To: <u>gottlieb@nyu.edu</u> From: Henri Hodara, 48 Subject: July 2, Puzzle Corner

<u>Problem</u>: Avi Ornstein has circumscribed a triangle around a circle of radius R=1. What is the minimum area Avi's triangle can have?

<u>Solution #2</u>: The circle rotational symmetry, lead us to try out an equilateral triangle as solution If the solution is correct, stretching any side by a small amount should yield a net area increase.

Refer to the figure showing an equilateral triangle ABC with half-side of length L, circumscribed to circle of radius R=1. Stretch one of the sides by a small amount $\delta L=AA'$, greatly exaggerated in the figure for clarity. From A', draw the tangent to the circle, which intersects the base of t he triangle at C'. A new triangle A'BC' is formed, with one of the sides, <u>A'C'</u> having a new point of tangency to the circle at N. The side <u>AC</u> of the equilateral triangle, tangent to the circle at M, has been stretched and rotated around the circle by an amount $\delta\theta$. The stretched side <u>A'C'</u> is made up of two segments $L_A=\underline{A'P}$ and $L_C=\underline{C'P}$. The stretched triangle A'BC' has gained the triangular area A'AP= ΔA_G , but lost the triangular area C'CP= ΔA_L with respect to the equilateral triangle. Expressing these areas in terms of the relevant parameters, and using the sine angle area theorem with sin $\delta\theta \sim \delta\theta$, we have:

 $\Delta A_G = (1/2)(L+R \ \delta \theta/2) L_A \ \delta \theta$, and $\Delta A_L = (1/2)(L-R \ \delta \theta/2) L_C \ \delta \theta$.

For the sought equilateral triangle to have minimum area, we must prove that $\Delta A_G > \Delta A_L$, which reduces to the following expression:

 $(L_{A}-L_{C})/(L_{A}+L_{C}) > -(R/L) \delta\theta/2$

Hence for the triangle to be equilateral, $L_A > L_c$. If it weren't so, and $L_A < L_c$, then $(L_c-L_A)/(L_c+L_A) < (R/L)\delta\theta/2$, but one could always find a small enough $\delta\theta$ to violate the inequality.

Thus, $L_A > L_C$, area $\Delta A_G > \Delta A_L$, and circumscribed equilateral triangle has minimum area. QED

Referring to the figure, the area of the sought triangle is:

A=6xArea of triangle AOM=3RL. Using trigonometry, L/R=tan60°= $\sqrt{3}$, and A=($3\sqrt{3}$)R². For R=1, Avi's triangle area = $3\sqrt{3}$

