
Puzzle Corner

It has been a year since I reviewed the criteria used to select 
solutions for publication. Let me do so now.

As responses to problems arrive, they are simply put together 
in neat piles, with no regard to their date of arrival or postmark. 
When it is time for me to write the column in which solutions are to 
appear, I first weed out erroneous and illegible responses. For dif-
ficult problems, this may be enough; the most publishable solution 
becomes obvious. Usually, however, many responses still remain. I 
next try to select a solution that supplies an appropriate amount of 
detail and that includes a minimal number of characters that are hard 
to set in type. A particularly elegant solution is, of course, preferred 
as are contributions from correspondents whose solutions have not 
previously appeared. I also favor solutions that are neatly written, 
typed, or sent via email, since these produce fewer typesetting errors.

problems

N/D 1. Larry Kells finds that he does better as declarer when the 
opponents are on his side. He wonders what is the highest con-
tract South can make as declarer assuming the defenders help as 
much as they legally can.

	 North
	 ♠ 10 8 6
	 ♥ 9
	 ♦ 9 8 7 6 5 4 3 2

West	 ♣ 9	 East
♠ K J 9 7		  ♠ A Q
♥ 8		  ♥ A K Q J 7 5 3
♦ K 10 		  ♦ A Q J
♣ A K Q 8 6 4	 South	 ♣ 10
	 ♠ 5 4 3 2

	 ♥ 10 6 4 2
	 ♦ —
	 ♣ J 7 5 3 2

n/d 2. Nob Yoshigahara wants you to put all the small L-shapes 
inside the large one. You may rotate a shape, but may not turn it over.

n/d 3. Ermanno Signorelli has an empty bowl with a hemispherical 
concavity. The plane of its lip is horizontal and the environment 
(temperature, pressure, humidity, etc) is constant. A liquid enters 
the bowl at a rate of r m3/sec (cubic meters per second) and evapo-
rates at a rate of ea m3/sec, where a is the current surface area in 
meters squared (assume no meniscus). We can adjust r, but e is fixed.

Supposed r is chosen so that, when the bowl is full, the evapo-
ration just matches the fill rate and hence the bowl remains full. 
What is the internal diameter of the bowl?

Using this same value of r, how long will it take to fill an ini-
tially empty bowl?

Speed Department

Oren Helbok wants to know the one number that has all the let-
ters in its English-language name in alphabetical order (non-con-
secutive, of course).

Solutions

j/a 1. Robert Wake and John Chandler submitted essentially the 
solution. These words are from Wake.

To avoid losing a trump trick against best defense, your side 
needs either at least 5 cards headed by at least AKJ, at least 6 cards 
headed by at least A Q 10 8, or at least 11 cards headed by at least 
AJ 5 points. With 4 suits and only 26 cards, that means 24 points 
is the best you can do. The minimum that makes a grand slam in 
all four suits with best defense is if each hand has A Q 10 8 in two 
suits and 432/32 in the other two, with all four KJ9 onside and all 
suits breaking evenly. That will provide abundant tricks and entries 
at both suits and notrump.

	 North
	 ♠ A Q 10 8
	 ♥ A Q 10 8
	 ♦ x x

West	 ♣ x x x	 East
♠ K J x		  ♠ x x x x
♥ K J x		  ♥ x x x
♦ x x x x 		  ♦ K J x
♣ x x x	 South	 ♣ K J x
	 ♠ x x

	 ♥ x x x
	 ♦ A Q 10 8
	 ♣ A Q 10 8

j/a 2. The following solution is from Donald Aucamp. An alternate 
solution from Apo Sezginer is on the Puzzle Corner website.

The probability, P(n), no one gets their correct hat when n are 
returned at random is the sum of the first n+1 terms in the Maclau-
rin expansion of exp(x) at x = -1, as follows:
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Puzzle Corner

	 n  
(1) 	 P(n) = ∑ (-1) k / k!
	 0

This gives P(1)=0, P(2)=1/2, P(3)=1/3, and P(4)=3/8, which are 
easy to check by listing all the permutations. Also, as P(5)=.366667 
and P(6)=.368056, it is seen that P(n) very quickly approaches the 
limiting value of exp(-1) ≈ .367879.

By way of proof, a random selection of n hats can be viewed as 
one of n! equally likely permutations of (1,2, …, n). Let the vector, 
Vn(x1, … , xn) represent such a permutation. It is feasible (i.e., no 
one gets their right hat) if xi ≠ i for all i. Accordingly,

(2)	 P(n) = M(n) / n!
where M(n) is the number of feasible Vn. It is shown below that 
M(n) satisfies

(3)	 M(n+1) = n M(n) + n M(n-1)
Since M(1)=0 and M(2)=1 are trivially found, then all M(n) 

can be determined by iteration. The solution below, which can be 
checked by inserting it into (3), is

	 n
(4)	 M(n) = n! ∑ (-1)k / k!
	 0

Equations (4) and (2) imply (1).
To prove (3) define the operator Ei, which transforms Vn into Vn+1 

by replacing xi with n+1 and tacking on xi at the end. For example, 
suppose n=3 and V3=(2,3,1). Then E2V3=(2, 4, 1, 3), where the sec-
ond element gets replaced by n+1 (i.e., 4), and the exiting 3 goes into 
the last position. Note that every Vn+1 can be derived from some EiVn 
as follows: In Vn+1 assume n+1 is element i. Interchange this with 
the last element, xn+1, and let Vn be the vector containing the first 
n elements. Then EiVn = Vn+1 . A little thought shows that a feasible 
Vn+1 can arise from some EiVn operation in only one of two ways:

(a) Start with one of the M(n) feasible Vn, choose any i (1 ≤ i ≤ n) 
and let Vn+1 = EiVn+1. Then Vn+1 will be feasible, and there are nM(n) 
ways of doing this. This is the first term in (3).

(b) Start with any singly infeasible Vn (a permutation with exactly 
one offending element). Say this is the ith element, so that  xi = i, and set 
Vn+1 = EiVn. Then Vn+1 will be feasible. As there are n possible offending 
elements, and as there are M(n-1) possible Vn vectors yielding this 
condition (which are found by looking at all the feasible permuta-
tions after that element is erased), then there are nM(n-1) vectors 
with this property. This is the second term in (3). Thus, (3) is proved. 

For example, suppose n=3 and note M(2)=1 and M(3)=2. Then, 
for n+1=4, Equation (3) yields M(4)=3M(3)+3M(2)=9, which can 
readily be checked by listing all the 4!=24 permutations and pick-
ing off the nine feasible solutions. These nine solutions can be 
found from the set of possible V3 vectors as follows: The two fea-
sible solutions are (2,3,1) and (3,1,2). The first of these leads to 
n=3 solutions, which are E1(2,3,1)=(4,3,1,2), E2(2,3,1)=(2,4,1,3), 
and E3(2,3,1)=(2,3,4,1). The second yields E1(3,1,2)=(4,1,2,3), 

E2(3,1,2)=(3,4,2,1), and E3(3,1,2)=(3,1,4,2). Moreover, there are 
three singly infeasible V3 solutions, which are (1,3,2), (2,1,3), and 
(3,2,1). These lead to three feasible V4 solutions: E1(1,3,2)=(4,3,2,1), 
E3(2,1,3)=(2,1,4,3), and E2(3,2,1)=(3,4,1,2). In conclusion, the two 
feasible V3 vectors and three singly infeasible V3 vectors lead to the 
nine V4 feasible vectors, and Equation (3) is confirmed. 

j/a 3. David Zagorski was especially happy to solve this problem 
since he is a friend of Dick Hess and they meet each year at the US 
Tennis Open. Zagorski writes. 

A’s response means that B and C are not both wearing 11’s. B’s 
response excludes the possibility that A and C are both wearing 11’s. 
In addition, B knows that, if C was wearing 11, then A’s response 
would require B to be wearing 7. B’s response excludes this possi-
bility also. Therefore C must be wearing 7.

better late than never

1996 M/j 1 Benard Lemaire has sent us a tech report showing solu-
tions to the non-dominating N Queens problem, which now appears 
on the puzzle corner web page (cs.nyu.edu/˜gottlieb/tr).

2011 M/a 1 Randall Pratt notes that his local newspaper’s sudoku 
puzzle yielded essentially the published solution and both arrived 
at his home the same day.

M/a 3 Robert Ackerberg noticed that the origin (0,0) should be shifted 
to the left so that it is under the center of the far left semi-circle. Bur-
gus Rhodes’s generalization is on the website.

j/a sd Robert Mandl, Naomi Markovitz, Burgess Rhodes and Harvey 
Lynch objected to the published solution. Rhodes’s detailed solu-
tion appears on the website.

Other Responders

Responses have also been received from S. Berger, C. Charoen-
Rajapark, T. Chow, E. Collins, G. Coram, J. Desmond, R. Giovan-
niello, J. Hardis, B. Haris, A. Hirshberg, H. Hodara, S. Korb, J. 
Korba, E. Kutin, P. Lemieux, W. Lemnios, M. Lenot, F. Model, S. 
Nason, A. Ornstein, P. Paternoster, M. Piazza, J. Prussing, Z. Rifkin, 
B. Rorschach, L. Schaider, M. Seidel, I. Shalom, S. Silberberg, C. 
Travares, and K. Zeger.

Proposer’s Solution to Speed Problem

40.  

Send problems, solutions, and comments to Allan Gottlieb, New York Univer-
sity, 715 Broadway, Room 712, New York, NY 10003, or to gottlieb@nyu.edu. 
For other solutions and back issues, visit the Puzzle Corner website at 
cs.nyu.edu/~gottlieb/tr.
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