
1

Introduction to Python
Programming Languages

Adapted from Tutorial by
Mark Hammond
Skippi-Net, Melbourne, Australia
mhammond@skippinet.com.au
http://starship.python.net/crew/mhammond

What Is Python?

{ Created in 1990 by Guido van
Rossum
z While at CWI, Amsterdam
z Now hosted by centre for national

research initiatives, Reston, VA, USA

{ Free, open source
z And with an amazing community

{ Object oriented language
z “Everything is an object”

2

Why Python?

{ Designed to be easy to learn and master
z Clean, clear syntax
z Very few keywords

{ Highly portable
z Runs almost anywhere - high end servers and

workstations, down to windows CE
z Uses machine independent byte-codes

{ Extensible
z Designed to be extensible using C/C++, allowing

access to many external libraries

Python: a modern hybrid

{ A language for scripting and prototyping
{ Balance between extensibility and

powerful built-in data structures
{ genealogy:

z Setl (NYU, J.Schwartz et al. 1969-1980)
z ABC (Amsterdam, Meertens et al.

1980-)
z Python (Van Rossum et all. 1996-)

{ Very active open-source community

3

Prototyping

{ Emphasis on experimental
programming:

{ Interactive (like LISP, ML,
etc).

{ Translation to bytecode (like Java)
{ Dynamic typing (like LISP, SETL,

APL)
{ Higher-order function (LISP, ML)
{ Garbage-collected, no ptrs

(LISP, SNOBOL4)

Prototyping

{ Emphasis on experimental
programming:

{ Uniform treatment of indexable
structures (like SETL)

{ Built-in associative structures
(like SETL, SNOBOL4, Postscript)

{ Light syntax, indentation is
significant (from ABC)

4

Most obvious and notorious
features

{ Clean syntax plus high-level data
types
z Leads to fast coding

{ Uses white-space to delimit blocks
z Humans generally do, so why not the

language?
z Try it, you will end up liking it

{ Variables do not need declaration
z Although not a type-less language

A Digression on Block Structure

{ There are three ways of dealing
with IF structures
z Sequences of statements with explicit

end (Algol-68, Ada, COBOL)
z Single statement

(Algol-60, Pascal, C)
z Indentation (ABC, Python)

5

Sequence of Statements

{ IF condition THEN
stm;
stm;
..

ELSIF condition THEN
stm;
..

ELSE
stm;
..

END IF;
next statement;

Single Statement

{ IF condition THEN
BEGIN

stm;
stm;

END ..
ELSE IF condition THEN

BEGIN
stm;
..

END;
ELSE

BEGIN
stm;
..
END;

next-statement;

6

Indentation

{ IF condition:
stm;
stm;
..

ELSIF condition:
stm;
..

ELSE:
stm;
..

next-statement

Pythonwin

{ These examples use Pythonwin
z Only available on Windows
z GUI toolkit using Tkinter available for

most platforms
z Standard console Python available on

all platforms

{ Has interactive mode for quick
testing of code

{ Includes debugger and Python
editor

7

Interactive Python

{ Starting Python.exe, or any of the
GUI environments present an
interactive mode

z>>> prompt indicates start of a
statement or expression

z If incomplete, ... prompt indicates
second and subsequent lines

z All expression results printed back to
interactive console

Variables and Types (1 of 3)

{ Variables need no declaration
{ >>> a=1
>>>

{ As a variable assignment is a
statement, there is no printed result

{ >>> a
1

{ Variable name alone is an
expression, so the result is printed

8

Variables and Types (2 of 3)

{ Variables must be created before
they can be used

{ >>> b
Traceback (innermost last):

File "<interactive input>", line
1, in ?
NameError: b
>>>

{ Python uses exceptions - more
detail later

Variables and Types (3 of 3)

{ Objects always have a type
{ >>> a = 1
>>> type(a)
<type 'int'>
>>> a = "Hello"
>>> type(a)
<type 'string'>
>>> type(1.0)
<type 'float'>

9

Assignment versus Equality
Testing

{ Assignment performed with single =
{ Equality testing done with double = (==)

z Sensible type promotions are defined
z Identity tested with is operator.

{ >>> 1==1
1
>>> 1.0==1
1
>>> "1"==1
0

Simple Data Types

{ Strings
z May hold any data, including embedded

NULLs
z Declared using either single, double, or

triple quotes
z >>> s = "Hi there"
>>> s
'Hi there'
>>> s = "Embedded 'quote'"
>>> s
"Embedded 'quote'"

10

Simple Data Types

z Triple quotes useful for multi-line
strings

z >>> s = """ a long
... string with "quotes" or
anything else"""
>>> s
' a long\012string with "quotes"
or anything else'
>>> len(s)
45

Simple Data Types

{ Integer objects implemented using C
longs
z Like C, integer division returns the floor
z >>> 5/2
2

{ Float types implemented using C
doubles
z No point in having single precision since

execution overhead is large anyway

11

Simple Data Types

{ Long Integers have unlimited size
z Limited only by available memory
z >>> long = 1L << 64
>>> long ** 5
2135987035920910082395021706169552114602704522356
652769947041607822219725780640550022962086936576L

High Level Data Types

{ Lists hold a sequence of items
z May hold any object
z Declared using square brackets

{ >>> l = []# An empty list
>>> l.append(1)
>>> l.append("Hi there")
>>> len(l)
2

12

High Level Data Types

{ >>> l
[1, 'Hi there']
>>>
>>> l = ["Hi there", 1, 2]
>>> l
['Hi there', 1, 2]
>>> l.sort()
>>> l
[1, 2, 'Hi there']

High Level Data Types

{ Tuples are similar to lists
z Sequence of items
z Key difference is they are immutable
z Often used in place of simple structures

{ Automatic unpacking
{ >>> point = 2,3
>>> x, y = point
>>> x
2

13

High Level Data Types

{ Tuples are particularly useful to
return multiple values from a
function

{ >>> x, y = GetPoint()

{ As Python has no concept of byref
parameters, this technique is used
widely

High Level Data Types

{ Dictionaries hold key-value pairs
z Often called maps or hashes.

Implemented using hash-tables
z Keys may be any immutable object,

values may be any object
z Declared using braces

{ >>> d={}
>>> d[0] = "Hi there"
>>> d["foo"] = 1

14

High Level Data Types

{Dictionaries (cont.)
{ >>> len(d)
2
>>> d[0]
'Hi there'
>>> d = {0 : "Hi there", 1 :
"Hello"}
>>> len(d)
2

Blocks

{ Blocks are delimited by indentation
z Colon used to start a block
z Tabs or spaces may be used
z Mixing tabs and spaces works, but is

discouraged

{ >>> if 1:
... print "True"
...
True
>>>

15

Blocks

{ Many hate this when they first see it
z Most Python programmers come to

love it

{ Humans use indentation when
reading code to determine block
structure
z Ever been bitten by the C code?:

{ if (1)
printf("True");
CallSomething();

Looping

{ The for statement loops over
sequences

{ >>> for ch in "Hello":
... print ch
...
H
e
l
l
o
>>>

16

Looping

{ Built-in function range() used to
build sequences of integers

{ >>> for i in range(3):
... print i
...
0
1
2
>>>

Looping

{ while statement for more
traditional loops

{ >>> i = 0
>>> while i < 2:
... print i
... i = i + 1
...
0
1
>>>

17

Functions

{ Functions are defined with the def
statement:

{ >>> def foo(bar):
... return bar
>>>

{ This defines a trivial function named
foo that takes a single parameter
bar

Functions

{ A function definition simply places a
function object in the namespace

{ >>> foo
<function foo at fac680>

>>>

{ And the function object can
obviously be called:

{ >>> foo(3)
3
>>>

18

Classes

{ Classes are defined using the class
statement

{ >>> class Foo:
... def __init__(self):
... self.member = 1
... def GetMember(self):
... return self.member
...
>>>

Classes

{ A few things are worth pointing out
in the previous example:
z The constructor has a special name
__init__, while a destructor (not
shown) uses __del__

z The self parameter is the instance (ie,
the this in C++). In Python, the self
parameter is explicit (c.f. C++, where
it is implicit)

z The name self is not required - simply
a convention

19

Classes

{ Like functions, a class statement
simply adds a class object to the
namespace

{ >>> Foo
<class __main__.Foo at 1000960>
>>>

{ Classes are instantiated using call
syntax

{ >>> f=Foo()
>>> f.GetMember()
1

Modules

{ Most of Python’s power comes from
modules

{ Modules can be implemented either
in Python, or in C/C++

{ import statement makes a module
available

{ >>> import string
>>> string.join(["Hi", "there"])
'Hi there'
>>>

20

Exceptions

{ Python uses exceptions for errors
z try / except block can handle

exceptions
{ >>> try:
... 1/0
... except ZeroDivisionError:
... print "Eeek"
...
Eeek
>>>

Exceptions

{ try / finally block can guarantee
execute of code even in the face of
exceptions

{ >>> try:
... 1/0
... finally:
... print "Doing this anyway"
...
Doing this anyway
Traceback (innermost last): File
"<interactive input>", line 2, in ?
ZeroDivisionError: integer division or modulo
>>>

21

Threads

{ Number of ways to implement threads
{ Highest level interface modelled after

Java
{ >>> class DemoThread(threading.Thread):

... def run(self):

... for i in range(3):

... time.sleep(3)

... print i

...
>>> t = DemoThread()
>>> t.start()
>>> t.join()
0
1 <etc>

Standard Library

{ Python comes standard with a set of
modules, known as the “standard library”

{ Incredibly rich and diverse functionality
available from the standard library
z All common internet protocols, sockets, CGI,

OS services, GUI services (via Tcl/Tk),
database, Berkeley style databases, calendar,
Python parser, file globbing/searching,
debugger, profiler, threading and
synchronisation, persistency, etc

22

External library

{ Many modules are available
externally covering almost every
piece of functionality you could ever
desire
z Imaging, numerical analysis, OS

specific functionality, SQL databases,
Fortran interfaces, XML, Corba, COM,
Win32 API, etc

{ Way too many to give the list any
justice

Python Programs

{ Python programs and modules are
written as text files with traditionally
a .py extension

{ Each Python module has its own discrete
namespace

{ Name space within a Python module is a
global one.

23

Python Programs

{ Python modules and programs are
differentiated only by the way they are
called
z .py files executed directly are programs

(often referred to as scripts)
z .py files referenced via the import statement

are modules

Python Programs

{ Thus, the same .py file can be a
program/script, or a module

{ This feature is often used to provide
regression tests for modules
z When module is executed as a program,

the regression test is executed
z When module is imported, test

functionality is not executed

24

More Information on Python

{ Can’t do Python justice in this short time
frame
z But hopefully have given you a taste of the

language

{ Comes with extensive documentation,
including tutorials and library reference
z Also a number of Python books available

{ Visit www.python.org for more details
z Can find python tutorial and reference manual

Scripting Languages

{ What are they?
z Beats me ☺
z Apparently they are programming

languages used for building the
equivalent of shell scripts, i.e. doing
the sort of things that shell scripts have
traditionally been used for.

z But any language can be used this way
z So it is a matter of convenience

25

Characteristics of Scripting Languages

{ Typically interpretive
z But that’s an implementation detail

{ Typically have high level data
structures
z But rich libraries can substitute for this
z For example, look at GNAT.Spitbol

{ Powerful flexible string handling
{ Typically have rich libraries

z But any language can meet this
requirement

Is Python A Scripting Language?

{ Usually thought of as one
{ But this is mainly a marketing issue

z People think of scripting languages as
being easy to learn, and useful.

{ But Python is a well worked out
coherent dynamic programming
language
z And there is no reason not to use it for

a wide range of applications.

26

An Example in Python

Scramble Sort

Scramble Sort

{ The scramble sort problem deals with a
list of mixed integers and strings.

{ The integers are to be sorted in order
{ The strings are to be sorted in order
{ With the constraint that integers appear

where integers were in the original list,
and strings appear where strings
appeared in the original list.

27

Setting Up The Data

{ >>> list = [1,10,'abc','hello',3,
'car', 0, 'aardvark']

{ >>> list
{ [1, 10, 'abc', 'hello', 3, 'car', 0,

'aardvark']
{ >>> len (list)
{ 8

Defining The Sort Function

{ >>> def sort(l):
{ ... for j in range(0,len(l)):
{ ... for k in range(j+1,len(l)):
{ ... if (type(l[j])==type(l[k])) and

(l[j]>l[k]):
{ ... t=l[k]
{ ... l[k]=l[j]
{ ... l[j]=t
{ ... return sort(l)
{ ... return l
{ ...

28

Running the function

{ >>> sort (list)
{ [0, 1, 'aardvark', 'abc', 3, 'car', 10,

'hello']
{ >>>

Another Problem, Digital Roots

{ Given a (possibly very long) decimal
number

{ Sum up all the digits
{ Repeat the process until the result

is less than 10
{ This result is the digital root

29

Observation

{ This is equivalent to casting out 9’s
{ The result is the number mod 9,

except that we get 9 instead of 0
for non-zero input.

{ Easy in Python because we can
handle large numbers directly

Set Up The Data

{ >>> num = 123 ** 123
{ >>> num
{ 114374367934617190099880295228066

276746218078451850229775887975052
369504785666446606568365201542169
649974727730628842345343196581134
895919942820874449837299476648958
359023796078549041949007807220625
356526926729664064846685758382803
100766740220839267L

{ >>>

30

Define The Function

{ >>> def digital(n):
{ ... if n==0:
{ ... return 0;
{ ... if n%9==0:
{ ... return 9;
{ ... return n%9;
{ ...

Some Examples of Digital Roots

{ >>> digital(0)
{ 0
{ >>> digital(18)
{ 9
{ >>> digital (num)
{ 9
{ >>> num=num+7*9999-3
{ >>> digital(num)
{ 6L

31

Note on Input-Output

{ For simplicity, I have omitted input
output details here

{ But when you do the problem, you
should indeed handle the input and
output formatting as specified in the
problem

{ That’s only fair in comparing Python
with other languages

