
J/A 2.  The late Dick Hess attributed the following problem to 
Bob Wainwright.  A trapezoid comprising three equilateral tri-
angles is to be divided into four similar areas of three different 
sizes (i.e., exactly two pieces are congruent). 
 

 
 
 
 
 
     The triangle sides are assigned unit length.  As diagrammed 
below, trapezoidal regions A, B, and C1-C2 (a congruent pair) 
may be formed by two lines, one parallel to the right side and 
one horizontal.  Locations of the lines along the top and left 
side that create similar areas are unknown a priori and are des-
ignated x and y.  These dimensions fully specify all the others. 
 

 
 

     Each trapezoid has base angles of /3, hence the base width 
equals the top width plus the slant height.  Similarity of A, B, 
C1 and C2 therefore requires only that the ratio of top width to 
slant height be matched.  The two conditions A ~ C and A ~ B 
determine x and y as follows: 
 

 
 
Corresponding sides of B, A, and C1 or C2 are in the ratio 3:2:1, 
thus the area ratio is 9:4:1.  In all regions the top width is 2/3 
times the base width and 2 times the slant height.  Each internal 
trapezoid thereby comprises five equilateral triangles. 

J/A 3.  Spyros Kinnas offers three variants of the “floating ice 
problem”.  When ice floating on water melts, the water level 
is unchanged.  He asks what happens to the water level when 
floating ice melts if:  (1) the ice contains trapped pockets of air 
(of negligible weight); (2) a solid less dense than water (e.g., 
wood) resides in or atop the ice; and (3) a solid denser than 
water (e.g., steel) resides in or atop the ice. 
     A mass of ice mI with an inclusion of dissimilar species X, 
shown on the left, floats with a volume VI+X

* below the water 
level.  The submerged volume supports the total mass via a 
buoyant force equal to the weight of displaced water.  Hence 
VI+X

* = (mI + mX)/W where W is the density of water.  

     
     On melting (above right), the ice is converted to an equal 
mass of water having a volume VW = mI/W.  Therefore: 
 

𝑉ାଡ଼
∗ = 𝑉୛ + (𝑚ଡ଼ 𝜌୛⁄ ) 

 
This relationship is applied in turn to the three cases: 
     (1) Air has negligible mass and fully escapes the water.  
Hence mX ≈ 0, therefore VI+X

* = VW:  the meltwater volume 
matches the original submerged volume exactly, as for ice 
alone.  The water level is unchanged. 
     (2) A solid less dense than water stays afloat, displacing a 
volume of water VX

* equivalent to its own weight.  Then VX
* 

equals (mX/W), whereupon VI+X
* = VW + VX

*:  the portion of 
the pre-melt submerged volume that balanced the ice weight 
becomes an equal volume of meltwater, while the portion that 
supported the solid is occupied after melting by the solid alone.  
There is no change in water level. 
     (3) A solid denser than water sinks, displacing its own vol-
ume VX of water rather than the larger VX

* equivalent to its 
weight.  Thus VI+X

* > VW + VX:  the solid displaces less water 
after the ice melts, therefore the water level drops. 


