Introduction to Python

Programming Languages

Adapted from Tutorial by
Mark Hammond
Skippi-Net, Melbourne, Australia

mhammond@skippinet.com.au
http://starship.python.net/crew/mhammond

What Is Python?

o Created in 1990 by Guido van
Rossum

While at CWI, Amsterdam

Now hosted by centre for national
research initiatives, Reston, VA, USA

O Free, open source
And with an amazing community
o Object oriented language
“Everything is an object”

Why Python?

o Designed to be easy to learn and master
Clean, clear syntax
Very few keywords

o Highly portable

Runs almost anywhere - high end servers and
workstations, down to windows CE

Uses machine independent byte-codes

o Extensible

Designed to be extensible using C/C++, allowing
access to many external libraries

Python: a modern hybrid

o A language for scripting and prototyping

o Balance between extensibility and
powerful built-in data structures

o genealogy:
Setl (NYU, J.Schwartz et al. 1969-1980)

ABC (Amsterdam, Meertens et al.
1980-)

Python (Van Rossum et all. 1996-)
o Very active open-source community

Prototyping

o Emphasis on experimental
programming:

o Interactive (like LISP, ML,
etc).

o Translation to bytecode (like Java)

o Dynamic typing (like LISP, SETL,
APL)

o Higher-order function (LISP, ML)

o Garbage-collected, no ptrs
(LISP, SNOBOL4)

Prototyping

o Emphasis on experimental
programming:

o Uniform treatment of indexable
structures (like SETL)

o Built-in associative structures
(like SETL, SNOBOL4, Postscript)

o Light syntax, indentation is
significant (from ABC)

Most obvious and notorious
features

o Clean syntax plus high-level data
types

Leads to fast coding

o Uses white-space to delimit blocks
Humans generally do, so why not the
language?
Try it, you will end up liking it

o Variables do not need declaration
Although not a type-less language

A Digression on Block Structure

o There are three ways of dealing
with IF structures

Sequences of statements with explicit
end (Algol-68, Ada, COBOL)

Single statement
(Algol-60, Pascal, C)
Indentation (ABC, Python)

Sequence of Statements

o IF condition THEN
stm;
stm;

ELSIF condition THEN
stm;

ELSE
stm;

END IF;
next statement;

Single Statement

o IF condition THEN
BEGIN
stm;
stm;
END ..
ELSE IF condition THEN
BEGIN
stm;
END;
ELSE

BEGIN
stm;

END;
next-statement;

Indentation

o IF condition:
stm;
stm;

ELSIF condition:
stm;

ELSE:
stm;

next-statement

Pythonwin

o These examples use Pythonwin
Only available on Windows

GUI toolkit using Tkinter available for
most platforms

Standard console Python available on
all platforms
o Has interactive mode for quick
testing of code

o Includes debugger and Python
editor

Interactive Python

o Starting Python.exe, or any of the
GUI environments present an
interactive mode

>>> prompt indicates start of a
statement or expression

If incomplete, . . . prompt indicates
second and subsequent lines

All expression results printed back to
interactive console

Variables and Types (1 of3)

o Variables need no declaration
0 >>> a=1
>>>

o As a variable assignment is a
statement, there is no printed result

O >>> a
1

o Variable name alone is an
expression, so the result is printed

Variables and Types o3

o Variables must be created before
they can be used
O >>> Db

Traceback (innermost last):
File "<interactive input>", line
1, in ?
NameError: b
>>>

o Python uses exceptions - more
detail later

Variables and Types @3ofs)

o Objects always have a type

o>>> a =1

>>> type(a)
<type 'int'>
>>> a = "Hello"
>>> type (a)
<type 'string'>
>>> type (1.0)
<type 'float'>

Assignment versus Equality
Testing

o Assignment performed with single =
o Equality testing done with double = (==)
Sensible type promotions are defined
Identity tested with is operator.
o >>> 1==
1
>>> 1.0==1
1
>>> "l1"==1
0

Simple Data Types

o Strings

May hold any data, including embedded
NULLs

Declared using either single, double, or
triple quotes

>>> s = "Hi there"

>>> s

'"Hi there'

>>> s = "Embedded 'quote'"
>>> s

"Embedded 'quote'"

Simple Data Types

Triple quotes useful for multi-line
strings
>>> s = """ a long

. string with "quotes" or
anything else"""
>>> s
' a long\0l2string with "quotes"
or anything else'
>>> len(s)
45

Simple Data Types

o Integer objects implemented using C
longs
Like C, integer division returns the floor

>>> 5/2
2

o Float types implemented using C
doubles

No point in having single precision since
execution overhead is large anyway

Simple Data Types

o Long Integers have unlimited size
Limited only by available memory

>>> long = 1L << 64

>>> long ** 5
2135987035920910082395021706169552114602704522356
652769947041607822219725780640550022962086936576L

High Level Data Types

o Lists hold a sequence of items
May hold any object
Declared using square brackets
0>>> 1 = []# An empty list
>>> 1.append (1)
>>> 1l.append ("Hi there")
>>> len(1l)
2

High Level Data Types

o>>> 1
[1, 'Hi there']
>>>
>>> 1 = ["Hi there", 1, 2]
>>> 1
['Hi there',6 1, 2]
>>> l.sort()
>>> 1
[1, 2, 'Hi there']

High Level Data Types

o Tuples are similar to lists
Sequence of items
Key difference is they are immutable
Often used in place of simple structures
o Automatic unpacking
O >>> point = 2,3
>>> x, y = point
>>> X
2

High Level Data Types

o Tuples are particularly useful to
return multiple values from a
function

O0>>> x, y = GetPoint()
o As Python has no concept of byref

parameters, this technique is used
widely

High Level Data Types

o Dictionaries hold key-value pairs

Often called maps or hashes.
Implemented using hash-tables

Keys may be any immutable object,
values may be any object

Declared using braces
0 >>> d={}
>>> d[0] = "Hi there"
>>> d["fo0o"] =1

High Level Data Types

o Dictionaries (cont.)

O >>> len(d)
2
>>> d[0]
'Hi there'
>> d = {0 : "Hi there", 1
"Hello"}
>>> len(d)
2

Blocks

o Blocks are delimited by indentation
Colon used to start a block
Tabs or spaces may be used

Mixing tabs and spaces works, but is
discouraged

o>>> if 1:
print "True"
True
>>>

Blocks

o Many hate this when they first see it
Most Python programmers come to
love it

o Humans use indentation when

reading code to determine block
structure
Ever been bitten by the C code?:
o if (1)
printf ("True") ;
CallSomething() ;

Looping

o The for statement loops over
sequences

O >>> for ch in "Hello":
print ch

OHHODIDM-

>>>

Looping

o Built-in function range () used to
build sequences of integers
0 >>> for i in range(3):
print i

N R O

>>>

Looping

o while statement for more
traditional loops
o>>1i =0
>>> while i < 2:
print i
i=4i+1

o -

>>>

Functions

o Functions are defined with the def
statement:

0 >>> def foo(bar):
.. return bar
>>>

o This defines a trivial function named
foo that takes a single parameter
bar

Functions

o A function definition simply places a
function object in the namespace

o >>> foo
<function foo at fac680>

>>>

o And the function object can
obviously be called:

0 >>> foo(3)
3
>>>

Classes

o Classes are defined using the class
statement
O >>> class Foo:
def init (self):
self .member = 1
def GetMember (self) :
return self.member

>>>

Classes

o A few things are worth pointing out
in the previous example:

The constructor has a special name
__init__, while a destructor (not
shown) uses del

The self parameter is the instance (ie,
the this in C++). In Python, the self
parameter is explicit (c.f. C++, where
it is implicit)

The name self is not required - simply
a convention

Classes

o Like functions, a class statement
simply adds a class object to the
namespace

O >>> Foo
<class _ main__.Foo at 1000960>

>>>

o Classes are instantiated using call
syntax
O >>> f£=Foo()

>>> f.GetMember ()
1

Modules

o Most of Python’s power comes from
modules

o Modules can be implemented either
in Python, or in C/C++

o import statement makes a module
available

O >>> import string
>>> string.join(["Hi", "there"])
'Hi there'
>>>

Exceptions

o Python uses exceptions for errors
try / except block can handle
exceptions

O >>> try:

1/0
except ZeroDivisionError:
print "Eeek"
Eeek
>>>

Exceptions

o try / £inally block can guarantee

execute of code even in the face of
exceptions

O >>> try:
1/0
. finally:
print "Doing this anyway"

Doing this anyway

Traceback (innermost last): File
"<interactive input>", line 2, in ?
ZeroDivisionError: integer division or modulo
>>>

Threads

o Number of ways to implement threads

o Highest level interface modelled after
Java

O >>> class DemoThread (threading.Thread) :
def run(self):
for i in range(3):
time.sleep(3)
print i

>>> t = DemoThread()
>>> t.start()

>>> t.join()

0

1 <etc>

Standard Library

o Python comes standard with a set of
modules, known as the “standard library”

o Incredibly rich and diverse functionality
available from the standard library

All common internet protocols, sockets, CGI,
OS services, GUI services (via Tcl/Tk),
database, Berkeley style databases, calendar,
Python parser, file globbing/searching,
debugger, profiler, threading and
synchronisation, persistency, etc

External library

o Many modules are available
externally covering almost every
piece of functionality you could ever
desire

Imaging, numerical analysis, OS
specific functionality, SQL databases,
Fortran interfaces, XML, Corba, COM,
Win32 API, etc

o Way too many to give the list any
justice

Python Programs

o Python programs and modules are
written as text files with traditionally
a .py extension

o Each Python module has its own discrete
namespace

o Name space within a Python module is a
global one.

Python Programs

o Python modules and programs are
differentiated only by the way they are
called

.py files executed directly are programs
(often referred to as scripts)

.py files referenced via the import statement
are modules

Python Programs

o Thus, the same .py file can be a
program/script, or a module

o This feature is often used to provide
regression tests for modules

When module is executed as a program,
the regression test is executed

When module is imported, test
functionality is not executed

More Information on Python

o Can't do Python justice in this short time
frame
But hopefully have given you a taste of the
language
o Comes with extensive documentation,
including tutorials and library reference
Also a number of Python books available
o Visit www.python.org for more details
Can find python tutorial and reference manual

Scripting Languages

o What are they?
Beats me ©

Apparently they are programming
languages used for building the
equivalent of shell scripts, i.e. doing
the sort of things that shell scripts have
traditionally been used for.

But any language can be used this way
So it is a matter of convenience

Characteristics of Scripting Languages

o Typically interpretive
But that’s an implementation detail
o Typically have high level data
structures
But rich libraries can substitute for this
For example, look at GNAT.Spitbol
o Powerful flexible string handling

o Typically have rich libraries

But any language can meet this
requirement

Is Python A Scripting Language?

o Usually thought of as one

o But this is mainly a marketing issue
People think of scripting languages as
being easy to learn, and useful.

o But Python is a well worked out
coherent dynamic programming
language

And there is no reason not to use it for
a wide range of applications.

An Example in Python

Scramble Sort

Scramble Sort

o The scramble sort problem deals with a
list of mixed integers and strings.

o The integers are to be sorted in order
o The strings are to be sorted in order

o With the constraint that integers appear
where integers were in the original list,
and strings appear where strings
appeared in the original list.

Setting Up The Data

o>>> list = [1,10,'abc’,'hello’, 3,
‘car', 0, 'aardvark']

o >>> list

o[1, 10, 'abc', 'hello', 3, 'car', O,
‘aardvark']

o >>> len (list)

o8

Defining The Sort Function

o >>> def sort(l):
o ... forjin range(0,len(l)):
o ... forkinrange(j+1,len(l)):
... if (type(l[j])==type(l[k])) and
(|[J']>|[§<):
. t=I[k]
I[k]1=1[j]
I[j]=t
return sort(l)
. return |

(@)

O O O O 0O

Running the function

o >>> sort (list)

o [0, 1, 'aardvark’, 'abc', 3, 'car', 10,
'hello']
o>>>

Another Problem, Digital Roots

o Given a (possibly very long) decimal
number

o Sum up all the digits

o Repeat the process until the result
is less than 10

o This result is the digital root

Observation

o This is equivalent to casting out 9’s

o The result is the number mod 9,
except that we get 9 instead of O
for non-zero input.

o Easy in Python because we can
handle large numbers directly

Set Up The Data

O >>>num = 123 ** 123
o >>> num

0 114374367934617190099880295228066
276746218078451850229775887975052
369504785666446606568365201542169
649974727730628842345343196581134
895919942820874449837299476648958
359023796078549041949007807220625
356526926729664064846685758382803
100766740220839267L

o >>>

Define The Function

o >>> def digital(n):

if n==0:
return O;

if N%9==0:
return 9;

return n%?9;

O O O O O O

Some Examples of Digital Roots

o >>> digital(0)

o0

o >>> digital(18)

09

o >>> digital (num)

o9

0 >>> num=num+7%*9999-3
o >>> digital(num)

o 6L

Note on Input-Output

o For simplicity, I have omitted input
output details here

o But when you do the problem, you
should indeed handle the input and
output formatting as specified in the
problem

o That's only fair in comparing Python
with other languages

