0.2 2007 J/A 3

Phil Lally wants to know the area swept out horizontally by a 15π foot rope tethered to the outside of a 15 foot radius right circular cylinder. The area is $\frac{375}{2}\pi^3$ square feet. Unfortuantely, I can not demonstrate this without resorting to calculus.

The coordinates of the endpoint (x,y) of the tether in terms of the angle α of the point of last contact of the tether with the circle are:

$$x = 15 - 15\cos\alpha + 15(\pi - \alpha)\sin\alpha$$

$$y = 15\sin\alpha + 15(\pi - \alpha)\cos\alpha.$$
 (5)

The area A_1 of the upper right quadrant, in square feet, including the area of the semi-circle is

$$A_{1} = \int_{0}^{15\pi} dy \, x$$

$$= \int_{0}^{\pi} d\alpha \, 15 \left(\pi - \alpha\right) x \left(\alpha\right)$$

$$= \int_{0}^{\pi} d\alpha \, 15 \left(\pi - \alpha\right) \left(15 - 15 \cos \alpha + 15 \left(\pi - \alpha\right) \sin \alpha\right)$$

$$= 225 \left(\frac{1}{6} \pi^{3} + \frac{1}{2} \pi\right)$$
(6)

Above, $\frac{dy}{d\alpha} = -15(\pi - \alpha)\sin\alpha$ was used to change variables from y to α . The area A_0 of the semi-circle without the silo in it is $A_0 = \frac{1}{2}\pi r^2 = \frac{225}{2}\pi^3$ ft². The area A_s of the silo is $A_s = \pi r^2 = 225\pi$ ft². The total area A is twice the area A_1 of the first quadrant plus the area of the empty semi-circle A_0 , minus the area of the silo:

$$A = 2A_1 + A_0 - A_s$$

$$= 225 \left(\frac{1}{3}\pi^3 + \pi\right) + 225\frac{1}{2}\pi^3 - 225\pi$$

$$= \frac{375}{2}\pi^3.$$
(7)

The total area is $\frac{375}{2}\pi^3$ ft², which is $\frac{5}{6}$ of the area of a circle with a 15π foot radius.

Figure 1: Boundary of area swept out by a 15 π foot rope tethered at the origin to a 15 foot radius circle.

Figure 2: Detail of the coordinates used to calculate the area.