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J/A 3: (Restated) For any triangle, find the relationship between in-radius r, circumradius R and the 

distance X between the in-center and circumcenter. 

The answer is 𝑋2 = 𝑅2 − 2𝑅𝑟; one example is illustrated in Figure 1.  Note that there exists no triangle 

with 𝑟 > 𝑅/2 (equality happens for an equilateral triangle), so 𝑋 is always real.   

      

In a liberal interpretation of the problem, there is a second solution, namely 𝑋2 = 𝑅2 + 2𝑅𝑟. This occurs 

when we allow the “inscribed circle” to lie outside the triangle but, like the true inscribed circle, we 

require it to be tangent to all three sides of the triangle, allowing two of the sides to extend, as shown in 

Figure 2. 

The relationship can be discovered numerically by generating random triangles, calculating the 

inscribing and circumscribing circles, then plotting for each random trial a point at (𝑥, 𝑦) = (𝑋 𝑅⁄ , 𝑟 𝑅⁄ ). 

The parabola 𝑥2 = 1 − 2𝑦 is then immediately apparent, and it checks numerically to the precision of 

the arithmetic employed.  This reveals the result with near certainty, but such a demonstration falls 

short of rigorous proof. 

To derive the result rigorously, we turn to an algebraic formulation.  Figure 3 shows the notation: 𝐴, 𝐵, 𝐶 

are the vertices of the triangle, 𝑃, 𝑄 are the centers of its inscribed circle and circumscribed circle, resp., 

𝐷, 𝐸, 𝐹 are the points of tangency of the inscribed circle.  We will use a complex vector formulation, that 

is, a point (𝑥, 𝑦) in Cartesian coordinates will be considered as the point 𝑥 + 𝑖𝑦 in the complex plane of 

our diagram.  Let 𝑃 be the origin, i.e., 𝑃 = 0, and place the circumcenter 𝑄 on the negative real axis at 

𝑄 = −𝑋.   

 

Figure 1: Case 𝑋2 = 𝑅2 − 2𝑅𝑟 

 

Figure 2: Case 𝑋2 = 𝑅2 + 2𝑅𝑟 



  

Suppose that 𝐷 is at angle Θ relative to 𝑃, so it is the complex point 𝐷 = 𝑟𝑒𝑖Θ.  To make all derivations 

easier, we introduce 𝜃 ≔ 𝑒𝑖Θ, 𝜃′ ≔ 𝑒−𝑖Θ, so 𝐷 = 𝑟𝜃.  (𝑥′ will mean the complex conjugate of 𝑥 

throughout.) Turning by 90° in the complex plane is equivalent to multiplication by 𝑖, so for some real 

number 𝜆, point 𝐶 can be written as 𝐶 = 𝐷 + 𝜆𝑖𝜃 = (𝑟 + 𝑖𝜆)𝜃.  But 𝐶 is distance 𝑅 from circumcenter 

𝑄, so we must have 

(𝐶 + 𝑋)(𝐶′ + 𝑋) = 𝑅2, 

where we have used 𝑋′ = 𝑋, because 𝑋 is real.  Substitution for 𝐶 gives 

((𝑟 + 𝜆𝑖)𝜃 + 𝑋)((𝑟 − 𝜆𝑖)𝜃′ + 𝑋) = 𝑅2, 

which expanded and rearranged becomes 

𝜆2 + 𝑖𝑋(𝜃 − 𝜃′)𝜆 + 𝑋2 + 𝑟2 − 𝑅2 + 𝑋𝑟(𝜃 + 𝜃′) = 0. 

This is a quadratic in 𝜆 and since point 𝐵 is defined by the same conditions as point 𝐶, the two roots of 

the quadratic, say 𝜆1, 𝜆2, give points 𝐶 and 𝐵 as 

𝐶 = (𝑟 + 𝑖𝜆1)𝜃, 𝐵 = (𝑟 + 𝑖𝜆2)𝜃. 

Since (𝜆 − 𝜆1)(𝜆 − 𝜆2) = 𝜆2 − (𝜆1 + 𝜆2)𝜆 + 𝜆1𝜆2, the quadratic equation above implies that 

(𝜆1 + 𝜆2) = −𝑖𝑋(𝜃 − 𝜃′), 𝜆1𝜆2 = 𝑋2 + 𝑟2 − 𝑅2 + 𝑋𝑟(𝜃 + 𝜃′).  

Now, since the in-center lies on the angle bisectors, point 𝐸 is the reflection of 𝐷 across line 𝑃𝐶 ⃡    and 

point 𝐹 is the reflection of 𝐷 across line 𝑃𝐵 ⃡    .  A little complex plane geometry shows that this implies 

𝐸 =
𝐶

𝐶′
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Figure 3. Notation 

 



where we used the fact that 𝜃𝜃′ = 1.  Finally, 𝐴 lies at the intersection of lines 𝐶𝐸 ⃡    and 𝐵𝐹 ⃡    .  Using the 

expressions for 𝐵, 𝐶, 𝐸, 𝐹, some messy algebra gives 𝐴 as 

𝐴 =
(𝑟 + 𝑖𝜆1)(𝑟 + 𝑖𝜆2)𝑟𝜃

𝑟2 + 𝜆1𝜆2
. 

But we require that 𝐴 also lies on the circumcircle, so 

(𝐴 + 𝑋)(𝐴′ + 𝑋) = 𝑅2. 

Expanding this and clearing denominators gives a polynomial in 𝑅, 𝑟, 𝑋, 𝜃, 𝜃′, 𝜆1, 𝜆2.  That polynomial has 

a factor 𝜆1𝜆2 that can be discarded, since it corresponds to a degenerate situation in which one side of 

the triangle has length zero.  The remaining polynomial can be rearranged so that 𝜆1 and 𝜆2 only appear 

in the combinations (𝜆1 + 𝜆2) or 𝜆1𝜆2 , both of which we wrote expressions for above.  Substituting 

these expressions to eliminate 𝜆1 and 𝜆2 and simplifying the result --- a messy operation for which I used 

a computer algebra program --- gives a polynomial in which 𝜃 and 𝜃′ drop out, using 𝜃𝜃′ = 1.  This 

expression factors as 

(𝑋2 − 𝑅2 + 2𝑅𝑟)(𝑋2 − 𝑅2 − 2𝑅𝑟) = 0. 

The two factors are exactly the ones illustrated in Figures 1 and 2. 

By the way, the fact that angle Θ drops out of the final expression implies a surprising fact: if 𝑅, 𝑟, 𝑋 

satisfy the relationship, then there are an infinite number of triangles that can be simultaneously 

inscribed/circumscribed in the same circles.  We can choose any angle Θ and complete the construction 

using the formulas for 𝐴, 𝐵, 𝐶 above.  Figure 4 illustrates this for the circles from Figure 1. 

 

 

Figure 4. Three triangles inscribed/circumscribed 

by the same circles 


