
1

Programming Languages

Session 1 – Main Theme

Programming Languages Overview & Syntax

Dr. Jean-Claude Franchitti

New York University

Computer Science Department

Courant Institute of Mathematical Sciences

Adapted from course textbook resources

Programming Language Pragmatics (3rd Edition)

Michael L. Scott, Copyright © 2009 Elsevier

2

2 Introduction to Programming Languages

Agenda

1 Instructor and Course Introduction

3 Programming Language Syntax

4 Conclusion

3

- Profile -

 31 years of experience in the Information Technology Industry, including thirteen years of experience

working for leading IT consulting firms such as Computer Sciences Corporation

 PhD in Computer Science from University of Colorado at Boulder

 Past CEO and CTO

 Held senior management and technical leadership roles in many large IT Strategy and Modernization

projects for fortune 500 corporations in the insurance, banking, investment banking, pharmaceutical, retail,

and information management industries

 Contributed to several high-profile ARPA and NSF research projects

 Played an active role as a member of the OMG, ODMG, and X3H2 standards committees and as a

Professor of Computer Science at Columbia initially and New York University since 1997

 Proven record of delivering business solutions on time and on budget

 Original designer and developer of jcrew.com and the suite of products now known as IBM InfoSphere

DataStage

 Creator of the Enterprise Architecture Management Framework (EAMF) and main contributor to the creation

of various maturity assessment methodology

 Developed partnerships between several companies and New York University to incubate new

methodologies (e.g., EA maturity assessment methodology developed in Fall 2008), develop proof of

concept software, recruit skilled graduates, and increase the companies’ visibility

Who am I?

4

How to reach me?

Cell (212) 203-5004

Email jcf@cs.nyu.edu

AIM, Y! IM, ICQ jcf2_2003

MSN IM jcf2_2003@yahoo.com

LinkedIn http://www.linkedin.com/in/jcfranchitti

Twitter http://twitter.com/jcfranchitti

Skype jcf2_2003@yahoo.com

Come on…what else
did you expect?

Woo hoo…find the word
of the day…

5

What is the course about?

Course description and syllabus:

» http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001_su14

» http://cs.nyu.edu/courses/summer14/G22.2110-001/index.html

Textbook:
» Programming Language Pragmatics (3rd Edition)

 Michael L. Scott

 Morgan Kaufmann

 ISBN-10: 0-12374-514-4, ISBN-13: 978-0-12374-514-4, (04/06/09)

http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001_su14
http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001_su14
http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001_su14
http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001_su14
http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001_su14
http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001_su14
http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001_su14
http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001_su14
http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001_su14
http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001_su14
http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001_su14
http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001_su14
http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001_su14
http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001_su14
http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001_su14
http://www.nyu.edu/classes/jcf/CSCI-GA.2110-001_su14
http://cs.nyu.edu/courses/spring11/G22.2110-001/index.html
http://cs.nyu.edu/courses/spring11/G22.2110-001/index.html
http://cs.nyu.edu/courses/spring11/G22.2110-001/index.html
http://cs.nyu.edu/courses/spring11/G22.2110-001/index.html
http://cs.nyu.edu/courses/spring11/G22.2110-001/index.html
http://cs.nyu.edu/courses/spring11/G22.2110-001/index.html
http://cs.nyu.edu/courses/spring11/G22.2110-001/index.html
http://cs.nyu.edu/courses/spring11/G22.2110-001/index.html
http://cs.nyu.edu/courses/spring11/G22.2110-001/index.html
http://cs.nyu.edu/courses/spring11/G22.2110-001/index.html
http://cs.nyu.edu/courses/spring11/G22.2110-001/index.html
http://cs.nyu.edu/courses/spring11/G22.2110-001/index.html
http://cs.nyu.edu/courses/spring11/G22.2110-001/index.html
http://cs.nyu.edu/courses/spring11/G22.2110-001/index.html
http://cs.nyu.edu/courses/spring11/G22.2110-001/index.html
http://cs.nyu.edu/courses/spring11/G22.2110-001/index.html
http://cs.nyu.edu/courses/spring11/G22.2110-001/index.html
http://cs.nyu.edu/courses/spring11/G22.2110-001/index.html

6

Course goals

 Intellectual:

» help you understand benefit/pitfalls of different

approaches to language design, and how they

work

Practical:

» you may need to design languages in your

career (at least small ones)

» understanding how to use a programming

paradigm can improve your programming even

in languages that don’t support it

» knowing how a feature is implemented helps

understand time/space complexity

7

Icons / Metaphors

7

Common Realization

Information

Knowledge/Competency Pattern

Governance

Alignment

Solution Approach

8

2 Introduction to Programming Languages

Agenda

1 Instructor and Course Introduction

3 Programming Language Syntax

4 Conclusion

9

Introduction to Programming Languages - Sub-Topics

 Introduction

 Programming Language Design and Usage Main Themes

 Programming Language as a Tool for Thought

 Idioms

 Why Study Programming Languages

 Classifying Programming Languages

 Imperative Languages

 PL Genealogy

 Predictable Performance vs. Writeability

 Common Ideas

 Development Environment & Language Libraries

 Compilation vs. Interpretation

 Programming Environment Tools

 An Overview of Compilation

 Abstract Syntax Tree

 Scannerless Parsing

10

 Why are there so many programming

languages?

»evolution -- we've learned better ways of

doing things over time

» socio-economic factors: proprietary interests,

commercial advantage

»orientation toward special purposes

»orientation toward special hardware

»diverse ideas about what is pleasant to use

Introduction (1/3)

11

 What makes a language successful?
» easy to learn (BASIC, Pascal, LOGO, Scheme)

» easy to express things, easy use once fluent,

"powerful” (C, Common Lisp, APL, Algol-68, Perl)

» easy to implement (BASIC, Forth)

» possible to compile to very good (fast/small) code

(Fortran)

» backing of a powerful sponsor (COBOL, PL/1, Ada,

Visual Basic)

» wide dissemination at minimal cost (Pascal, Turing,

Java)

Introduction (2/3)

12

 Why do we have programming

languages? What is a language for?

»way of thinking -- way of expressing

algorithms

» languages from the user's point of view

»abstraction of virtual machine -- way of

specifying what you want

» the hardware to do without getting down into

the bits

» languages from the implementor's point of

view

Introduction (3/3)

13

Programming Language Design and Usage Main Themes (1/2)

 Model of Computation (i.e., paradigm)

 Expressiveness
» Control structures

» Abstraction mechanisms

» Types and related operations

» Tools for programming in the large

 Ease of use
» Writeability

» Readability

» Maintainability

» Compactness – writeability/expressibility

» Familiarity of Model

» Less Error-Prone

» Portability

» Hides Details – simpler model

» Early detection of errors

» Modularity – Reuse, Composability, Isolation

» Performance Transparency

» Optimizability

 Note Orthogonal Implementation Issues:
» Compile time: parsing, type analysis, static checking

» Run time: parameter passing, garbage collection, method dispatching, remote invocation, just-in-
time compiling, parallelization, etc.

14

Programming Language Design and Usage Main Themes (2/2)

 Classical Issues in Language Design:
» Dijkstra, “Goto Statement Considered Harmful”,

• http://www.acm.org/classics/oct95/#WIRTH66

» Backus, “Can Programming Be Liberated from the

von Neumann Style?”
• http://www.stanford.edu/class/cs242/readings/backus.pdf

» Hoare, “An Axiomatic Basis For Computer

Programming”,
• http://www.spatial.maine.edu/~worboys/processes/hoare%20axiomatic.pdf

» Hoare, “The Emperor’s Old Clothes”,
• http://www.braithwaite-lee.com/opinions/p75-hoare.pdf

» Parnas, “On the Criteria to be Used in Decomposing

Systems into Modules”,
• http://www.acm.org/classics/may96/

http://www.acm.org/classics/oct95/
http://www.stanford.edu/class/cs242/readings/backus.pdf
http://www.spatial.maine.edu/~worboys/processes/hoare axiomatic.pdf
http://www.braithwaite-lee.com/opinions/p75-hoare.pdf
http://www.braithwaite-lee.com/opinions/p75-hoare.pdf
http://www.braithwaite-lee.com/opinions/p75-hoare.pdf
http://www.braithwaite-lee.com/opinions/p75-hoare.pdf
http://www.braithwaite-lee.com/opinions/p75-hoare.pdf
http://www.acm.org/classics/may96/

15

Programming Language as a Tool for Thought

 Roles of programming language as a

communication vehicle among programmers is

more important than writeability

 All general-purpose languages are Turing

Complete (i.e., they can all compute the same

things)

 Some languages, however, can make the

representation of certain algorithms

cumbersome

 Idioms in a language may be useful inspiration

when using another language

16

Idioms

 Copying a string q to p in C:

» while (*p++ = *q ++) ;

 Removing duplicates from the list @xs in Perl:

» my % seen = ();

 @xs = grep { ! $seen {$_ }++; } @xs ;

 Computing the sum of numbers in list xs in

Haskell:

» foldr (+) 0 xs

Is this natural? … It is if you’re used to it!

17

 Help you choose a language.

»C vs. Modula-3 vs. C++ for systems
programming

»Fortran vs. APL vs. Ada for numerical
computations

»Ada vs. Modula-2 for embedded systems

»Common Lisp vs. Scheme vs. ML for
symbolic data manipulation

»Java vs. C/CORBA for networked PC
programs

Why Study Programming Languages? (1/6)

18

 Make it easier to learn new languages

some languages are similar; easy to walk

down family tree

»concepts have even more similarity; if you

think in terms of iteration, recursion,

abstraction (for example), you will find it

easier to assimilate the syntax and semantic

details of a new language than if you try to

pick it up in a vacuum

• Think of an analogy to human languages: good

grasp of grammar makes it easier to pick up new

languages (at least Indo-European).

Why Study Programming Languages? (2/6)

19

 Help you make better use of whatever

language you use

»understand obscure features:

• In C, help you understand unions, arrays &

pointers, separate compilation, varargs, catch and

throw

• In Common Lisp, help you understand first-class

functions/closures, streams, catch and throw,

symbol internals

Why Study Programming Languages? (3/6)

20

 Help you make better use of whatever

language you use (cont.)

»understand implementation costs: choose

between alternative ways of doing things,

based on knowledge of what will be done

underneath:
– use simple arithmetic equal (use x*x instead of x**2)

– use C pointers or Pascal "with" statement to factor

address calculations

» http://www.freepascal.org/docs-html/ref/refsu51.html)

– avoid call by value with large data items in Pascal

– avoid the use of call by name in Algol 60

– choose between computation and table lookup (e.g. for

cardinality operator in C or C++)

Why Study Programming Languages? (4/6)

http://www.freepascal.org/docs-html/ref/refsu51.html
http://www.freepascal.org/docs-html/ref/refsu51.html
http://www.freepascal.org/docs-html/ref/refsu51.html

21

 Help you make better use of whatever

language you use (cont.)

» figure out how to do things in languages that

don't support them explicitly:

• lack of suitable control structures in Fortran

• use comments and programmer discipline for

control structures

• lack of recursion in Fortran, CSP, etc

• write a recursive algorithm then use mechanical

recursion elimination (even for things that aren't

quite tail recursive)

Why Study Programming Languages? (5/6)

22

 Help you make better use of whatever

language you use (cont.)

» figure out how to do things in languages that

don't support them explicitly:
– lack of named constants and enumerations in Fortran

– use variables that are initialized once, then never

changed

– lack of modules in C and Pascal use comments and

programmer discipline

– lack of iterators in just about everything fake them with

(member?) functions

Why Study Programming Languages? (6/6)

23

 Group languages by programming paradigms:

» imperative

• von Neumann (Fortran, Pascal, Basic, C, Ada)

– programs have mutable storage (state) modified by assignments

– the most common and familiar paradigm

• object-oriented (Simula 67, Smalltalk, Eiffel,

 Ada95, Java, C#)

– data structures and their operations are bundled together

– inheritance

• scripting languages (Perl, Python, JavaScript, PHP)

» declarative

• functional (applicative) (Scheme, ML, pure Lisp, FP, Haskell)

– functions are first-class objects / based on lambda calculus

– side effects (e.g., assignments) discouraged

• logic, constraint-based (Prolog, VisiCalc, RPG, Mercury)

– programs are sets of assertions and rules

• Functional + Logical (Curry)

» Hybrids: imperative + OO (C++)

• functional + object-oriented (O’Caml, O’Haskell)

• Scripting (used to glue programs together) (Unix shells, PERL, PYTHON, TCL

 PHP, JAVASCRIPT)

Classifying Programming Languages (1/2)

24

 Compared to machine or assembly language, all others are high-level

 But within high-level languages, there are different levels as well

 Somewhat confusingly, these are also referred to as low-level and high-

level

» Low-level languages give the programmer more control (at the cost of requiring

more effort) over how the program is translated into machine code.

• C, FORTRAN

» High-level languages hide many implementation details, often with some

performance cost

• BASIC, LISP, SCHEME, ML, PROLOG,

» Wide-spectrum languages try to do both:

• ADA, C++, (JAVA)

» High-level languages typically have garbage collection and are often

interpreted.

» The higher the level, the harder it is to predict performance (bad for real-time or

performance-critical applications)

» Note other “types/flavors” of languages: fourth generation (SETL, SQL),

concurrent/distributed (Concurrent Pascal, Hermes), markup, special purpose (report

writing), graphical, etc.

Classifying Programming Languages (2/2)

25

 Imperative languages, particularly the von

Neumann languages, predominate

»They will occupy the bulk of our attention

 We also plan to spend a lot of time on

functional, and logic languages

Imperative Languages

26

 FORTRAN (1957) => Fortran90, HP

 COBOL (1956) => COBOL 2000

» still a large chunk of installed software

 Algol60 => Algol68 => Pascal => Ada

 Algol60 => BCPL => C => C++

 APL => J

 Snobol => Icon

 Simula => Smalltalk

 Lisp => Scheme => ML => Haskell

 with lots of cross-pollination:
e.g., Java is influenced by C++, Smalltalk, Lisp, Ada, etc.

PL Genealogy

27

 Low-level languages mirror the physical

machine:

» Assembly, C, Fortran

 High-level languages model an abstract

machine with useful capabilities:

» ML, Setl, Prolog, SQL, Haskell

 Wide-spectrum languages try to do both:

» Ada, C++, Java, C#

 High-level languages have garbage collection,

are often interpreted, and cannot be used for

real-time programming.

» The higher the level, the harder it is to determine cost

of operations.

Predictable Performance vs. Writeability

28

 Modern imperative languages (e.g., Ada, C++,

Java) have similar characteristics:

» large number of features (grammar with several

hundred productions, 500 page reference manuals, .

. .)

» a complex type system

» procedural mechanisms

» object-oriented facilities

» abstraction mechanisms, with information hiding

» several storage-allocation mechanisms

» facilities for concurrent programming (not C++)

» facilities for generic programming (new in Java)

Common Ideas

29

 Design Patterns: Gamma, Johnson, Helm, Vlissides

» Bits of design that work to solve sub-problems

» What is mechanism in one language is pattern in another

• Mechanism: C++ class

• Pattern: C struct with array of function pointers

• Exactly how early C++ compilers worked

 Why use patterns

» Start from very simple language, very simple semantics

» Compare mechanisms of other languages by building patterns

in simpler language

» Enable meaningful comparisons between language

mechanisms

Language Mechanism & Patterns

30

 Development Environment

» Interactive Development Environments

• Smalltalk browser environment

• Microsoft IDE

»Development Frameworks

• Swing, MFC

»Language aware Editors

Development Environment & Language Libraries (1/2)

31

 The programming environment may be larger

than the language.

» The predefined libraries are indispensable to the

proper use of the language, and its popularity

» Libraries change much more quickly than the

language

» Libraries usually very different for different languages

» The libraries are defined in the language itself, but

they have to be internalized by a good programmer

» Examples:

• C++ standard template library

• Java Swing classes

• Ada I/O packages

• C++ Standard Template Library (STL)

Development Environment & Language Libraries (2/2)

32

 Compilation vs. interpretation

»not opposites

»not a clear-cut distinction

 Pure Compilation

»The compiler translates the high-level source

program into an equivalent target program

(typically in machine language), and then

goes away:

Compilation vs. Interpretation (1/16)

33

 Pure Interpretation

» Interpreter stays around for the execution of

the program

» Interpreter is the locus of control during

execution

Compilation vs. Interpretation (2/16)

34

 Interpretation:

»Greater flexibility

»Better diagnostics (error messages)

 Compilation

» Better performance

Compilation vs. Interpretation (3/16)

35

 Common case is compilation or simple

pre-processing, followed by interpretation

 Most language implementations include a

mixture of both compilation and

interpretation

Compilation vs. Interpretation (4/16)

36

 Note that compilation does NOT have to produce

machine language for some sort of hardware

 Compilation is translation from one language into

another, with full analysis of the meaning of the

input

 Compilation entails semantic understanding of

what is being processed; pre-processing does

not

 A pre-processor will often let errors through. A

compiler hides further steps; a pre-processor

does not

Compilation vs. Interpretation (5/16)

37

 Many compiled languages have

interpreted pieces, e.g., formats in Fortran

or C

 Most use “virtual instructions”

»set operations in Pascal

»string manipulation in Basic

 Some compilers produce nothing but

virtual instructions, e.g., Pascal P-code,

Java byte code, Microsoft COM+

Compilation vs. Interpretation (6/16)

38

 Implementation strategies:

»Preprocessor

• Removes comments and white space

• Groups characters into tokens (keywords,

identifiers, numbers, symbols)

• Expands abbreviations in the style of a macro

assembler

• Identifies higher-level syntactic structures (loops,

subroutines)

Compilation vs. Interpretation (7/16)

39

 Implementation strategies:

»Library of Routines and Linking

• Compiler uses a linker program to merge the

appropriate library of subroutines (e.g., math

functions such as sin, cos, log, etc.) into the final

program:

Compilation vs. Interpretation (8/16)

40

 Implementation strategies:

»Post-compilation Assembly

• Facilitates debugging (assembly language

easier for people to read)

• Isolates the compiler from changes in the

format of machine language files (only

assembler must be changed, is shared by

many compilers)

Compilation vs. Interpretation (9/16)

41

 Implementation strategies:

»The C Preprocessor (conditional compilation)

• Preprocessor deletes portions of code, which

allows several versions of a program to be built

from the same source

Compilation vs. Interpretation (10/16)

42

 Implementation strategies:

»Source-to-Source Translation (C++)

• C++ implementations based on the early AT&T

compiler generated an intermediate program in C,

instead of an assembly language:

Compilation vs. Interpretation (11/16)

43

 Implementation strategies:

»Bootstrapping

Compilation vs. Interpretation (12/16)

44

 Implementation strategies:

»Compilation of Interpreted Languages

• The compiler generates code that makes

assumptions about decisions that won’t be

finalized until runtime. If these assumptions are

valid, the code runs very fast. If not, a dynamic

check will revert to the interpreter.

Compilation vs. Interpretation (13/16)

45

 Implementation strategies:

»Dynamic and Just-in-Time Compilation

• In some cases a programming system may

deliberately delay compilation until the last

possible moment.

– Lisp or Prolog invoke the compiler on the fly, to

translate newly created source into machine language,

or to optimize the code for a particular input set.

– The Java language definition defines a machine-

independent intermediate form known as byte code.

Byte code is the standard format for distribution of Java

programs.

– The main C# compiler produces .NET Common

Intermediate Language (CIL), which is then translated

into machine code immediately prior to execution.

Compilation vs. Interpretation (14/16)

46

 Implementation strategies:

»Microcode

• Assembly-level instruction set is not implemented

in hardware; it runs on an interpreter.

• Interpreter is written in low-level instructions

(microcode or firmware), which are stored in read-

only memory and executed by the hardware.

Compilation vs. Interpretation (15/16)

47

 Compilers exist for some interpreted languages,
but they aren't pure:
» selective compilation of compilable pieces and extra-

sophisticated pre-processing of remaining source.

» Interpretation of parts of code, at least, is still
necessary for reasons above.

 Unconventional compilers
» text formatters

» silicon compilers

» query language processors

Compilation vs. Interpretation (16/16)

48

 Tools

Programming Environment Tools

49

 Phases of Compilation

An Overview of Compilation (1/15)

50

 Scanning:

»divides the program into "tokens", which are

the smallest meaningful units; this saves

time, since character-by-character processing

is slow

»we can tune the scanner better if its job is

simple; it also saves complexity (lots of it) for

later stages

»you can design a parser to take characters

instead of tokens as input, but it isn't pretty

»scanning is recognition of a regular language,

e.g., via Deterministic Finite Automata (DFA)

An Overview of Compilation (2/15)

51

 Parsing is recognition of a context-free

language, e.g., via Push Down Automata

(PDA)

»Parsing discovers the "context free" structure

of the program

» Informally, it finds the structure you can

describe with syntax diagrams (the "circles

and arrows" in a Pascal manual)

An Overview of Compilation (3/15)

52

 Semantic analysis is the discovery of

meaning in the program

»The compiler actually does what is called

STATIC semantic analysis. That's the

meaning that can be figured out at compile

time

»Some things (e.g., array subscript out of

bounds) can't be figured out until run time.

Things like that are part of the program's

DYNAMIC semantics

An Overview of Compilation (4/15)

53

 Intermediate form (IF) done after semantic

analysis (if the program passes all checks)

» IFs are often chosen for machine independence,

ease of optimization, or compactness (these are

somewhat contradictory)

»They often resemble machine code for some

imaginary idealized machine; e.g. a stack

machine, or a machine with arbitrarily many

registers

»Many compilers actually move the code through
more than one IF

An Overview of Compilation (5/15)

54

 Optimization takes an intermediate-code

program and produces another one that

does the same thing faster, or in less

space

»The term is a misnomer; we just improve

code

»The optimization phase is optional

 Code generation phase produces

assembly language or (sometime)

relocatable machine language

An Overview of Compilation (6/15)

55

 Certain machine-specific optimizations

(use of special instructions or addressing

modes, etc.) may be performed during or

after target code generation

 Symbol table: all phases rely on a symbol

table that keeps track of all the identifiers in

the program and what the compiler knows

about them

»This symbol table may be retained (in some

form) for use by a debugger, even after

compilation has completed

An Overview of Compilation (7/15)

56

 Lexical and Syntax Analysis

»GCD Program (in C)

int main() {

 int i = getint(), j = getint();

 while (i != j) {

 if (i > j) i = i - j;

 else j = j - i;

 }

 putint(i);

}

An Overview of Compilation (8/15)

57

 Lexical and Syntax Analysis

»GCD Program Tokens

• Scanning (lexical analysis) and parsing

recognize the structure of the program, groups

characters into tokens, the smallest meaningful

units of the program

int main () {

int i = getint () , j = getint () ;

while (i != j) {

if (i > j) i = i - j ;

else j = j - i ;

}

putint (i) ;

}

An Overview of Compilation (9/15)

58

 Lexical and Syntax Analysis

»Context-Free Grammar and Parsing

• Parsing organizes tokens into a parse tree that

represents higher-level constructs in terms of their

constituents

• Potentially recursive rules known as context-free

grammar define the ways in which these

constituents combine

An Overview of Compilation (10/15)

59

 Context-Free Grammar and Parsing

»Example (while loop in C)

iteration-statement → while (expression) statement

statement, in turn, is often a list enclosed in braces:

statement → compound-statement

compound-statement → { block-item-list opt }

where

block-item-list opt → block-item-list

or

block-item-list opt → ϵ

and

block-item-list → block-item

block-item-list → block-item-list block-item

block-item → declaration

block-item → statement

An Overview of Compilation (11/15)

60

 Context-Free Grammar and Parsing

»GCD Program Parse Tree

next slide

A

B

An Overview of Compilation (12/15)

61

 Context-Free Grammar and Parsing (cont.)

An Overview of Compilation (13/15)

62

 Context-Free Grammar and Parsing (cont.)

A B

An Overview of Compilation (14/15)

63

 Syntax Tree

»GCD Program Parse Tree

An Overview of Compilation (15/15)

64

 Many non-terminals inside a parse tree are artifacts of

the grammar

 Remember:

 E ::= E + T | T

 T ::= T * Id | Id

 The parse tree for B * C can be written as

 E(T(Id(B), Id(C)))

 In constrast, an abstract syntax tree (AST) captures only

those tree nodes that are necessary for representing the

program

 In the example:

 T(Id(B), Id(C))

 Consequently, many parsers really generate abstract

syntax trees.

Abstract Syntax Tree (1/2)

65

 Another explanation for abstract syntax

tree: It’s a tree capturing only semantically

relevant information for a program

» i.e., omitting all formatting and comments

 Question 1: What is a concrete syntax

tree?

 Question 2: When do I need a concrete

syntax tree?

Abstract Syntax Tree (2/2)

66

 Separating syntactic analysis into lexing and

parsing helps performance. After all, regular

expressions can be made very fast

 But it also limits language design choices. For

example, it’s very hard to compose different

languages with separate lexers and parsers —

think embedding SQL in JAVA

 Scannerless parsing integrates lexical analysis

into the parser, making this problem more

tractable.

Scannerless Parsing

67

2 Introduction to Programming Languages

Agenda

1 Instructor and Course Introduction

3 Programming Language Syntax

4 Conclusion

68

Programming Language Syntax - Sub-Topics

 Language Definition

 Syntax and Semantics

 Grammars

 The Chomsky Hierarchy

 Regular Expressions

 Regular Grammar Example

 Lexical Issues

 Context-Free Grammars

 Scanning

 Parsing

 LL Parsing

 LR Parsing

69

 Different users have different needs:

»programmers: tutorials, reference manuals,

programming guides (idioms)

» implementors: precise operational

semantics

»verifiers: rigorous axiomatic or natural

semantics

» language designers and lawyers: all of the

above

 Different levels of detail and precision

»but none should be sloppy!

Language Definition

70

 Syntax refers to external representation:
» Given some text, is it a well-formed program?

 Semantics denotes meaning:
» Given a well-formed program, what does it mean?

» Often depends on context

 The division is somewhat arbitrary
» Note:

• It is possible to fully describe the syntax and semantics of a programming
language by syntactic means (e.g., Algol68 and W-grammars), but this is
highly impractical

• Typically use a grammar for the context-free aspects, and different
method for the rest

» Similar looking constructs in different languages often have
subtly (or not-so-subtly) different meanings

» Good syntax, unclear semantics: “Colorless green ideas sleep
furiously”

» Good semantics, poor syntax: “Me go swimming now, sorry
bye”

» In programming languages: syntax tells you what a well-
formed program looks like. Semantic tells you relationship of
output to input

Syntax and Semantics

71

 A grammar G is a tuple (Σ,N, S, δ)

» N is the set of non-terminal symbols

» S is the distinguished non-terminal: the root symbol

» Σ is the set of terminal symbols (alphabet)

» δ is the set of rewrite rules (productions) of the form:

 ABC. . . ::= XYZ . . .

 where A,B,C,D,X,Y, Z are terminals and non terminals

» The language is the set of sentences containing only

terminal symbols that can be generated by applying

the rewriting rules starting from the root symbol (let’s

call such sentences strings)

Grammars (1/2)

72

 Consider the following grammar G:
» N = {S;X; Y}

» S = S

» Σ = {a; b; c}

» δ consists of the following rules:
• S -> b

• S -> XbY

• X -> a

• X -> aX

• Y -> c

• Y ->Y c

» Some sample derivations:
• S -> b

• S -> XbY -> abY -> abc

• S -> XbY -> aXbY -> aaXbY -> aaabY -> aaabc

Grammars (2/2)

73

 Regular grammars (Type 3)

» all productions can be written in the form: N ::= TN

» one non-terminal on left side; at most one on right

 Context-free grammars (Type 2)

» all productions can be written in the form: N ::= XYZ

» one non-terminal on the left-hand side; mixture on right

 Context-sensitive grammars (Type 1)

» number of symbols on the left is no greater than on the

right

» no production shrinks the size of the sentential form

 Type-0 grammars

» no restrictions

The Chomsky Hierarchy

74

 An alternate way of describing a regular language is
with regular expressions
We say that a regular expression R denotes the language [[R]]

Recall that a language is a set of strings

Basic regular expressions:

» Є denotes Ǿ

» a character x, where x Є Σ, denotes {x}

» (sequencing) a sequence of two regular expressions RS
denotes

» {αβ | α Є [[R]], β Є [[S]]}

» (alternation) R|S denotes [[R]] U [[S]]

» (Kleene star) R* denotes the set of strings which are
concatenations of zero or more strings from [[R]]

» parentheses are used for grouping

» Shorthands:

• R? ≡ Є | R

• R+ ≡ RR*

Regular Expressions (1/3)

75

 A regular expression is one of the

following:

»A character

»The empty string, denoted by 

»Two regular expressions concatenated

»Two regular expressions separated by |

(i.e., or)

»A regular expression followed by the Kleene

star (concatenation of zero or more strings)

Regular Expressions (2/3)

76

Regular Expressions (3/3)

 Numerical literals in Pascal may be

generated by the following:

77

 A grammar for floating point numbers:

» Float ::= Digits | Digits . Digits

» Digits ::= Digit | Digit Digits

» Digit ::= 0|1|2|3|4|5|6|7|8|9

 A regular expression for floating point numbers:

» (0|1|2|3|4|5|6|7|8|9)+(.(0|1|2|3|4|5|6|7|8|9)+)?

 Perl offer some shorthands:

» [0 -9]+(\.[0 -9]+)?

 or

» \d +(\.\ d+)?

Regular Grammar Example

78

Lexical: formation of words or tokens

 Tokens are the basic building blocks of programs:
» keywords (begin, end, while).

» identifiers (myVariable, yourType)

» numbers (137, 6:022e23)

» symbols (+, 􀀀)

» string literals (“Hello world”)

 Described (mainly) by regular grammars

 Terminals are characters. Some choices:
» character set: ASCII, Latin-1, ISO646, Unicode, etc.

» is case significant?

 Is indentation significant?
» Python, Occam, Haskell

Example: identifiers

 Id ::= Letter IdRest

 IdRest ::= Є | Letter IdRest | Digit IdRest

 Missing from above grammar: limit of identifier length

Other issues: international characters, case-sensitivity, limit of identifier length

Lexical Issues

79

 BNF: notation for context-free grammars

» (BNF = Backus-Naur Form) Some conventional

abbreviations:

• alternation: Symb ::= Letter | Digit

• repetition: Id ::= Letter {Symb}

 or we can use a Kleene star: Id ::= Letter Symb*

 for one or more repetitions: Int ::= Digit+

• option: Num ::= Digit+[. Digit*]

 abbreviations do not add to expressive power

of grammar

 need convention for meta-symbols – what if “|”

is in the language?

Context-Free Grammars (1/7)

80

 The notation for context-free grammars

(CFG) is sometimes called Backus-Naur

Form (BNF)

 A CFG consists of

»A set of terminals T

»A set of non-terminals N

»A start symbol S (a non-terminal)

»A set of productions

Context-Free Grammars (2/7)

81

 Expression grammar with precedence

and associativity

Context-Free Grammars (3/7)

82

 A parse tree describes the grammatical
structure of a sentence

» root of tree is root symbol of grammar

» leaf nodes are terminal symbols

» internal nodes are non-terminal symbols

»an internal node and its descendants
correspond to some production for that non
terminal

» top-down tree traversal represents the
process of generating the given sentence
from the grammar

»construction of tree from sentence is parsing

Context-Free Grammars (4/7)

83

 Ambiguity:
» If the parse tree for a sentence is not unique, the

grammar is ambiguous:

 E ::= E + E | E * E | Id

» Two possible parse trees for “A + B * C”:
• ((A + B) * C)

• (A + (B * C))

» One solution: rearrange grammar:

 E ::= E + T | T

 T ::= T * Id | Id

» Harder problems – disambiguate these (courtesy of
Ada):
• function call ::= name (expression list)

• indexed component ::= name (index list)

• type conversion ::= name (expression)

Context-Free Grammars (5/7)

84

 Parse tree for expression grammar (with
precedence) for 3 + 4 * 5

Context-Free Grammars (6/7)

85

 Parse tree for expression grammar (with
left associativity) for 10 - 4 - 3

Context-Free Grammars (7/7)

86

 Recall scanner is responsible for

» tokenizing source

» removing comments

» (often) dealing with pragmas (i.e., significant

comments)

»saving text of identifiers, numbers, strings

»saving source locations (file, line, column) for

error messages

Scanning (1/11)

87

 Suppose we are building an ad-hoc (hand-

written) scanner for Pascal:

» We read the characters one at a time with look-

ahead

 If it is one of the one-character tokens
{ () [] < > , ; = + - etc }

we announce that token

 If it is a ., we look at the next character

» If that is a dot, we announce .

» Otherwise, we announce . and reuse the look-

ahead

Scanning (2/11)

88

 If it is a <, we look at the next character

» if that is a = we announce <=

»otherwise, we announce < and reuse the

look-ahead, etc

 If it is a letter, we keep reading letters and

digits and maybe underscores until we

can't anymore

» then we check to see if it is a reserved word

Scanning (3/11)

89

 If it is a digit, we keep reading until we find

a non-digit

» if that is not a . we announce an integer

»otherwise, we keep looking for a real number

» if the character after the . is not a digit we

announce an integer and reuse the . and the

look-ahead

Scanning (4/11)

90

 Pictorial

representation

of a scanner for

calculator

tokens, in the

form of a finite

automaton

Scanning (5/11)

91

 This is a deterministic finite automaton

(DFA)

»Lex, scangen, etc. build these things

automatically from a set of regular

expressions

»Specifically, they construct a machine

that accepts the language
identifier | int const

| real const | comment | symbol

| ...

Scanning (6/11)

92

Scanning

 We run the machine over and over to get

one token after another

»Nearly universal rule:

• always take the longest possible token from the

input

thus foobar is foobar and never f or foo or foob

• more to the point, 3.14159 is a real const and

never 3, ., and 14159

 Regular expressions "generate" a regular

language; DFAs "recognize" it

Scanning (7/11)

93

 Scanners tend to be built three ways

»ad-hoc

»semi-mechanical pure DFA

(usually realized as nested case statements)

» table-driven DFA

 Ad-hoc generally yields the fastest, most

compact code by doing lots of special-

purpose things, though good

automatically-generated scanners come

very close

Scanning (8/11)

94

 Writing a pure DFA as a set of nested

case statements is a surprisingly useful

programming technique

» though it's often easier to use perl, awk, sed

» for details (see textbook’s Figure 2.11)

 Table-driven DFA is what lex and

scangen produce

» lex (flex) in the form of C code

»scangen in the form of numeric tables and a

separate driver (for details see textbook’s

Figure 2.12)

Scanning (9/11)

95

 Note that the rule about longest-possible
tokens means you return only when the next
character can't be used to continue the
current token
» the next character will generally need to be saved

for the next token

 In some cases, you may need to peek at
more than one character of look-ahead in
order to know whether to proceed
» In Pascal, for example, when you have a 3 and

you a see a dot
• do you proceed (in hopes of getting 3.14)?

or

• do you stop (in fear of getting 3..5)?

Scanning (10/11)

96

 In messier cases, you may not be able to

get by with any fixed amount of look-

ahead.In Fortran, for example, we have
 DO 5 I = 1,25 loop

 DO 5 I = 1.25 assignment

 Here, we need to remember we were in a

potentially final state, and save enough

information that we can back up to it, if we

get stuck later

Scanning (11/11)

97

 Terminology:

»context-free grammar (CFG)

»symbols
• terminals (tokens)

• non-terminals

»production

»derivations (left-most and right-most -
canonical)

»parse trees

»sentential form

Parsing (1/7)

98

 By analogy to RE and DFAs, a context-

free grammar (CFG) is a generator for a

context-free language (CFL)

»a parser is a language recognizer

 There is an infinite number of grammars

for every context-free language

»not all grammars are created equal, however

Parsing (2/7)

99

 It turns out that for any CFG we can

create a parser that runs in O(n^3) time

 There are two well-known parsing

algorithms that permit this

»Early's algorithm

»Cooke-Younger-Kasami (CYK) algorithm

 O(n^3) time is clearly unacceptable for a

parser in a compiler - too slow

Parsing (3/7)

100

 Fortunately, there are large classes of

grammars for which we can build parsers

that run in linear time

»The two most important classes are called

LL and LR

 LL stands for

'Left-to-right, Leftmost derivation'.

 LR stands for

'Left-to-right, Rightmost derivation’

Parsing (4/7)

101

 LL parsers are also called 'top-down', or

'predictive' parsers & LR parsers are also

called 'bottom-up', or 'shift-reduce' parsers

 There are several important sub-classes of

LR parsers

»SLR

»LALR

 We won't be going into detail of the

differences between them

Parsing (5/7)

102

 Every LL(1) grammar is also LR(1), though

right recursion in production tends to

require very deep stacks and complicates

semantic analysis

 Every CFL that can be parsed

deterministically has an SLR(1) grammar

(which is LR(1))

 Every deterministic CFL with the prefix

property (no valid string is a prefix of

another valid string) has an LR(0) grammar

Parsing (6/7)

103

 You commonly see LL or LR (or

whatever) written with a number in

parentheses after it

»This number indicates how many tokens of

look-ahead are required in order to parse

»Almost all real compilers use one token of

look-ahead

 The expression grammar (with

precedence and associativity) you saw

before is LR(1), but not LL(1)

Parsing (7/7)

104

 Here is an LL(1) grammar (Fig 2.15):

1. program → stmt list $$$

2. stmt_list → stmt stmt_list

3. | ε

4. stmt → id := expr

5. | read id

6. | write expr

7. expr → term term_tail

8. term_tail → add op term term_tail

9. | ε

LL Parsing (1/23)

105

 LL(1) grammar (continued)

10. term → factor fact_tailt

11. fact_tail → mult_op fact fact_tail

12. | ε

13. factor → (expr)

14. | id

15. | number

16. add_op → +

17. | -

18. mult_op → *

19. | /

LL Parsing (2/23)

106

 Like the bottom-up grammar, this one

captures associativity and precedence,

but most people don't find it as pretty

» for one thing, the operands of a given

operator aren't in a RHS together!

»however, the simplicity of the parsing

algorithm makes up for this weakness

 How do we parse a string with this

grammar?

»by building the parse tree incrementally

LL Parsing (3/23)

107

 Example (average program)

 read A

 read B

 sum := A + B

 write sum

 write sum / 2

 We start at the top and predict needed

productions on the basis of the current left-

most non-terminal in the tree and the current

input token

LL Parsing (4/23)

108

 Parse tree for the average program (Figure
2.17)

LL Parsing (5/23)

109

 Table-driven LL parsing: you have a big

loop in which you repeatedly look up an

action in a two-dimensional table based

on current leftmost non-terminal and

current input token. The actions are

(1) match a terminal

(2) predict a production

(3) announce a syntax error

LL Parsing (6/23)

110

 LL(1) parse table for parsing for calculator

language

LL Parsing (7/23)

111

 To keep track of the left-most non-

terminal, you push the as-yet-unseen

portions of productions onto a stack

» for details see Figure 2.20

 The key thing to keep in mind is that the

stack contains all the stuff you expect to

see between now and the end of the

program

»what you predict you will see

LL Parsing (8/23)

112

 Problems trying to make a grammar LL(1)

» left recursion

• example:

id_list → id | id_list , id

 equivalently

id_list → id id_list_tail

id_list_tail → , id id_list_tail

 | epsilon

• we can get rid of all left recursion mechanically in

any grammar

LL Parsing (9/23)

113

 Problems trying to make a grammar
LL(1)

»common prefixes: another thing that LL
parsers can't handle

• solved by "left-factoring”

• example:

 stmt → id := expr | id (arg_list)

 equivalently

 stmt → id id_stmt_tail

 id_stmt_tail → := expr

 | (arg_list)

• we can eliminate left-factor mechanically

LL Parsing (10/23)

114

 Note that eliminating left recursion and

common prefixes does NOT make a

grammar LL

» there are infinitely many non-LL

LANGUAGES, and the mechanical

transformations work on them just fine

» the few that arise in practice, however, can

generally be handled with kludges

LL Parsing (11/23)

115

 Problems trying to make a grammar LL(1)

» the"dangling else" problem prevents

grammars from being LL(1) (or in fact LL(k)

for any k)

» the following natural grammar fragment is

ambiguous (Pascal)

stmt → if cond then_clause else_clause

 | other_stuff

then_clause → then stmt

else_clause → else stmt

 | epsilon

LL Parsing (12/23)

116

 Consider: S ::= if E then S

 S ::= if E then S else S

 The sentence

 if E1 then if E2 then S1 else S2

 is ambiguous (Which then does else S2 match?)

 Solutions:

» Pascal rule: else matches most recent if

» grammatical solution: different productions for balanced

and unbalanced

» if-statements

» grammatical solution: introduce explicit end-marker

 The general ambiguity problem is unsolvable

LL Parsing (13/23)

117

 The less natural grammar fragment can be

parsed bottom-up but not top-down

stmt → balanced_stmt | unbalanced_stmt

balanced_stmt → if cond then balanced_stmt

 else balanced_stmt

 | other_stuff

unbalanced_stmt → if cond then stmt

 | if cond then balanced_stmt

 else unbalanced_stmt

LL Parsing (14/23)

118

 The usual approach, whether top-down

OR bottom-up, is to use the ambiguous

grammar together with a disambiguating

rule that says

»else goes with the closest then or

»more generally, the first of two possible

productions is the one to predict (or reduce)

LL Parsing (15/23)

119

 Better yet, languages (since Pascal) generally

employ explicit end-markers, which eliminate

this problem

 In Modula-2, for example, one says:

 if A = B then

 if C = D then E := F end

 else

 G := H

 end

 Ada says 'end if'; other languages say 'fi'

LL Parsing (16/23)

120

 One problem with end markers is that
they tend to bunch up. In Pascal you say

 if A = B then …

 else if A = C then …

 else if A = D then …

 else if A = E then …

 else ...;

 With end markers this becomes
 if A = B then …

 else if A = C then …

 else if A = D then …

 else if A = E then …

 else ...;

 end; end; end; end;

LL Parsing (17/23)

121

 The algorithm to build predict sets is

tedious (for a "real" sized grammar), but

relatively simple

 It consists of three stages:

» (1) compute FIRST sets for symbols

» (2) compute FOLLOW sets for non-terminals

(this requires computing FIRST sets for some

strings)

» (3) compute predict sets or table for all

productions

LL Parsing (18/23)

122

 It is conventional in general discussions of

grammars to use

» lower case letters near the beginning of the alphabet

for terminals

» lower case letters near the end of the alphabet for

strings of terminals

» upper case letters near the beginning of the alphabet

for non-terminals

» upper case letters near the end of the alphabet for

arbitrary symbols

» greek letters for arbitrary strings of symbols

LL Parsing (19/23)

123

• Algorithm First/Follow/Predict:

– FIRST(α) == {a : α →* a β}

 ∪ (if α =>* ε THEN {ε} ELSE NULL)

– FOLLOW(A) == {a : S →+ α A a β}

 ∪ (if S →* α A THEN {ε} ELSE NULL)

– Predict (A → X1 ... Xm) == (FIRST (X1 ...

Xm) - {ε}) ∪ (if X1, ..., Xm →* ε then

FOLLOW (A) ELSE NULL)

 Details following…

LL Parsing (20/23)

124

LL Parsing (21/23)

125

LL Parsing (22/23)

126

 If any token belongs to the predict set

of more than one production with the

same LHS, then the grammar is not

LL(1)

 A conflict can arise because

» the same token can begin more than one

RHS

» it can begin one RHS and can also appear

after the LHS in some valid program, and

one possible RHS is 

LL Parsing (23/23)

127

 LR parsers are almost always table-

driven:

» like a table-driven LL parser, an LR parser

uses a big loop in which it repeatedly

inspects a two-dimensional table to find out

what action to take

»unlike the LL parser, however, the LR driver

has non-trivial state (like a DFA), and the

table is indexed by current input token and

current state

» the stack contains a record of what has been

seen SO FAR (NOT what is expected)

LR Parsing (1/11)

128

 A scanner is a DFA

» it can be specified with a state diagram

 An LL or LR parser is a PDA

»Early's & CYK algorithms do NOT use PDAs

»a PDA can be specified with a state diagram

and a stack

• the state diagram looks just like a DFA state

diagram, except the arcs are labeled with <input

symbol, top-of-stack symbol> pairs, and in

addition to moving to a new state the PDA has the

option of pushing or popping a finite number of

symbols onto/off the stack

LR Parsing (2/11)

129

 An LL(1) PDA has only one state!

»well, actually two; it needs a second one to

accept with, but that's all (it's pretty simple)

»all the arcs are self loops; the only difference

between them is the choice of whether to

push or pop

» the final state is reached by a transition that

sees EOF on the input and the stack

LR Parsing (3/11)

130

 An SLR/LALR/LR PDA has multiple states

» it is a "recognizer," not a "predictor"

» it builds a parse tree from the bottom up

» the states keep track of which productions we might

be in the middle

 The parsing of the Characteristic Finite State

Machine (CFSM) is based on

» Shift

» Reduce

LR Parsing (4/11)

131

 To illustrate LR parsing, consider the
grammar (Figure 2.24, Page 73):

1. program → stmt list $$$

2. stmt_list → stmt_list stmt

3. | stmt

4. stmt → id := expr

5. | read id

6. | write expr

7. expr → term

8. | expr add op term

LR Parsing (5/11)

132

 LR grammar (continued):

9. term → factor

10. | term mult_op factor

11. factor →(expr)

12. | id

13. | number

14. add op → +

15. | -

16. mult op → *

17. | /

LR Parsing (6/11)

133

 This grammar is SLR(1), a particularly

nice class of bottom-up grammar

» it isn't exactly what we saw originally

»we've eliminated the epsilon production to

simplify the presentation

 For details on the table driven SLR(1)

parsing please note the following slides

LR Parsing (7/11)

134

LR Parsing (8/11)

135

LR Parsing (9/11)

136

LR Parsing (10/11)

137

 SLR parsing is

based on

»Shift

»Reduce

and also

»Shift & Reduce

(for

optimization)

LR Parsing (11/11)

138

2 Introduction to Programming Languages

Agenda

1 Instructor and Course Introduction

3 Programming Language Syntax

4 Conclusion

139

Assignments & Readings

 Readings

» Foreword/Preface, Chapters 1 and 2 (in particular, section 2.2.1)

 Assignment #1

» See Assignment #1 posted under “handouts” on the course Web site

» Due on June 12, 2014 by the beginning of class

140

Recommended Reference Books

 The books written by the creators of C++ and Java are the standard
references:
» Stroustrup. The C++ programming Language, 3rd ed. (Addison-Wesley)

» Ken Arnold, James Gosling, and David Holmes. The Java(TM) Programming Language, 4th ed.

(Addison-Wesley)

 For the remaining languages, there is a lot of information available on
the web in the form of references and tutorials, so books may not be
strictly necessary, but a few recommended textbooks are as follows:
» John Barnes. Programming in Ada95, 2nd ed. (Addison Wesley)

» Lawrence C. Paulson. ML for the Working Programmer, 2nd ed. Cambridge University Press

» David Gelernter and Suresh Jagannathan: “Programming Linguistics”, MIT Press, 1990

» Benjamin C. Pierce: “Types and Programming Languages”, MIT Press, 2002

» Larry Wall, Tom Christiansen, and Jon Orwant: Programming Perl, 3rd ed. (O'Reilly)

» Giannesini et al: “Prolog”, Addison-Wesley 1986.

» Dewhurst & Stark, “Programming in C++”, Prentice Hall, 1989.

» Ada 95 Reference Manual, http://www.adahome.com/rm95/

» MIT Scheme Reference

• http://www-swiss.ai.mit.edu/projects/scheme/documentation/scheme.html

» Strom et al: “Hermes: A Language for Distributed Computing”, Prentice-Hall, 1991.

» R. Kent Dybvig, “The SCHEME Programming Language”, Prentice Hall, 1987

» Jan Skansholm, “ADA 95 From the Beginning”, Addison Wesley, 1997.

http://www.adahome.com/rm95/
http://www-swiss.ai.mit.edu/projects/scheme/documentation/scheme.html
http://www-swiss.ai.mit.edu/projects/scheme/documentation/scheme.html
http://www-swiss.ai.mit.edu/projects/scheme/documentation/scheme.html

141

Next Session: Imperative Languages – Names, Scoping, and Bindings

