July 6, 2016

Re: J/A 3 Solution, Rev. 0
To Allan Gottlieb, Technology Review Puzzle Corner:

Find a relationship among R, r, and X for a triangle with circumscribed circle (radius R),
inscribed circle (radius r), and offset X between the centers.

| think this problem is best treated starting with the unit circle as the circumscribed circle,
where the triangle is defined by three angles 61, 62, and 03. For the moment, R=1, and in
the end everything (i.e., r and X) will scale by the chosen R, angles invariant.

The mathematical literature on triangles with circumscribed and inscribed circles like this
is nicely summarized in this useful 2-page article: http://www.kurtnalty.com/Triangle.
Here are some basic definitions from that article:

Define three points hy }5*1_._ P2, and P3. From these, define the directed line
segments and lengths:
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Notice these are defined cyclically such that A+B+C=0.
Calculate lengths, semiperimeter and area

a = |A
B
e = |C
s = (a+b+c)/2
K = y/s#(s—a)*x(s—b)*(s—¢)
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To get X, we’re interested in the difference between the incenter vector | and the
circumcenter vector E. We’re also interested in how R and r relate to a, b, ¢, and derived
quantities s and K as above. Again, from Nalty’s article:


http://www.kurtnalty.com/Triangle

Incenter

The inseribed circle center is given by the weighted average of the coordinates
by the opposite side. The center is the intersection of the three angle bisectors.
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The radius of the inscribed cirele is
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Circumcenter or Exocenter

The circumcenter or exocenter is found by erect perpendicular bisectors from
each side. This center is the intersection of these lengths. Building off the P1 -
P3 line, we have
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The radius of the circumscribed circle is

E = (1/2)(P1+ P3) + (C x (A x B)) (3)
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Given Eq. (3) for E, it looks like it was a good idea to locate E at the origin and not have
to wrestle with vector products, unless we want to use E=0 somehow. Now X=|l|.

On the unit circle, P.=(cosd,,sind,), etc. When the magnitudes a, b, and c are

computed from the definitions above, the trigonometric angle difference formula and
half-angle formula give the following (define 021=02-01 and similarly):

a=,/2(1—-cos(d,,) = 2sin (%)
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b=,2@1-cos(d;,) =2sin EY
(6,

c=,/2(1-cos(6,;) =2sin (7j .

From Nalty’s article we already know how r and R relate to a, b, and c. Now it remains to
find X as the magnitude of I, again using the angle difference formula:
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~ JaZ +b? +c? + 2chcos(6,,) + 2ab cos(6,5) + 2ac cos(6,,)

a+b+c
Now we use expressions from above such as 2c0s021=2- a®to get
a+b+c)’—abc(a+b+c
X = ‘/( ) ( ) = 1_a_bc. But from Nalty, above, abc=4K and
a+b+c a+b+c

r=2K/(a+b+c), so

X =+/1-2r. This is the unit circle solution, so for any R, X = R1/1—2%.This checks

out for the equilateral triangle, where on the unit circle R=1, r=1/2, and the centers of the
two circles are well known to coincide at the origin, giving X=0. | think this is the
“relationship” among r, R, and X that is being sought. | believe the equations above are
also sufficient to solve for a, b, and c (and thus the relative angle placements, defining the
triangle) given a compatible set of r, R, and X numbers.

Yours sincerely,

Timothy J. Maloney ‘71
Palo Alto, CA



