Apo Sezginer, G’85
Problem S/O 3. Show that the solutions of e* = E are on the imaginary axis.

Solution

Let x and y be the real and imaginary parts of z, and z = x + iy be aroot of :

z-1

— pZ __ 4T
f(@) =e? == (1)
The root necessarily satisfies the weaker condition: |e?| = |§| which is equivalent to:

ox _ (x—1)%+4y?
T (x+1)2+y? (2)

(x—1)%+y?
(x+1)2+y?
x > 0. The direction of each inequality above reverses for x < 0. Let’s summarize these
results in a table:

Forx >0, (x—1)% < (x+1)? therefore < 1. On the other hand, e?* > 1 for

x<0 x>0

x —1)% + y? x—1)% + y?

( ) A ( ) Y~ o1

(x+1)2+y? (x+ 1)+ y?
e?* <1 e?* >1

e, (=12 +y? e, (=12 +y?
(x+1)2+y? (x+ 1)+ y?

Table 1. Eq. (2) cannot be satisfied for x # 0.

. . . . -1
Since Eq (2) is a necessary condition, any solution of e* = ;—1 must have zero real-part.

This completes the proof of the original problem. Now we can have even more fun finding the
roots. Since any root of f(z) is on the imaginary axis, we have:

piy — =1 (3)

iy+1

We observe that if iy is a root of f(z), so is —iy:

iy+1 iy—1 —iy+1



Since z = 0 is not a root, and the set of roots have reflection symmetry, we search the roots on
the positive imaginary axis. We take the logarithm of both sides of Eq (3):

iy — =1 _ D) ; 1

e = = e~ &XP (ZL atan y) (3b)
y = 2nm + 2 atan % 4)
9n(y) = 2nm + 2 atan % 5)

n is a non-negative integer. This transcendental equation is solved by the fixed-point iteration
(W. Rudin, Principles of Mathematical Analysis, p. 220, 3 Ed. McGraw Hill, 1976):

y — gn(¥) (6)

The left-arrow denotes assignment. We iterate this assignment until convergence. We find a
root y,, of Eq (4) for each nonnegative integer n. The roots of the original equation (1) are
Zp = Xiy,; n=0,12,...:

Zn
+1.30654237418881 i
+6.58462004256417 i

+12.72324078413133 i
+18.95497141084159 i
+25.21202688855082 i
5 +31.47943871200974 i
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Table 2. First five pairs of infinitely many solutions of e? = (z — 1) /(z + 1) to 14 decimal places.

Fixed-point iteration applies because g, (v) is a contraction map (that is, |g,(y)| < 1) fory >
1; and Eq (4) can have no solutions for 0 < y < 1. The latter statement is true because g,(y) =
gfor 0<y<1.

The roots of f(z) asymptote to: z, = + (27tin + ;—n) as |n| — oo . The asymptote is obtained
by solving the quadratic equation:

yEZnﬂ+; asn — oo,

which is the large y approximation to Eq (4).
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Fig. 1 shows contours of equal magnitude (blue; logarithmically spaced) and equal phase (red) of
the function f(z) = e” — E . Contours of equal magnitude encircle the zeros (roots) and

poles of f(z), and contours of equal phase issue from poles and zeros. There is a pole of f(z)
at z = —1. Fig. 2 shows a color map of |f(z)| in logarithmic scale and the markers (x) show the
roots listed in Table 2.



