

To: gottlieb@nyu.edu
 From: Henri Hodara, 48
 Subject: July 2, Puzzle Corner

Problem: Avi Ornstein has circumscribed a triangle around a circle of radius $R=1$. What is the minimum area Avi's triangle can have?

Solution #1: Refer to the figure which shows a scalene triangle ABC circumscribed around a circle of radius R . The center, O of the inscribed circle lies at the intersection of the triangle angle bisectors, since the segments OM, ON and OP perpendicular to the triangle sides must equal the radius, R . Call the half angles subtended by the triangle vertices A, B, and C, α , β and γ . The triangle area, S expressed in terms of the half angles is:

$$S = R(\underline{AM} + \underline{BP} + \underline{CN}) = R^2(1/\tan \alpha + 1/\tan \beta + 1/\tan \gamma) \quad (1a)$$

The normalized area $S/R^2 = y$ is the area of the triangle circumscribed around a circle of radius $R = 1$,

$$y = (1/\tan \alpha + 1/\tan \beta + 1/\tan \gamma) \quad (1b)$$

and is subject the constraint

$$\alpha + \beta + \gamma - \pi/2 = 0. \quad (2)$$

Form the new function Y with a Lagrange multiplier λ :

$$Y = (1/\tan \alpha + 1/\tan \beta + 1/\tan \gamma) + \lambda(\alpha + \beta + \gamma - \pi/2) \quad (3)$$

For Y to be an extremum (minimum or maximum),

$$\partial Y / \partial \alpha = \partial Y / \partial \beta = \partial Y / \partial \gamma = \partial Y / \partial \lambda = 0 \quad (4)$$

which yields

$$\partial Y / \partial \alpha = \lambda - 1/\sin^2 \alpha = 0 \quad (5a)$$

$$\partial Y / \partial \beta = \lambda - 1/\sin^2 \beta = 0 \quad (5b)$$

$$\partial Y / \partial \gamma = \lambda - 1/\sin^2 \gamma = 0 \quad (5c)$$

It follows from Eqs.5 and Eq.2 that the half angles $\alpha = \beta = \gamma = 30^\circ$; hence the triangle is equilateral, and its normalized area is according to Eq.1b

$$y = 3/\tan \alpha = 3/\tan 30^\circ = 3\sqrt{3} \quad (6)$$

To prove that its area is a minimum, we verify that $d^2y/d\alpha^2 > 0$. From Eq.6, $dy/d\alpha = -3/\sin^2 \alpha$; and $d^2y/d\alpha^2 = 6/(\sin^2 \alpha \tan \alpha) = 24\sqrt{3} > 0$ for $\alpha = 30^\circ$. **QED**

