

2019 M/J 3

Frank Marcoline

May 13, 2019

Dear Dr. Gottlieb,

I do not know if this solution is optimal, but I enjoyed playing with this problem.

Subdivide the unit square into $3n$ by $3n$ squares for positive integer n . Remove a triangle of squares of side length $(n - 1)$ from one corner of the unit square. From the opposite corner, remove a triangle of side length n , rotate it 180 degrees, and attach it to the edge the unit square so that it extends the staircase of squares it was detatched from. Add an $(n - 1)$ by $(n + 1)$ rectangle adjacent to both the rotated triangle and unit square. Let $A(n)$ be the area of the tile: $A(n) = (19n^2 + n - 2)/(18n^2)$. For $3 \leq n \leq 122$, the area of the hexomino covered by five tiles is greater than 88%, with the maximum tile area being $A(4) = 17/16$, covering $85/96$ ths = 88.541 $\bar{6}$ % of the hexomino.

Similar, though slightly irregular, solutions exist where the unit square is subdivided $3n + 1$ and $3n + 2$ times per side, though from examining a handful of test cases, they appear to be worse than nearby solutions of the form $3n$.

Thank you for another entertaining puzzle corner,
Frank

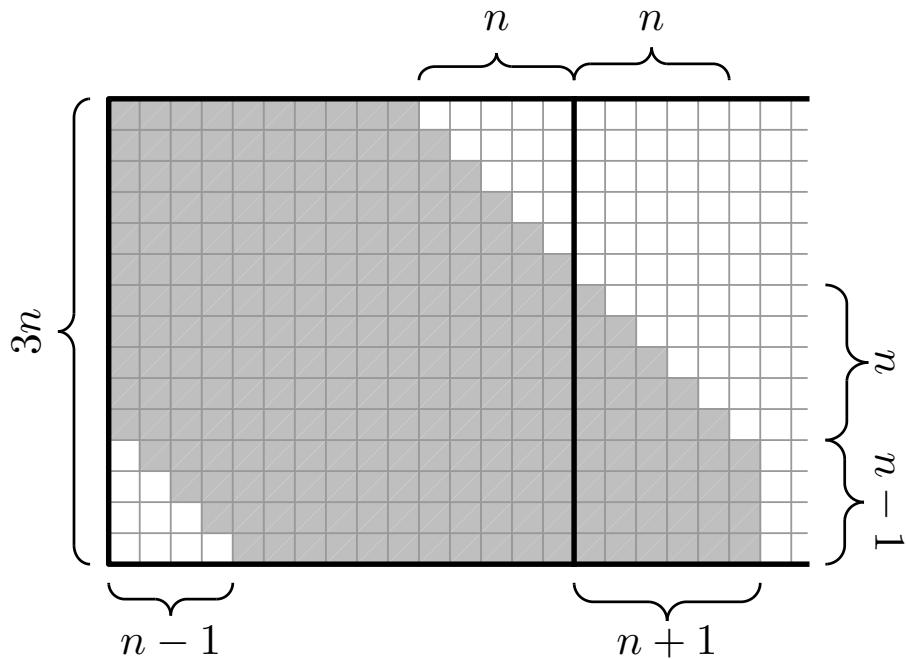


Figure 1: Construction of a single tile. The $n = 5$ case is shown.

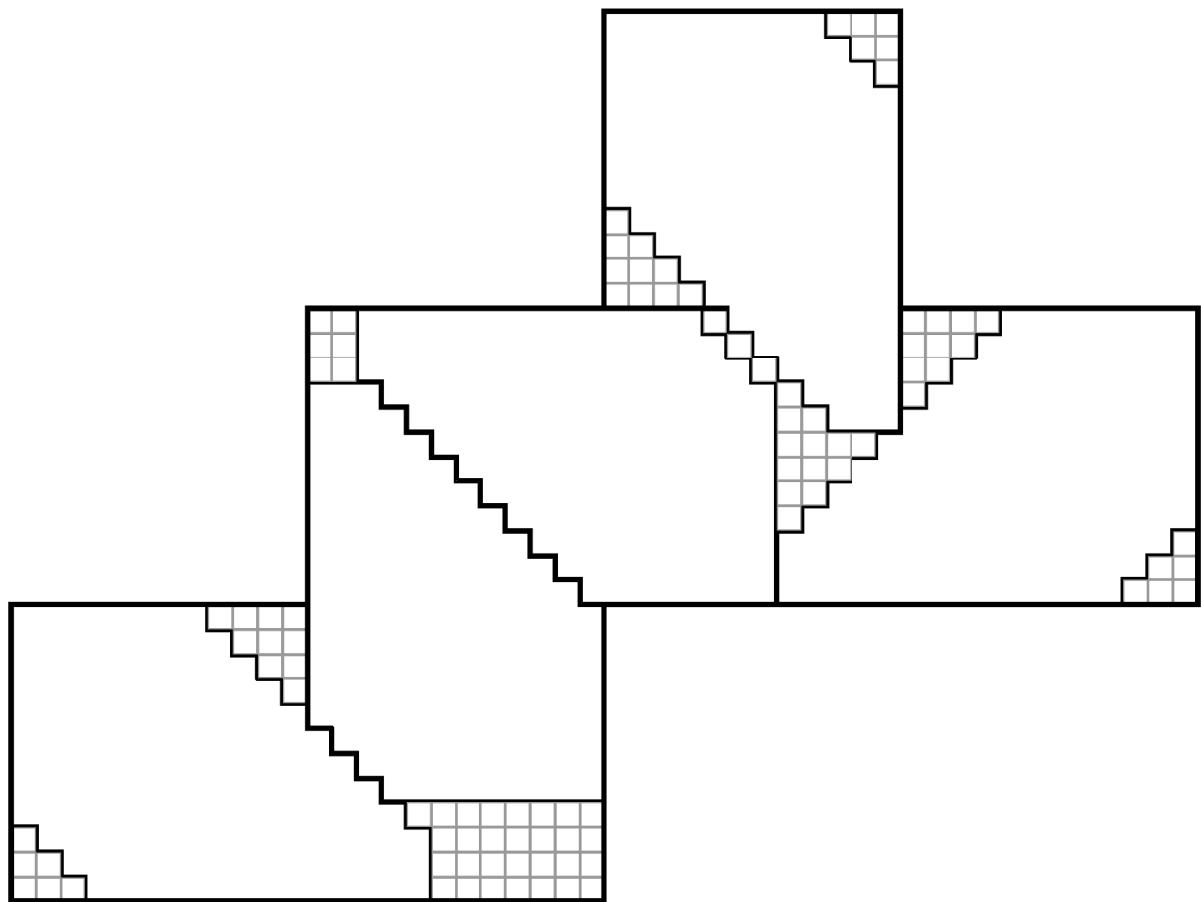


Figure 2: The $n = 4$ solution, which is the maximum coverage solution for this family of solutions.