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The Problem.

“Ermanno Signorelli has an empty bowl with a hemispherical concavity. The plane of its
lip is horizontal and the environment (temperature, pressure, humidity, etc.) is constant.
A liquid enters the bowl at a rate of r m3/sec (cubic meters per second) and evaporates
at a rate of ea m3/sec, where a is the current surface area in meters squared (assuming
no meniscus). We can adjust r, but e is fixed.

Suppose r is chosen so that when the bowl is full, the evaporation just matches the fill
rate, and hence the bowl remains full. What is the internal diameter of the bowl?

Using this same value for r, how long will it take to fill an initially empty bowl?”

Logical Analysis. With parameter constants fill rate r (volume per unit time) and evaporation rate e
(volume per unit surface area per unit time), time to fill the hemispherical container should be the same,
whether the container is “right side up” (conventional) or “upside down” (unconventional). The total volumes
are the same and, for these two orientations, the cross section areas are the same, though the orders of the
cross sections are reversed. If the radius of the bowl is R, then the liquid surface area is S(R) = πR2 when
the conventional container is full. The evaporation rate and fill rate are then equal, or r = e · S(R).

Conventional Unconventional

Envision the liquid entering the container through an orifice at the bottom. Liquid entering at rate r
into the unconventional container wets the bottom of the container whose surface area is S(R) = πR2. There
the rate at which liquid evaporates is equal to the rate at which it enters, so the container remains empty.
Time to fill the container is infinite, and the container cannot be filled. This holds for both orientations, the
difference being that some liquid accumulates in the conventional container. A mathematical confirmation
for the conventional container follows.

Basic Formulas. Represent the bowl as the surface generated by revolving about the y-axis the bottom
half of the circle x2+(y−R)2 = R2, in which R is the radius of the circle (and hence bowl). With h denoting
the height of liquid in the bowl, the volume of liquid is (use “horizontal washers”)

V (h) =
∫ h

0

π(R2 − (y − R)2)dy = π(Rh2 −
h3

3
)

and the liquid surface area is

S(h) =
dV (h)

dh
= π(2Rh − h2). (1)

Diameter of the Bowl. When the bowl is full, h = R and r = e · S(R) = e · πR2 (fill rate = evaporation
rate). The internal diameter D of the bowl is

D = 2R = 2

√
r

eπ
.
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Time to Fill the Bowl. Let function h(t) be the height of liquid in the bowl at time t. Initially h(0) = 0.
Then

dV (h(t))
dt

= r − e · S(h(t))

dV (h(t))
dh

dh(t)
dt

= r − e · S(h(t)) [chain rule]

S(h(t))
dh(t)

dt
= r − e · S(h(t)) [(1) above], and

dh(t)
dt

=
r − e · S(h(t))

S(h(t))
.

The last differential equation is separable and, with r = e · S(R), leads to

∫
S(h)

S(R) − S(h)
dh = e

∫
dt

or, with (1) above, ∫
2Rh − h2

(R − h)2
dh = e

∫
dt. (2)

With a little integration, and with initial condition h(0) = 0, equation (2) yields

h2

R − h
= e · t or t(h) =

1
e

h2

R − h
.

As liquid enters the bowl, V (h) increases because for h < R, S(h) < S(R) so that r > e · S(h). Thus h
increases, and time To to fill is

To = lim
h→R−

t(h) = lim
h→R−

1
e

h2

R − h
= ∞.

Time to fill the hemispherical bowl is infinite, and the bowl will never be filled! It makes no difference that
the bowl started out empty.

Generalization. Consider any container C which can hold a liquid. If there is already liquid in C, height
h = 0 at the current liquid level, and h measures height above the current liquid level. Denote by V (h) and
S(h) the volume and (top) surface area of the liquid when the height of the liquid in C is h(≥ 0). Suppose
liquid enters C at fixed rate r (volume per unit time), and liquid evaporates at the rate e · S(h), with e a
fixed rate (volume per unit area per unit time). Thus

dV (h(t))
dt

= r − e · S(h(t)). (3)

Assume that S(h) is a continuous function of h. Thus there are no “ledges” in the wall of the container.
C is initially empty (condition V (0) = 0). If e ·S(0) > r, no liquid will accumulate in C. If r > e ·S(0), liquid
level will continue to increase if no h is encountered for which e · S(h) = r.

Let h = Ho be the smallest height for which e · S(Ho) = r. Then if h = Ho the volume of liquid in C
remains constant. If there is no such Ho, then C will fill (overflow).

Introduce the condition r = e · S(Ho) into (3):

dV (h(t))
dh

dh(t)
dt

= S(h(t))
dh(t)

dt
= e · S(Ho) − e · S(h(t)),
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dh(t)
dt

=
e · S(Ho) − e · S(h(t))

S(h(t))
, and

∫
S(h)

S(Ho) − S(h)
dh = e

∫
dt = e · t(h) (4)

determines the time t(h) it takes for the liquid level to reach height h.

To evaluate (4) let u = S(Ho) − S(h) and assume that S is differentiable. Then du = −S′(h)dh and
equation (4) is transformed to

−
∫

S(Ho) − u

u

1
S′(h)

du = e · t(h). (5)

Suppose S′(h) is bounded by 0 < m ≤ S′(h) so that liquid surface area is increasing with respect to h at
no less a rate than m. With no loss of generality, adjust the definition of h so that 0 < m ≤ S′(h) for
0 ≤ h ≤ Ho. Then

e · t(h) = −
∫

S(Ho) − u

u

1
S′(h)

du ≥ −
1
m

∫
S(Ho) − u

u
du

= −
1
m

[S(Ho) lnu − u] + C

= −
1
m

[S(Ho) ln(S(Ho) − S(h)) − (S(Ho) − S(h))] + C.

(6)

Constant C is determined so that t(0) = 0:

C =
1
m

[S(Ho) ln(S(Ho) − S(0)) − (S(Ho) − S(0))]. (7)

Equations (4), (6), and (7) together yield

t(h) ≥
1
e

1
m

[S(Ho) ln

(
S(Ho) − S(0)
S(Ho) − S(h)

)
− (S(h) − S(0))].

The time To for liquid to reach height Ho is then

To = lim
h→H−

o

t(h) ≥
1
e

1
m

lim
h→H−

o

[S(Ho) ln

(
S(Ho) − S(0)
S(Ho) − S(h)

)
− (S(h) − S(0))] = ∞.

This result continues to hold as m → 0+. It is impossible to fill a container to a height Ho at which
r= e · S(Ho) and S′(h) > 0 for h immediately below Ho.

Conclusion. By the initial Logical Analysis and the Generalization, for a container of any shape, if
there is a horizontal cross section at liquid height h = Ho with area S(Ho) and for which r = e ·S(Ho), it is
impossible to fill the container to height Ho. Having ignored all environmental and physical considerations,
as in the problem statement, this is of course a strictly mathematical conclusion. If the container must be
filled through height Ho, just increase r. Or in the case of the unconventional container, just tilt it for a
moment to get the filling started.

-3-


