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Previously we looked for decimal numbers for which the right cyclic
permutation equals the double.

Additional solutions exist in bases other than decimal. For example the
base 5 numbers 135, 1023425 and 2102345 are solutions. The base 9 solutions
are 257363159, 152573639, 315257369, 363152579, 104678429, 210467849 and
421046789.

Solutions also exist for multiples other than two. In base b, for multiple
m : 2 ≤ m < b, as many as b −m solutions exist (before self-concatenated
solutions), one solution ending in each digit from m to b− 1. I do not know
if all b−m solutions exist for all b.

A familiar pattern emerges for multiple (b− 1) in base b:

(1 0 1 1 3)
4

(1 0 1 1 2 4 2 1 4)
5

(1 0 1 1 2 3 6 3 2 6 2 1 3 5 2 0 2 2 5 0 5 6 5 5 4 3 0 3 4 0 4 5 3 1 4 6 4 4 1 6)
7

(1 0 1 1 2 3 5 9 ... 9)
10

(1 0 1 1 2 3 5 8 14 ... 14)
15

(1 0 1 1 2 3 5 8 13 22 ... 22)
23

(1 0 1 1 2 3 5 8 13 21 35 ... 35)
36

(1 0 1 1 2 3 5 8 13 21 34 56 ... 56)
57

(1 0 1 1 2 3 5 8 13 21 34 55 90 ... 90)
91

(1 0 1 1 2 3 5 8 13 21 34 55 89 145 ... 145)
146

(1 0 1 1 2 3 5 8 13 21 34 55 89 144 234 ... 234)
235

(24490 digits)

Let Fn be the nth term in the Fibonacci sequence. Solutions for multiple
(b − 1) in base b such that Fn + 2 ≤ b < Fn+1 + 2 begin with the digit
1 followed by the first n terms of the Fibonacci sequence. Long division
of ((b− 1) 1 0 1 1 2 3 5 ... Fk−3 ...) gives some insight: Assume that for
k ≥ 2, division of the kth term from the left by (b − 1) leaves a remainder
of Fk−2. The next term in the long division is (Fk−2 ∗ b + Fk−3)/(b − 1) =
Fk−2 + (Fk−2 + Fk−3)/(b− 1) = Fk−2 plus a remainder of Fk−1.
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