
What follows is an analysis for problem M/A 2; the only solution is
9
12

+ 5
34

+ 7
68

= 1. The analysis involves elementary number theory and finding
upper bounds for sums over classes of possible solutions. After a series of
steps we show that the numerators must be 5, 7, 9 while the denominators
must include 1∗, 3∗. This is followed by more case studies to eliminate all
cases but the solution cited.

Some notation from elementary number theory: a|b means a divides b
(a, b are integers), for example 5|30. An observation about fractions that is
used without comment below is that when positive integers r, s, t, u satisfy
r > t and s < u we have r

s
+ t

u
> t

s
+ r

u
, i.e. a larger sum results from pairing

the larger numerator with the smaller denominator.
Problem M/A 2 may be restated as finding a solution for

S =
a

A
+

b

B
+

e

E
= 1 for a, b, e ∈ [1, 9], A,B,E ∈ [12, 98], (1)

with the added constraints that a, b, e, A,B,E share no common digits and
do not end in 0. Imposing the above constraints, Eq. 1 is equivalent to

aBE + bAE + eAB = ABE. (2)

The minimal denominator must be≤ 19, as 9
21

+ 9
31

+ 9
41

< 1. Thus 1∗must
appear in some denominator and 1 appears in no numerator. Observe that
the minimal denominator cannot be 17, 18, 19 as the sum in Eq. 1 would then
be bounded above by 9

17
+ 8

23
+ 5

46
< 1 and 9

18
+ 7

23
+ 6

45
< 1 and 8

19
+ 7

23
+ 6

45
< 1

respectively.
The first claim is that {A,B,E} contains no denominator ending in 5,

i.e. divisible by 5. For example if 5|A, Eq. 2 shows that 5|aBE, hence 5|a or
5|B or 5|E, contrary to the assumption of no common digits.

Now observe that no denominator contains 9. First 9 cannot be the lead
digit, as otherwise the maximum sum would have denominators 12, 34, 96 or
13, 24, 96 or 14, 23, 96 or 16, 23, 94 and the corresponding expressions would
be: 8

12
+ 7

34
+ 5

96
or 8

13
+ 7

24
+ 5

96
or 8

14
+ 7

23
+ 5

96
or 8

16
+ 7

23
+ 5

94
, respectively;

but all these sums are too small.
We now show no denominator ends in 9. Assume A ends in 9 and is

prime. Eq. 2 shows p|B,E and we may assume p|B. If A = 29 we have
B = 58, 87 and the maximal expressions in Eq. 1 would be 6

29
+ 4

58
+ 7

13
or

5
29

+ 4
87

+ 6
13

, but both sums are too small. The other prime numerators ending
in 9 are 59, 79, 89 and are too big to allow A|B. The remaining cases are
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for composite A = 39, 49, 69. For A = 39 the maximal expressions in Eq. 1
would contain the fraction 8

1∗ and would be bounded above by 7
39

+ 6
45

+ 8
12

or 5
39

+ 7
26

+ 8
14

or 5
39

+ 7
24

+ 8
16

that are all too small. A similar analysis for
A = 49 reveals upper bounds are 6

49
+ 7

35
+ 8

12
or 5

49
+ 7

26
+ 8

13
and for A = 69

upper bounds are 5
69

+ 7
34

+ 8
12

or 5
69

+ 7
24

+ 8
13

, but all sums are too small.
Thus 9 must appear in a numerator.
We now show A = 13 does not yield a solution. Eq. 2 shows 13|B or

13|E; we may assume the former so B = 26, 52, 78. As 9
13

+ 5
26

+ 4
78

< 1
and 9

13
+ 6

52
+ 4

78
< 1 we cannot have 13|E. Substitution of B = 26, 52, 78

in (2) and division by 13 shows 26me = (26m − 2am − b)E for m = 1, 2, 3
respectively. For m = 1 we see E = 2e and 13 = 26− 2a− b that fails since
E ≥ 34. For m = 2 we see 52 − 4a − b = 13r = 13, 26, 39 and 4e = rE for
r = 1, 2, 3. As the unused digits are 4, 6, 7, 8, 9 we see E ≥ 46 so 4e = rE
fails. For m = 3 we see 78 − 6a − b = 13r = 26, 39, 52, 65 and 6e = Er for
r = 2, 3, 4, 5. As the unused digits are 2, 4, 5, 6, 9 we see E = 24 or E ≥ 42.
The only candidate is (E, e, r) = (24, 8, 2). This fails as B = 78 has an 8.

Thus we may assume A = 12, 14, 16.
We now claim no 7 appears in a denominator. We first show 7 cannot

appear as the lead digit. The cases E = 73, 74, 76, 78 are easily disposed of
as they contain a prime factor p ≥ 13, i.e. 73, 37, 19, 13 respectively. Eq. 2
shows p|A or p|B. For E = 73 we need B = 73; for E = 74 we need B = 37;
both fail due to repeated 7. For E = 76 we need B = 38, 57; 57 fails due to
repeated 7. B = 38 implies A(2b + e) = 4 ∗ 19(A− a) by substitution in (2)
and division by 38. This tells us that 2b + e = 19 and A = 4(A − a). The
latter relation implies (a,A) = (9, 12). However 2b+e = 19 fails with unused
digits 4, 5. For E = 78 we need B = 26, 52, but both fail since A ≥ 14
(A = 12 is disallowed as B uses 2) and 9

14
+ 5

26
+ 3

78
< 1.

The final case with lead digit 7 in a denominator is E = 72, so that
A = 14, 16. A = 14 fails since 9

14
+ 8

36
+ 5

72
< 1. Similarly A = 16 fails since

9
16

+ 8
34

+ 5
72

< 1.
We now show 7 cannot be the trailing digit in a denominator: the can-

didates are 27, 37, 47, 57, 67, 87 (17 was eliminated earlier). The cases E =
37, 47, 57, 67, 87 are easily disposed of as they contain a prime factor p ≥
13, i.e. 37, 47, 19, 67, 29 respectively. We must have p|B (note A = 19
was eliminated above). There are no remaining viable choices for B when
p = 37, 47, 67, 29. For E = 57 we must have B = 38 and this fails as
9
12

+ 6
38

+ 4
57

< 1. The final case is E = 27, with A = 14, 16. Eq. 2 shows
27|eB, hence 3|B. If A = 14 Eq. 2 shows 7|B (since a = 7 is disallowed) with
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remaining digits 3, 5, 6, 8, 9; thus B = 63 (only multiple of 21) and e = 9
is forced by 27|eB. This fails as 8

14
+ 5

63
+ 9

27
< 1. If A = 16 Eq. 2 shows

16|aB, so 2|B; earlier we saw 3|B, so 6|B. With remaining digits 3, 4, 5, 8, 9
we must have B = 48, 54, 84. B = 48 and B = 84 force e = 9 since 27|eB,
but 5

16
+ 3

48
+ 9

27
< 1 so both fail. B = 54 forces a = 8 since 16|aB, but

8
16

+ 3
54

+ 9
27

< 1 so this fails.
Thus 7 must appear in a numerator.
We now show 3 is not a trailing digit in a denominator. It suffices to

consider the cases E = 23, 43, 53, 63, 83. The cases E = 23, 43, 53, 83 are
easily disposed of as they are all prime ≥ 23, so we have E|B. This is
impossible for E = 53, 83. For E = 23 we must have B = 46 and now no
digits remain for A. For E = 43 we must have B = 86 that forces A = 12,
but even 9

12
+ 7

43
+ 5

86
< 1.

The final case to show 3 is not a trailing digit in a denominator is E = 63
with A = 12, 14. Eq. 2 shows 63|eAB, so 21|eB, 9|eB respectively. When
A = 12 we have either e = 7 or B = 84. If (A, e) = 12, 7 we have B =
48, 54, 58, 84 but T = 9

12
+ 5

48
+ 7

63
< 1 so we must have B = 54 as 58 is

not a multiple of 3 and T is an upper bound when B = 84. Substitution in
Eq. 2 and division by 6 ∗ 7 ∗ 9 = 378 gives 9a + 2b = 96 with {a, b} = {8, 9}
and this fails. If e 6= 7 and (A,B,E) = (12, 84, 63) we see 9

12
+ 7

84
+ 5

63
< 1

so (A,B,E) = (12, 84, 63) fails. When A = 14 the remaining digits are
2, 5, 7, 8, 9, so B = 28, 52, 58, 82. Since 9|eB we must have e = 9 (3 divides
none of the choices for B) but 7

14
+ 5

28
+ 9

63
< 1 so this fails.

Thus 3 is not a trailing digit in a denominator.
We observed earlier that 5 cannot be the trailing digit in a denominator.

We now show 5 is not a leading digit either. It suffices to consider the cases
E = 52, 54, 56, 58. The cases E = 52, 58 are easily disposed of as they contain
a prime factor p ≥ 13, i.e. 13, 29 respectively that forces p|B but there are
no such candidates for B using the digits left.

When E = 54 we must have A = 12, 16. As 9
16

+ 8
27

+ 3
54

< 1 we must
have A = 12 and B = 36, 38, 68, 86. Substitution of (A,E) = (12, 54) in
Eq. 2 and division by 6 shows 9aB + 108b + 2eB = 108B, so B|108b. The
latter condition forces B = 36 as B = 38, 68, 86 have prime factors ≥ 17. We
now have {a, b, e} = {7, 8, 9} and 9a + 3b + 2e = 108, so 3|e, i.e. e = 9 and
9a + 3b = 90 that cannot be solved as we need 3|b.

The final case to consider is E = 56, so A = 12, 14. Substitution of
(A,E) = (12, 56) in Eq. 2 and division by 4 shows 14aB+168b+3eB = 168B.
We also have B = 34, 38, 48, 84 using the remaining digits 3, 4, 7, 8, 9. As
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B|168b we must have B = 48, 84 as B = 34, 38 have prime factors ≥ 17.
B = 48, 84 both fail as 9

12
+ 3

56
+ 7

48
< 1. We are left with (A,E) = (14, 56)

and substitution in Eq. 2 and division by 14 shows 4aB + 56b + eB = 56B.
With remaining digits 2, 3, 7, 8, 9 we have B = 28, 32, 38, 82. As B|56b we
must have B = 28, 32 as B = 38, 82 have prime factors ≥ 19. B = 28 fails as
9
14

+ 7
28

+ 3
56

< 1. If B = 32 we see b = 8 (since B|56b) and also 7|(4a + e)B,
i.e. 7|(4a + e) with {a, e} = {7, 9} that fails.

Thus 5 appears only as a numerator, and {a, b, e} = {5, 7, 9} while the
denominators are even {A = 1∗, B = 3∗, E} with A = 1∗ ∈ {12, 14, 16}.

If A = 16 and a ≤ 7 the sum in Eq. 1 would then be bounded above
by 7

16
+ 9

23
+ 8

54
< 1. For a = 9 we must have E ∈ {24, 28}; otherwise the

sum is bounded above by 9
16

+ 7
32

+ 5
48

< 1. We also have B ∈ {32, 34, 38}.
From Eq. 2 we derive 16(bE + eB) = 7BE, so 16|BE. The only solution is
(E,B) = (24, 38); upon substitution and division by 16 we have 24b+ 38e =
7 ∗ 3 ∗ 19 that is even on the left and odd on the right.

Now consider A = 14. As 7
14

+ 9
32

+ 5
68

< 1 we must have E = 26, 28 when
a ≤ 7. As 5

14
+ 9

26
+ 7

38
< 1 there are no solutions for a = 5. For a = 7 Eq. 1

gives us 2(bE + eB) = BE. If E = 26 we see 13|B = 3∗ has no solutions. If
E = 28 we have 28b + eB = 14B that implies 7|B = 3∗ but is unsolvable.

To address the final case for A = 14, we have a = 9 and Eq. 1 gives us
14(bE+eB) = 5BE with unused digits 2, 3, 5, 6, 7, 8. As 7|BE we must have
(E,B) = (28, 36) based on the remaining digits. This implies 28b+36e = 360,
so 36|28b, i.e. 9|7b and b = 9 that is disallowed as a = 9.

The final case is A = 12. As 7
12

+ 9
34

+ 5
68

< 1 there are no solutions
for a ≤ 7. For (a,A) = (9, 12) we have 4(bE + eB) = EB from Eq. 1 with
unused digits 3, 4, 5, 6, 7, 8. Note E > B = 3∗ and B ∈ {34, 36, 38}.

If B = 38 we see 19|E with E = 46, 64 that fails. If B = 36 we have
E = 48, 84, but 9

12
+ 5

36
+ 7

48
> 1 so B 6= 48. As 7|84 = E we have e = 7 and

so b = 5 but 4(5∗84+7∗36) 6≡ 36∗84 mod 5 since the left side is 4∗2 mod 5
and the right is 4 mod 5.

If B = 34 we have E = 68, 86. As 17|B we must have E = 68. As
9
12

+ 5
34

+ 7
68

= 1, this the only solution.
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