA) 

»  High-level languages typically have garbage collection and are often 

interpreted. 

»  The higher the level, the harder it is to predict performance (bad for real-time or 

performance-critical applications) 

» Note other “types/flavors” of languages: fourth generation (SETL, SQL), 

concurrent/distributed (Concurrent Pascal, Hermes), markup, special purpose (report 

writing), graphical, etc. 

Classifying Programming Languages (2/2) 
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 Imperative languages, particularly the von 

Neumann languages, predominate 

»They will occupy the bulk of our attention 

 We also plan to spend a lot of time on 

functional, and logic languages 

Imperative Languages  



26 

 FORTRAN (1957) => Fortran90, HP 

 COBOL (1956)  => COBOL 2000 

» still a large chunk of installed software 

 Algol60 => Algol68 => Pascal => Ada 

 Algol60 => BCPL => C => C++ 

 APL => J 

 Snobol => Icon 

 Simula => Smalltalk 

 Lisp => Scheme => ML => Haskell 

 with lots of cross-pollination:  
e.g., Java is influenced by C++, Smalltalk, Lisp, Ada, etc. 

PL Genealogy 



27 

 Low-level languages mirror the physical 

machine: 

» Assembly, C, Fortran 

 High-level languages model an abstract 

machine with useful capabilities: 

» ML, Setl, Prolog, SQL, Haskell 

 Wide-spectrum languages try to do both: 

» Ada, C++, Java, C# 

 High-level languages have garbage collection, 

are often interpreted, and cannot be used for 

real-time programming.  

» The higher the level, the harder it is to determine cost 

of operations. 

Predictable Performance vs. Writeability 



28 

 Modern imperative languages (e.g., Ada, C++, 

Java) have similar characteristics: 

» large number of features (grammar with several 

hundred productions, 500 page reference manuals, . 

. .) 

» a complex type system 

» procedural mechanisms 

» object-oriented facilities 

» abstraction mechanisms, with information hiding 

» several storage-allocation mechanisms 

» facilities for concurrent programming (not C++) 

» facilities for generic programming (new in Java) 

Common Ideas 
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 Design Patterns: Gamma, Johnson, Helm, Vlissides 

» Bits of design that work to solve sub-problems 

» What is mechanism in one language is pattern in another 

• Mechanism: C++ class 

• Pattern: C struct with array of function pointers 

• Exactly how early C++ compilers worked 

 Why use patterns 

» Start from very simple language, very simple semantics 

» Compare mechanisms of other languages by building patterns 

in simpler language 

» Enable meaningful comparisons between language 

mechanisms 

Language Mechanism & Patterns 
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 Development Environment 

» Interactive Development Environments 

• Smalltalk browser environment 

• Microsoft IDE 

»Development Frameworks 

• Swing, MFC 

»Language aware Editors 

Development Environment & Language Libraries (1/2) 
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 The programming environment may be larger 

than the language. 

» The predefined libraries are indispensable to the 

proper use of the language, and its popularity 

» Libraries change much more quickly than the 

language 

» Libraries usually very different for different languages 

» The libraries are defined in the language itself, but 

they have to be internalized by a good programmer 

» Examples: 

• C++ standard template library 

• Java Swing classes 

• Ada I/O packages 

• C++ Standard Template Library (STL) 

 

Development Environment & Language Libraries (2/2) 
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 Compilation vs. interpretation 

»not opposites 

»not a clear-cut distinction 

 Pure Compilation 

»The compiler translates the high-level source 

program into an equivalent target program 

(typically in machine language), and then 

goes away: 

Compilation vs. Interpretation (1/16) 
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 Pure Interpretation 

» Interpreter stays around for the execution of 

the program 

» Interpreter is the locus of control during 

execution 

Compilation vs. Interpretation (2/16) 
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 Interpretation: 

»Greater flexibility 

»Better diagnostics (error messages) 

 

 Compilation 

»  Better performance 

Compilation vs. Interpretation (3/16) 
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 Common case is compilation or simple 

pre-processing, followed by interpretation 

 Most language implementations include a 

mixture of both compilation and 

interpretation 

  

Compilation vs. Interpretation (4/16) 
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 Note that compilation does NOT have to produce 

machine language for some sort of hardware  

 Compilation is translation from one language into 

another, with full analysis of the meaning of the 

input 

 Compilation entails semantic understanding of 

what is being processed; pre-processing does 

not 

 A pre-processor will often let errors through.  A 

compiler hides further steps; a pre-processor 

does not 

Compilation vs. Interpretation (5/16) 
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 Many compiled languages have 

interpreted pieces, e.g., formats in Fortran 

or C 

 Most use “virtual instructions” 

»set operations in Pascal 

»string manipulation in Basic 

 Some compilers produce nothing but 

virtual instructions, e.g., Pascal P-code, 

Java byte code, Microsoft COM+ 

Compilation vs. Interpretation (6/16) 
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 Implementation strategies: 

»Preprocessor 

• Removes comments and white space 

• Groups characters into tokens (keywords, 

identifiers, numbers, symbols) 

• Expands abbreviations in the style of a macro 

assembler 

• Identifies higher-level syntactic structures (loops, 

subroutines) 

Compilation vs. Interpretation (7/16) 
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 Implementation strategies: 

»Library of Routines and Linking 

• Compiler uses a linker program to merge the 

appropriate library of subroutines (e.g., math 

functions such as sin, cos, log, etc.) into the final 

program: 

Compilation vs. Interpretation (8/16) 
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 Implementation strategies: 

»Post-compilation Assembly 

• Facilitates debugging (assembly language 

easier for people to read) 

• Isolates the compiler from changes in the 

format of machine language files (only 

assembler must be changed, is shared by 

many compilers) 

Compilation vs. Interpretation (9/16) 
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 Implementation strategies: 

»The C Preprocessor (conditional compilation) 

• Preprocessor deletes portions of code, which 

allows several versions of a program to be built 

from the same source 

Compilation vs. Interpretation (10/16) 
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 Implementation strategies: 

»Source-to-Source Translation (C++) 

• C++ implementations based on the early AT&T 

compiler generated an intermediate program in C, 

instead of an assembly language: 

Compilation vs. Interpretation (11/16) 
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 Implementation strategies: 

»Bootstrapping 

Compilation vs. Interpretation (12/16) 
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 Implementation strategies: 

»Compilation of Interpreted Languages 

• The compiler generates code that makes 

assumptions about decisions that won’t be 

finalized until runtime. If these assumptions are 

valid, the code runs very fast. If not, a dynamic 

check will revert to the interpreter. 

Compilation vs. Interpretation (13/16) 
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 Implementation strategies: 

»Dynamic and Just-in-Time Compilation 

• In some cases a programming system may 

deliberately delay compilation until the last 

possible moment. 

– Lisp or Prolog invoke the compiler on the fly, to 

translate newly created source into machine language, 

or to optimize the code for a particular input set. 

– The Java language definition defines a machine-

independent intermediate form known as byte code. 

Byte code is the standard format for distribution of Java 

programs. 

– The main C# compiler produces .NET Common 

Intermediate Language (CIL), which is then translated 

into machine code immediately prior to execution. 

Compilation vs. Interpretation (14/16) 
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 Implementation strategies: 

»Microcode 

• Assembly-level instruction set is not implemented 

in hardware; it runs on an interpreter. 

• Interpreter is written in low-level instructions 

(microcode or firmware), which are stored in read-

only memory and executed by the hardware. 

Compilation vs. Interpretation (15/16) 
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 Compilers exist for some interpreted languages, 
but they aren't pure: 
» selective compilation of compilable pieces and extra-

sophisticated pre-processing of remaining source.   

» Interpretation of parts of code, at least, is still 
necessary for reasons above. 

 Unconventional compilers 
» text formatters 

» silicon compilers 

» query language processors 

Compilation vs. Interpretation (16/16) 
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 Tools 

Programming Environment Tools 
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 Phases of Compilation 

An Overview of Compilation (1/15) 
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 Scanning: 

»divides the program into "tokens", which are 

the smallest meaningful units; this saves 

time, since character-by-character processing 

is slow 

»we can tune the scanner better if its job is 

simple; it also saves complexity (lots of it) for 

later stages  

»you can design a parser to take characters 

instead of tokens as input, but it isn't pretty 

»scanning is recognition of a regular language, 

e.g., via Deterministic Finite Automata (DFA) 

An Overview of Compilation (2/15) 
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 Parsing is recognition of a context-free 

language, e.g., via Push Down Automata 

(PDA) 

»Parsing discovers the "context free" structure 

of the program  

» Informally, it finds the structure you can 

describe with syntax diagrams (the "circles 

and arrows" in a Pascal manual) 

An Overview of Compilation (3/15) 
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 Semantic analysis is the discovery of 

meaning in the program 

»The compiler actually does what is called 

STATIC semantic analysis. That's the 

meaning that can be figured out at compile 

time 

»Some things (e.g., array subscript out of 

bounds) can't be figured out until run time.  

Things like that are part of the program's 

DYNAMIC semantics 

An Overview of Compilation (4/15) 



53 

 Intermediate form (IF) done after semantic 

analysis (if the program passes all checks) 

» IFs are often chosen for machine independence, 

ease of optimization, or compactness (these are 

somewhat contradictory) 

»They often resemble machine code for some 

imaginary idealized machine; e.g. a stack 

machine, or a machine with arbitrarily many 

registers   

»Many compilers actually move the code through 
more than one IF  

An Overview of Compilation (5/15) 
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 Optimization takes an intermediate-code 

program and produces another one that 

does the same thing faster, or in less 

space  

»The term is a misnomer; we just improve 

code   

»The optimization phase is optional 

 Code generation phase produces 

assembly language or (sometime) 

relocatable machine language 

An Overview of Compilation (6/15) 
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 Certain machine-specific optimizations 

(use of special instructions or addressing 

modes, etc.) may be performed during or 

after target code generation  

 Symbol table: all phases rely on a symbol 

table that keeps track of all the identifiers in 

the program and what the compiler knows 

about them 

»This symbol table may be retained (in some 

form) for use by a debugger, even after 

compilation has completed 

An Overview of Compilation (7/15) 
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 Lexical and Syntax Analysis 

»GCD Program (in C) 

int main() {  

 int i = getint(), j = getint();  

 while (i != j) {  

  if (i > j) i = i - j;  

  else j = j - i;  

 }  

 putint(i);  

}  

An Overview of Compilation (8/15) 
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 Lexical and Syntax Analysis 

»GCD Program Tokens 

• Scanning (lexical analysis) and parsing 

recognize the structure of the program, groups 

characters into tokens, the smallest meaningful 

units of the program 

int      main   (   )        { 

int      i      =   getint   (   )   ,   j   =   getint   (   )   ; 

while    (      i   !=       j   )   {  

if       (      i   >        j   )   i   =   i   -        j   ;  

else     j      =   j        -   i   ;  

}  

putint   (      i   )        ;  

}  

An Overview of Compilation (9/15) 
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 Lexical and Syntax Analysis 

»Context-Free Grammar and Parsing 

• Parsing organizes tokens into a parse tree that 

represents higher-level constructs in terms of their 

constituents 

• Potentially recursive rules known as context-free 

grammar define the ways in which these 

constituents combine 

An Overview of Compilation (10/15) 
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 Context-Free Grammar and Parsing 

»Example (while loop in C) 

iteration-statement → while ( expression ) statement  

 

statement, in turn, is often a list enclosed in braces:  

statement → compound-statement  

compound-statement → { block-item-list opt }  

where  

block-item-list opt → block-item-list  

or  

block-item-list opt → ϵ  

and  

block-item-list → block-item  

block-item-list → block-item-list block-item  

block-item → declaration  

block-item → statement 

An Overview of Compilation (11/15) 
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 Context-Free Grammar and Parsing 

»GCD Program Parse Tree 

next slide 

A 

B 

An Overview of Compilation (12/15) 
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 Context-Free Grammar and Parsing (cont.) 

An Overview of Compilation (13/15) 
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 Context-Free Grammar and Parsing (cont.) 

A B 

An Overview of Compilation (14/15) 
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 Syntax Tree 

»GCD Program Parse Tree 

An Overview of Compilation (15/15) 
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 Many non-terminals inside a parse tree are artifacts of 

the grammar 

 Remember: 

    E ::= E + T | T 

    T ::= T * Id | Id 

 The parse tree for B * C can be written as 

    E(T(Id(B), Id(C))) 

 In constrast, an abstract syntax tree (AST) captures only 

those tree nodes that are necessary for representing the 

program 

 In the example: 

    T(Id(B), Id(C)) 

 Consequently, many parsers really generate abstract 

syntax trees. 

Abstract Syntax Tree (1/2) 
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 Another explanation for abstract syntax 

tree: It’s a tree capturing only semantically 

relevant information for a program 

» i.e., omitting all formatting and comments 

 Question 1: What is a concrete syntax 

tree? 

 Question 2: When do I need a concrete 

syntax tree? 

Abstract Syntax Tree (2/2) 
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 Separating syntactic analysis into lexing and 

parsing helps performance. After all, regular 

expressions can be made very fast 

 But it also limits language design choices. For 

example, it’s very hard to compose different 

languages with separate lexers and parsers — 

think embedding SQL in JAVA 

 Scannerless parsing integrates lexical analysis 

into the parser, making this problem more 

tractable. 

 

Scannerless Parsing 
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2 Introduction to Programming Languages 

Agenda 

1 Instructor and Course Introduction 

3 Programming Language Syntax 

4 Conclusion 
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Programming Language Syntax - Sub-Topics 

 Language Definition 

 Syntax and Semantics 

 Grammars 

 The Chomsky Hierarchy 

 Regular Expressions 

 Regular Grammar Example 

 Lexical Issues 

 Context-Free Grammars 

 Scanning 

 Parsing 

 LL Parsing 

 LR Parsing 

 

 

 



69 

 Different users have different needs: 

»programmers: tutorials, reference manuals, 

programming guides (idioms) 

» implementors: precise operational 

semantics 

»verifiers: rigorous axiomatic or natural 

semantics 

» language designers and lawyers: all of the 

above 

 Different levels of detail and precision 

»but none should be sloppy! 

Language Definition 
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 Syntax refers to external representation: 
» Given some text, is it a well-formed program? 

 Semantics denotes meaning: 
» Given a well-formed program, what does it mean? 

» Often depends on context 

 The division is somewhat arbitrary 
» Note:  

• It is possible to fully describe the syntax and semantics of a programming 
language by syntactic means (e.g., Algol68 and W-grammars), but this is 
highly impractical 

• Typically use a grammar for the context-free aspects, and different 
method for the rest 

» Similar looking constructs in different languages often have 
subtly (or not-so-subtly) different meanings 

» Good syntax, unclear semantics: “Colorless green ideas sleep 
furiously” 

» Good semantics, poor syntax: “Me go swimming now, sorry 
bye” 

» In programming languages: syntax tells you what a well-
formed program looks like. Semantic tells you relationship of 
output to input 

Syntax and Semantics 
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 A grammar G is a tuple (Σ,N, S, δ) 

» N is the set of non-terminal symbols 

» S is the distinguished non-terminal: the root symbol 

» Σ is the set of terminal symbols (alphabet) 

» δ is the set of rewrite rules (productions) of the form: 

    ABC. . . ::= XYZ . . . 

 where A,B,C,D,X,Y, Z are terminals and non terminals 

» The language is the set of sentences containing only 

terminal symbols that can be generated by applying 

the rewriting rules starting from the root symbol (let’s 

call such sentences strings) 

Grammars (1/2) 
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 Consider the following grammar G: 
»  N = {S;X; Y} 

»  S = S 

»  Σ = {a; b; c} 

»  δ consists of the following rules: 
• S -> b 

• S -> XbY 

• X -> a 

• X -> aX 

• Y -> c 

• Y ->Y c 

» Some sample derivations: 
• S -> b 

• S -> XbY -> abY -> abc 

• S -> XbY -> aXbY -> aaXbY -> aaabY -> aaabc 

Grammars (2/2) 
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 Regular grammars (Type 3) 

» all productions can be written in the form: N ::= TN 

» one non-terminal on left side; at most one on right 

 Context-free grammars (Type 2) 

» all productions can be written in the form: N ::= XYZ 

» one non-terminal on the left-hand side; mixture on right 

 Context-sensitive grammars (Type 1) 

» number of symbols on the left is no greater than on the 

right 

» no production shrinks the size of the sentential form 

 Type-0 grammars 

» no restrictions 

The Chomsky Hierarchy 
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 An alternate way of describing a regular language is 
with regular expressions 
We say that a regular expression R denotes the language [[R]] 

Recall that a language is a set of strings 

Basic regular expressions: 

» Є denotes Ǿ 

» a character x, where x Є Σ, denotes {x} 

» (sequencing) a sequence of two regular expressions RS 
denotes 

» {αβ | α Є [[R]], β Є [[S]]} 

» (alternation) R|S denotes [[R]] U [[S]] 

» (Kleene star) R* denotes the set of strings which are 
concatenations of zero or more strings from [[R]] 

» parentheses are used for grouping 

» Shorthands: 

• R? ≡ Є | R 

• R+ ≡ RR* 

Regular Expressions (1/3) 
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 A regular expression is one of the 

following: 

»A character 

»The empty string, denoted by  

»Two regular expressions concatenated 

»Two regular expressions separated by | 

(i.e., or) 

»A regular expression followed by the Kleene 

star (concatenation of zero or more strings) 

Regular Expressions (2/3) 
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Regular Expressions (3/3) 

 Numerical literals in Pascal may be 

generated by the following: 
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 A grammar for floating point numbers: 

» Float ::= Digits | Digits . Digits 

» Digits ::= Digit | Digit Digits  

» Digit ::= 0|1|2|3|4|5|6|7|8|9 

 A regular expression for floating point numbers: 

» (0|1|2|3|4|5|6|7|8|9)+(.(0|1|2|3|4|5|6|7|8|9)+)? 

 Perl offer some shorthands: 

» [0 -9]+(\.[0 -9]+)? 

 or 

» \d +(\.\ d+)? 

Regular Grammar Example 
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Lexical: formation of words or tokens 

 

 Tokens are the basic building blocks of programs: 
» keywords (begin, end, while). 

» identifiers (myVariable, yourType) 

» numbers (137, 6:022e23) 

» symbols (+, 􀀀 ) 

» string literals (“Hello world”) 

 Described (mainly) by regular grammars 

 Terminals are characters. Some choices: 
» character set: ASCII, Latin-1, ISO646, Unicode, etc. 

» is case significant? 

 Is indentation significant? 
» Python, Occam, Haskell 

  

Example: identifiers 

   Id ::= Letter IdRest 

               IdRest ::= Є | Letter IdRest | Digit IdRest 

 

           Missing from above grammar: limit of identifier length 

 

Other issues: international characters, case-sensitivity, limit of identifier length 

Lexical Issues 
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 BNF: notation for context-free grammars 

» (BNF = Backus-Naur Form) Some conventional 

abbreviations: 

• alternation: Symb ::= Letter | Digit 

• repetition: Id ::= Letter {Symb} 

 or we can use a Kleene star: Id ::= Letter Symb* 

 for one or more repetitions: Int ::= Digit+ 

• option: Num ::= Digit+[. Digit*] 

 abbreviations do not add to expressive power 

of grammar 

 need convention for meta-symbols – what if “|” 

is in the language? 

Context-Free Grammars (1/7) 
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 The notation for context-free grammars 

(CFG) is sometimes called Backus-Naur 

Form (BNF) 

 A CFG consists of 

»A set of terminals T 

»A set of non-terminals N 

»A start symbol S (a non-terminal) 

»A set of productions 

Context-Free Grammars (2/7) 
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 Expression grammar with precedence 

and associativity 

Context-Free Grammars (3/7) 
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 A parse tree describes the grammatical 
structure of a sentence 

» root of tree is root symbol of grammar 

» leaf nodes are terminal symbols 

» internal nodes are non-terminal symbols 

»an internal node and its descendants 
correspond to some production for that non 
terminal 

» top-down tree traversal represents the 
process of generating the given sentence 
from the grammar 

»construction of tree from sentence is parsing 

Context-Free Grammars (4/7) 
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 Ambiguity: 
» If the parse tree for a sentence is not unique, the 

grammar is ambiguous: 

                         E ::= E + E | E * E | Id 

» Two possible parse trees for “A + B * C”: 
• ((A + B) * C) 

• (A + (B * C)) 

» One solution: rearrange grammar: 

                         E ::= E + T | T 

                         T ::= T *  Id | Id 

» Harder problems – disambiguate these (courtesy of 
Ada): 
• function call ::= name (expression list) 

• indexed component ::= name (index list) 

• type conversion ::= name (expression) 

Context-Free Grammars (5/7) 
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 Parse tree for expression grammar (with 
precedence) for  3 + 4 * 5 

Context-Free Grammars (6/7) 
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 Parse tree for expression grammar (with 
left associativity) for  10 - 4 - 3 

Context-Free Grammars (7/7) 
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 Recall scanner is responsible for 

» tokenizing source 

» removing comments 

» (often) dealing with pragmas (i.e., significant 

comments) 

»saving text of identifiers, numbers, strings 

»saving source locations (file, line, column) for 

error messages 

Scanning (1/11) 
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 Suppose we are building an ad-hoc (hand-

written) scanner for Pascal: 

» We read the characters one at a time with look-

ahead 

 If it is one of the one-character tokens  
{ ( ) [ ] < > , ; = + - etc } 

we announce that token 

 If it is a ., we look at the next character 

» If that is a dot, we announce . 

» Otherwise, we announce . and reuse the look-

ahead 

Scanning (2/11) 
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 If it is a <, we look at the next character 

» if that is a = we announce <= 

»otherwise, we announce < and reuse the 

look-ahead, etc 

 If it is a letter, we keep reading letters and 

digits and maybe underscores until we 

can't anymore 

» then we check to see if it is a reserved word 

Scanning (3/11) 
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 If it is a digit, we keep reading until we find 

a non-digit 

» if that is not a . we announce an integer 

»otherwise, we keep looking for a real number 

» if the character after the . is not a digit we 

announce an integer and reuse the . and the 

look-ahead 

Scanning (4/11) 
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 Pictorial 

representation 

of a scanner for 

calculator 

tokens, in the 

form of a finite 

automaton 

Scanning (5/11) 
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 This is a deterministic finite automaton 

(DFA) 

»Lex, scangen, etc. build these things 

automatically from a set of regular 

expressions 

»Specifically, they construct a machine 

that accepts the language 
identifier | int const  

| real const | comment | symbol 

| ... 

Scanning (6/11) 
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Scanning 

 We run the machine over and over to get 

one token after another 

»Nearly universal rule: 

• always take the longest possible token from the 

input 

thus foobar is foobar and never f or foo or foob 

• more to the point, 3.14159 is a real const and 

never 3, ., and 14159 

 Regular expressions "generate" a regular 

language; DFAs "recognize" it 

Scanning (7/11) 
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 Scanners tend to be built three ways 

»ad-hoc 

»semi-mechanical pure DFA  

(usually realized as nested case statements) 

» table-driven DFA 

 Ad-hoc generally yields the fastest, most 

compact code by doing lots of special-

purpose things, though good 

automatically-generated scanners come 

very close 

Scanning (8/11) 
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 Writing a pure DFA as a set of nested 

case statements is a surprisingly useful 

programming technique  

» though it's often easier to use perl, awk, sed 

» for details (see textbook’s Figure 2.11) 

 Table-driven DFA is what lex and 

scangen produce 

» lex (flex) in the form of C code 

»scangen in the form of numeric tables and a 

separate driver (for details see textbook’s 

Figure 2.12) 

Scanning (9/11) 
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 Note that the rule about longest-possible 
tokens means you return only when the next 
character can't be used to continue the 
current token 
» the next character will generally need to be saved 

for the next token 

 In some cases, you may need to peek at 
more than one character of look-ahead in 
order to know whether to proceed 
» In Pascal, for example, when you have a 3 and 

you a see a dot 
• do you proceed (in hopes of getting 3.14)? 

or  

• do you stop (in fear of getting 3..5)? 

Scanning (10/11) 
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 In messier cases, you may not be able to 

get by with any fixed amount of look-

ahead.In Fortran, for example, we have 
 DO 5 I = 1,25 loop 

 DO 5 I = 1.25 assignment 

 Here, we need to remember we were in a 

potentially final state, and save enough 

information that we can back up to it, if we 

get stuck later 

Scanning (11/11) 
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 Terminology: 

»context-free grammar (CFG) 

»symbols 
• terminals (tokens) 

• non-terminals 

»production 

»derivations (left-most and right-most - 
canonical) 

»parse trees 

»sentential form 

Parsing (1/7) 
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 By analogy to RE and DFAs, a context-

free grammar (CFG) is a generator for a 

context-free language (CFL) 

»a parser is a language recognizer 

 There is an infinite number of grammars 

for every context-free language  

»not all grammars are created equal, however 

Parsing (2/7) 
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 It turns out that for any CFG we can 

create a parser that runs in O(n^3) time 

 There are two well-known parsing 

algorithms that permit this 

»Early's algorithm 

»Cooke-Younger-Kasami (CYK) algorithm 

 O(n^3) time is clearly unacceptable for a 

parser in a compiler - too slow 

Parsing (3/7) 
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 Fortunately, there are large classes of 

grammars for which we can build parsers 

that run in linear time 

»The two most important classes are called  

LL and LR 

 LL stands for  

'Left-to-right, Leftmost derivation'. 

 LR stands for  

'Left-to-right, Rightmost derivation’ 

Parsing (4/7) 
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 LL parsers are also called 'top-down', or 

'predictive' parsers & LR parsers are also 

called 'bottom-up', or 'shift-reduce' parsers 

 There are several important sub-classes of 

LR parsers 

»SLR 

»LALR 

 We won't be going into detail of the 

differences between them 

Parsing (5/7) 
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 Every LL(1) grammar is also LR(1), though 

right recursion in production tends to 

require very deep stacks and complicates 

semantic analysis 

 Every CFL that can be parsed 

deterministically has an SLR(1) grammar 

(which is LR(1)) 

 Every deterministic CFL with the prefix 

property (no valid string is a prefix of 

another valid string) has an LR(0) grammar 

Parsing (6/7) 
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 You commonly see LL or LR (or 

whatever) written with a number in 

parentheses after it 

»This number indicates how many tokens of 

look-ahead are required in order to parse 

»Almost all real compilers use one token of 

look-ahead 

 The expression grammar (with 

precedence and associativity) you saw 

before is LR(1), but not LL(1) 

Parsing (7/7) 
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 Here is an LL(1) grammar (Fig 2.15): 

 
1. program   → stmt list $$$ 

2. stmt_list  → stmt stmt_list  

3.     | ε 

4. stmt  →  id := expr  

5.     | read id  

6.     | write expr 

7. expr →  term term_tail 

8. term_tail → add op term term_tail  

9.     | ε 

LL Parsing (1/23) 



105 

 LL(1) grammar (continued) 

 
10. term →  factor fact_tailt 

11. fact_tail → mult_op fact fact_tail 

12.     | ε 

13.  factor  →  ( expr )  

14.     | id  

15.     | number 

16.  add_op →  +  

17.     | - 

18.  mult_op → *  

19.     | / 

LL Parsing (2/23) 
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 Like the bottom-up grammar, this one 

captures associativity and precedence, 

but most people don't find it as pretty 

» for one thing, the operands of a given 

operator aren't in a RHS together!   

»however, the simplicity of the parsing 

algorithm makes up for this weakness 

 How do we parse a string with this 

grammar?  

»by building the parse tree incrementally 

LL Parsing (3/23) 
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 Example (average program) 

  read A 

  read B 

  sum := A + B 

  write sum 

  write sum / 2 

 We start at the top and predict needed 

productions on the basis of the current left-

most non-terminal in the tree and the current 

input token 

LL Parsing (4/23) 
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 Parse tree for the average program (Figure 
2.17) 

     

LL Parsing (5/23) 
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 Table-driven LL parsing:  you have a big 

loop in which you repeatedly look up an 

action in a two-dimensional table based 

on current leftmost non-terminal and 

current input token.  The actions are  

(1) match a terminal 

(2) predict a production 

(3) announce a syntax error 

LL Parsing (6/23) 
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 LL(1) parse table for parsing for calculator 

language 

LL Parsing (7/23) 
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 To keep track of the left-most non-

terminal, you push the as-yet-unseen 

portions of productions onto a stack 

» for details see Figure 2.20 

 The key thing to keep in mind is that the 

stack contains all the stuff you expect to 

see between now and the end of the 

program  

»what you predict you will see  

LL Parsing (8/23) 
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 Problems trying to make a grammar LL(1) 

» left recursion 

• example: 

id_list → id | id_list , id 

   equivalently 

id_list → id id_list_tail 

id_list_tail → , id id_list_tail 

    | epsilon 

• we can get rid of all left recursion mechanically in 

any grammar 

LL Parsing (9/23) 
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 Problems trying to make a grammar 
LL(1) 

»common prefixes: another thing that LL 
parsers can't handle 

• solved by "left-factoring” 

• example: 

 stmt → id := expr | id ( arg_list ) 

   equivalently 

 stmt → id id_stmt_tail 

 id_stmt_tail → := expr  

    | ( arg_list) 

• we can eliminate left-factor mechanically 

LL Parsing (10/23) 
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 Note that eliminating left recursion and 

common prefixes does NOT make a 

grammar LL 

» there are infinitely many non-LL 

LANGUAGES, and the mechanical 

transformations work on them just fine 

» the few that arise in practice, however, can 

generally be handled with kludges 

LL Parsing (11/23) 
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 Problems trying to make a grammar LL(1) 

» the"dangling else" problem prevents 

grammars from being LL(1) (or in fact LL(k) 

for any k) 

» the following natural grammar fragment is 

ambiguous (Pascal) 

stmt → if cond then_clause else_clause 

 | other_stuff 

then_clause → then stmt 

else_clause → else stmt  

   | epsilon 

LL Parsing (12/23) 



116 

 Consider:    S ::= if E then S 

                      S ::= if E then S else S 

 The sentence 

             if E1 then if E2 then S1 else S2 

     is ambiguous (Which then does else S2 match?) 

 Solutions: 

» Pascal rule: else matches most recent if 

» grammatical solution: different productions for balanced 

and unbalanced 

» if-statements 

» grammatical solution: introduce explicit end-marker 

 The general ambiguity problem is unsolvable 

LL Parsing (13/23) 
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 The less natural grammar fragment can be 

parsed bottom-up but not top-down 

 
stmt → balanced_stmt | unbalanced_stmt 

balanced_stmt → if cond then balanced_stmt 

     else balanced_stmt  

   | other_stuff 

unbalanced_stmt → if cond then stmt  

   | if cond then balanced_stmt  

     else unbalanced_stmt 

LL Parsing (14/23) 
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 The usual approach, whether top-down 

OR bottom-up, is to use the ambiguous 

grammar together with a disambiguating 

rule that says  

»else goes with the closest then or 

»more generally, the first of two possible 

productions is the one to predict (or reduce) 

LL Parsing (15/23) 
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 Better yet, languages (since Pascal) generally 

employ explicit end-markers, which eliminate 

this problem 

 In Modula-2, for example, one says: 

 if A = B then 

   if C = D then E := F end 

 else 

   G := H 

 end 

 Ada says 'end if'; other languages say 'fi' 

LL Parsing (16/23) 
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 One problem with end markers is that 
they tend to bunch up. In Pascal you say 

  if A = B then … 

 else if A = C then … 

 else if A = D then … 

 else if A = E then … 

 else ...; 

 With end markers this becomes 
  if A = B then … 

 else if A = C then … 

 else if A = D then … 

 else if A = E then …  

 else ...; 

 end; end; end; end; 

LL Parsing (17/23) 



121 

 The algorithm to build predict sets is 

tedious (for a "real" sized grammar), but 

relatively simple 

 It consists of three stages: 

» (1) compute FIRST sets for symbols 

» (2) compute FOLLOW sets for non-terminals 

(this requires computing FIRST sets for some 

strings) 

» (3) compute predict sets or table for all 

productions 

LL Parsing (18/23) 
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 It is conventional in general discussions of 

grammars to use  

» lower case letters near the beginning of the alphabet 

for terminals 

» lower case letters near the end of the alphabet for 

strings of terminals 

» upper case letters near the beginning of the alphabet 

for non-terminals 

» upper case letters near the end of the alphabet for 

arbitrary symbols 

» greek letters for arbitrary strings of symbols 

LL Parsing (19/23) 
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• Algorithm First/Follow/Predict: 

– FIRST(α) == {a : α  →* a β} 

 ∪ (if α =>* ε THEN {ε} ELSE NULL) 

– FOLLOW(A) == {a : S  →+ α A a β} 

 ∪ (if S →* α A THEN {ε} ELSE NULL) 

– Predict (A → X1 ... Xm) == (FIRST (X1 ... 

Xm) - {ε})  ∪  (if X1, ..., Xm →* ε then 

FOLLOW (A) ELSE NULL) 

 Details following… 

LL Parsing (20/23) 
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LL Parsing (21/23) 
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LL Parsing (22/23) 



126 

 If any token belongs to the predict set 

of more than one production with the 

same LHS, then the grammar is not 

LL(1) 

 A conflict can arise because  

» the same token can begin more than one 

RHS 

» it can begin one RHS and can also appear 

after the LHS in some valid program, and 

one possible RHS is  

LL Parsing (23/23) 
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 LR parsers are almost always table-

driven: 

» like a table-driven LL parser, an LR parser 

uses a big loop in which it repeatedly 

inspects a two-dimensional table to find out 

what action to take 

»unlike the LL parser, however, the LR driver 

has non-trivial state (like a DFA), and the 

table is indexed by current input token and 

current state 

» the stack contains a record of what has been 

seen SO FAR (NOT what is expected) 

LR Parsing (1/11) 
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 A scanner is a DFA 

» it can be specified with a state diagram 

 An LL or LR parser is a PDA 

»Early's & CYK algorithms do NOT use PDAs 

»a PDA can be specified with a state diagram 

and a stack 

• the state diagram looks just like a DFA state 

diagram, except the arcs are labeled with <input 

symbol, top-of-stack symbol> pairs, and in 

addition to moving to a new state the PDA has the 

option of pushing or popping a finite number of 

symbols onto/off the stack 

LR Parsing (2/11) 
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 An LL(1) PDA has only one state!   

»well, actually two; it needs a second one to 

accept with, but that's all (it's pretty simple)  

»all the arcs are self loops; the only difference 

between them is the choice of whether to 

push or pop 

» the final state is reached by a transition that 

sees EOF on the input and the stack 

LR Parsing (3/11) 
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 An SLR/LALR/LR PDA has multiple states 

» it is a "recognizer," not a "predictor"   

» it builds a parse tree from the bottom up 

» the states keep track of which productions we might 

be in the middle 

 The parsing of the Characteristic Finite State 

Machine (CFSM) is based on 

» Shift 

» Reduce 

LR Parsing (4/11) 
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 To illustrate LR parsing, consider the 
grammar (Figure 2.24, Page 73): 

 
1. program  → stmt list $$$ 

2. stmt_list → stmt_list stmt 

3.     | stmt 

4. stmt  → id := expr 

5.     | read id  

6.     | write expr 

7. expr  → term 

8.     | expr add op term 

LR Parsing (5/11) 
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 LR grammar (continued): 

 
9. term  →  factor  

10.     | term mult_op factor 

11.  factor →( expr )  

12.     | id  

13.     | number 

14.  add op → +  

15.     | - 

16.  mult op → *  

17.     | / 

LR Parsing (6/11) 
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 This grammar is SLR(1), a particularly 

nice class of bottom-up grammar 

» it isn't exactly what we saw originally 

»we've eliminated the epsilon production to 

simplify the presentation 

 For details on the table driven SLR(1) 

parsing please note the following slides 

LR Parsing (7/11) 
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LR Parsing (8/11) 
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LR Parsing (9/11) 
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LR Parsing (10/11) 
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 SLR parsing is 

based on 

»Shift 

»Reduce 

and also 

»Shift & Reduce 

(for 

optimization) 

LR Parsing (11/11) 
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2 Introduction to Programming Languages 

Agenda 

1 Instructor and Course Introduction 

3 Programming Language Syntax 

4 Conclusion 
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Assignments & Readings 

 Readings 

» Foreword/Preface, Chapters 1 and 2 (in particular, section 2.2.1)  

 Assignment #1 

» See Assignment #1 posted under “handouts” on the course Web site 

» Due on June 12, 2014 by the beginning of class 
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Recommended Reference Books 

 

 The books written by the creators of C++ and Java are the standard 
references:  
» Stroustrup. The C++ programming Language, 3rd ed. (Addison-Wesley)  

» Ken Arnold, James Gosling, and David Holmes. The Java(TM) Programming Language, 4th ed. 

(Addison-Wesley)  

 For the remaining languages, there is a lot of information available on 
the web in the form of references and tutorials, so books may not be 
strictly necessary, but a few recommended textbooks are as follows:  
» John Barnes. Programming in Ada95, 2nd ed. (Addison Wesley)  

» Lawrence C. Paulson. ML for the Working Programmer, 2nd ed. Cambridge University Press  

» David Gelernter and Suresh Jagannathan: “Programming Linguistics”, MIT Press, 1990 

» Benjamin C. Pierce: “Types and Programming Languages”, MIT Press, 2002 

» Larry Wall, Tom Christiansen, and Jon Orwant: Programming Perl, 3rd ed. (O'Reilly)  

» Giannesini et al: “Prolog”, Addison-Wesley 1986. 

» Dewhurst & Stark, “Programming in C++”, Prentice Hall, 1989. 

» Ada 95 Reference Manual, http://www.adahome.com/rm95/ 

» MIT Scheme Reference  

• http://www-swiss.ai.mit.edu/projects/scheme/documentation/scheme.html  

» Strom et al: “Hermes: A Language for Distributed Computing”, Prentice-Hall, 1991. 

» R. Kent Dybvig, “The SCHEME Programming Language”, Prentice Hall, 1987 

» Jan Skansholm, “ADA 95 From the Beginning”, Addison Wesley, 1997. 

 

http://www.adahome.com/rm95/
http://www-swiss.ai.mit.edu/projects/scheme/documentation/scheme.html
http://www-swiss.ai.mit.edu/projects/scheme/documentation/scheme.html
http://www-swiss.ai.mit.edu/projects/scheme/documentation/scheme.html
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Next Session: Imperative Languages – Names, Scoping, and Bindings  


