

2012 M/J 3 Addendum

Frank Marcoline

May 5, 2012

Previously we looked for decimal numbers for which the right cyclic permutation equals the double.

Additional solutions exist in bases other than decimal. For example the base 5 numbers 13_5 , 102342_5 and 210234_5 are solutions. The base 9 solutions are 25736315_9 , 15257363_9 , 31525736_9 , 36315257_9 , 10467842_9 , 21046784_9 and 42104678_9 .

Solutions also exist for multiples other than two. In base b , for multiple $m : 2 \leq m < b$, as many as $b - m$ solutions exist (before self-concatenated solutions), one solution ending in each digit from m to $b - 1$. I do not know if all $b - m$ solutions exist for all b .

A familiar pattern emerges for multiple $(b - 1)$ in base b :

$$\begin{aligned} &(10113)_4 \\ &(101124214)_5 \\ &(1011236326213520225056554303404531464416)_7 \\ &(10112359\dots9)_{10} \\ &(1011235814\dots14)_{15} \\ &(101123581322\dots22)_{23} \\ &(10112358132135\dots35)_{36} \\ &(1011235813213456\dots56)_{57} \\ &(101123581321345590\dots90)_{91} \\ &(101123581321345589145\dots145)_{146} \\ &(101123581321345589144234\dots234)_{235} \quad (24490 \text{ digits}) \end{aligned}$$

Let F_n be the n^{th} term in the Fibonacci sequence. Solutions for multiple $(b - 1)$ in base b such that $F_n + 2 \leq b < F_{n+1} + 2$ begin with the digit 1 followed by the first n terms of the Fibonacci sequence. Long division of $((b - 1) \ 1011235\dots F_{k-3}\dots)$ gives some insight: Assume that for $k \geq 2$, division of the k^{th} term from the left by $(b - 1)$ leaves a remainder of F_{k-2} . The next term in the long division is $(F_{k-2} * b + F_{k-3})/(b - 1) = F_{k-2} + (F_{k-2} + F_{k-3})/(b - 1) = F_{k-2}$ plus a remainder of F_{k-1} .