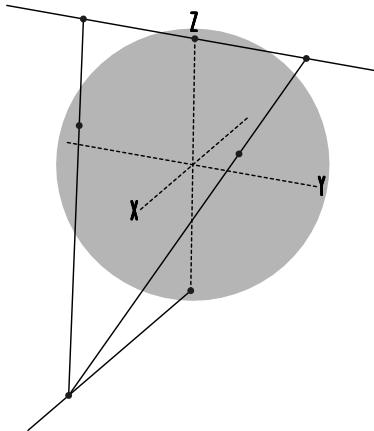


Problem J/A3 from Puzzle Corner – Technology Review, 2019
 Burgess H Rhodes, XVIII, 1960

The Problem:

“Robert Bird offers a problem for which a good 3-D geometric sense is very useful. A sphere of radius 1 has its center at the origin of an x - y - z system. Line L_1 lies in the y - z plane, is parallel to the y -axis, and is tangent to the sphere at $P_1 = (0, 0, 1)$. Line L_2 lies in the x - z plane, is parallel to the x -axis, and is tangent to the sphere at $P_2 = (0, 0, -1)$. Line L_3 leaves L_2 at $P_3 = (x, 0, -1)$, is tangent to the sphere at P_4 , and intersects L_1 at $P_5 = (0, y, 1)$. You are to find y in terms of x .”

The Geometry



Solution Plan. Line L_3 can be represented parametrically, with parameter λ , $-\infty < \lambda < \infty$, as

$$L_3(\lambda) = P_3 + \lambda(P_5 - P_3) = (x, 0, -1) + \lambda((0, y, 1) - (x, 0, -1)) = ((1 - \lambda)x, \lambda y, 2\lambda - 1).$$

The distance $D(\lambda)$ between a point on L_3 and the origin is defined by

$$D^2(\lambda) = [(1 - \lambda)x]^2 + [\lambda y]^2 + [2\lambda - 1]^2 = (x^2 + y^2 + 4)\lambda^2 - 2(x^2 + 2)\lambda + (x^2 + 1).$$

Point P_4 , at distance 1 from the origin $(0, 0, 0)$, is the point on line L_3 which is closest to the origin. Steps to the problem solution are:

- (a) Minimize $D(\lambda)$: determine λ^* for which $D(\lambda^*) \leq D(\lambda)$ for all λ (routine calculus).
- (b) Solve $D(\lambda^*) = 1$ for $y \equiv y(x)$ (routine algebra).

Step (a). All distances $D(\lambda)$ of interest are positive. Thus to find λ^* it suffices to minimize $D^2(\lambda)$:

$$\frac{d}{d\lambda} D^2(\lambda) = 2\lambda(x^2 + y^2 + 4) - 2(x^2 + 2)$$

which is 0 for

$$\lambda^* = \frac{x^2 + 2}{x^2 + y^2 + 4} = \frac{x^2 + 2}{(x^2 + 2) + (y^2 + 2)}.$$

Step (b). Equation $D(\lambda^*) = 1$ is equivalent to $D^2(\lambda^*) = 1$. Thus solve

$$(x^2 + y^2 + 4)(\lambda^*)^2 - 2(x^2 + 2)\lambda^* + (x^2 + 1) = 1.$$

Substitute

$$U = x^2 + 2 \quad V = y^2 + 2$$

to obtain

$$(U + V) \left(\frac{U}{U + V} \right)^2 - 2U \frac{U}{U + V} + (U - 1) = 1.$$

Solve for V :

$$V = \frac{2U}{U - 2},$$

producing

$$y^2 + 2 = \frac{2x^2 + 4}{x^2},$$

and final answer

$$y \equiv y(x) = \pm \frac{2}{x}.$$

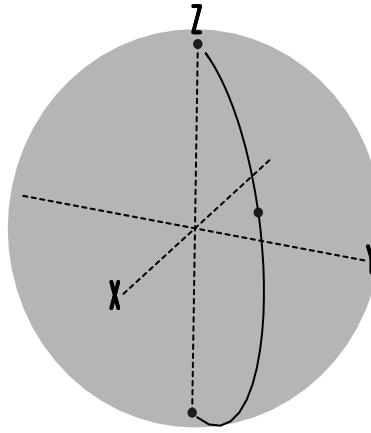
Point of Tangency. Point $P_4 = L_3(\lambda^*)$ is the line L_3 point of tangency. With $y = \frac{2}{x}$ and $\lambda^* = \frac{x^2}{x^2 + 2}$,

$$P_4^+ = L_3(\lambda^*) = ((1 - \lambda^*)x, \lambda^*y, 2\lambda^* - 1) = \left(\frac{2}{x^2 + 2}x, \frac{x^2}{x^2 + 2} \cdot \frac{2}{x}, 2\frac{x^2}{x^2 + 2} - 1 \right) = \frac{1}{x^2 + 2}(2x, 2x, x^2 - 2),$$

and with $y = -\frac{2}{x}$, $P_4^- = \frac{1}{x^2 + 2}(2x, -2x, x^2 - 2)$, both for $-\infty < x < \infty$, and both are spherical curves. More specifically, each is half a great circle with Z -axis as diameter.

Locus of Points P_4

(Great semi-circle shown corresponds to $x > 0$ and $y > 0$, in the Plane $Y = X$)



As $P_3 = (x, 0, -1)$, starting at $P_2 = (0, 0, -1)$, moves in the positive direction, $P_5 = (0, y, 1)$, starting “at ∞ ,” moves in the negative direction toward $P_1 = (0, 0, 1)$. Point of tangency, $P_4 = \frac{1}{x^2 + 2}(2x, 2x, x^2 - 2)$, traverses the great semi-circle shown from P_2 to P_1 .

Three additional great semi-circles correspond to choices $x < 0, y < 0$ (in the $Y = X$ plane), and $x > 0, y < 0$ and $x < 0, y > 0$ (in the $Y = -X$ plane).