
Puzzle Corner

Some sad news to report. I heard from Michele Smith that 
her husband, longtime contributor Joel Karnofsky, died 
in late March. I remember well several of his thoughtful 

contributions and wish his family peace in this time of grief.
It is mid-April as I write, and spring has finally come to the 

northeastern United States. The last slow melted weeks ago; tem-
peratures in the 60s are common and 70s have been recorded.

We can only wish that correspondingly sunny days shine on the 
trouble spots in the Middle East and Japan.

problems

j/a 1. Larry Kells wonders: what is the smallest number of com-
bined high-card points that will allow North-South to make a grand 
slam in any suit or no-trump from either side of the table against 
best defense?

j/a 2. Harold Ingraham attends classier social events than I do. At his, 
all attendees wear hats, and a hat-check person is there to check them. 
But once, they became hopelessly scrambled and everyone received 
a random hat from the pile. Assuming all permutations are equally 
likely, what is the probability that no one got back the right hat?

j/a 3. On a related theme, we offer another of Dick Hess’s ‘‘logical 
hat” problems, in which logicians see the numbers on every other 
logician’s hat but not on their own. Each logician reasons correctly 
and knows that the others do as well.

In this comparatively easy example there are five slips of paper; 
7 is written on three of them and 11 on the other two. One goes on 
logician A’s hat, a second on B’s, a third on C’s, and the other two 
are hidden. First A says, ‘‘I don’t know my number.” Then B says, 

“I don’t know my number.”
What is C’s number?

Speed Department

George Bloom wishes to drill a hole clear through the center of a 
solid sphere. His flat-bottom drill is exactly six inches long, and he 
uses all of it in the drilling operation. How much material is left?

Solutions

m/a 1. Our first problem is from Lorraine Mullin, who writes, “Con-
sider the solution of any ordinary sudoku puzzle. What is the largest 
number of times that any fixed integer can appear on either of the 
two major diagonals? Show that this number can actually occur.”

Ken Zeger notes that five is an upper bound, since the two main 
diagonals pass through only five 3 × 3 subsquares, and a given num-
ber appears exactly once in each of the subsquares.

His young son Kai produced the following sudoku solution with 
five highlighted 1s on the main diagonals, achieving the above bound 
and thus showing that five is indeed the answer.

m/a 2. A ‘‘politically correct’’ problem from my NYU colleague Joel 
Spenser.

On an infinite chessboard an Obamaknight can move six spaces 
in any direction, then turn left and move one space. For example, 
from (5,−3) he can move N-W to (4,3) followed by two moves E-N 
ending at (16,5). Place a finite number of Obamaknights on the 
board so that (allowing an arbitrary number of moves):

(i) no one of them can reach any other of them.
(ii) any position on the board can be reached by one of them.

Extension: A modern Obamaknight moves six spaces in any direc-
tion, then turns left or right and moves one space. Place a finite 
number of modern Obamaknights with the above properties.

The proposer shows that placing 37 Obamaknights in a line 
solves the original version. Mark Perkins and Aaron Ucko gave 
‘‘square plus one’’ solutions. Perkins’s solution follows.

“Thirty-seven Obamaknights are required to fulfill condition 
(ii). To fulfill condition (i), they can be arranged in a 6 × 6 square 
with an additional Obamaknight below the leftmost column of 
the square. If one considers this block moving as a unit (accord-
ing to the 6 + 1 method), it can be seen that this 37-square figure 
will tile the plane.

“For the extension, it turns out that only one modern Obama
knight is required to fulfill condition (ii) and, clearly, the one mod-
ern Obamaknight will fulfill condition (i) (since one piece cannot 
attack itself ). To see that one is sufficient to meet condition (ii), 
first note that by two (back-and-forth) moves—e.g., (0,0) -> (1,6) -> 
(2,0)—the piece can be moved two squares to the right (or left or 
up or down). Thus, if we start at (0,0) we will easily cover all squares 
in which both coördinates are even. However, by focusing on our 
position after the first move—to (1,6)—we can also then cover all 
positions in which the first coördinate is odd but the second is even 
(by using our dual-move two-square hop). Then, by considering 
the first move to the right instead of up—to (6,1)—we can similarly 
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cover positions for which the first coördinate is odd and the second 
coördinate is even. Finally, by two moves at right angles to each 
other—e.g., (0,0) -> (1,6) -> (7,7)—we can reach a position from 
which we can then reach all (odd, odd) positions. 

“I guess the moral of the story is that just one bipartisan piece is 
able to accomplish the same mission as 37 partisan pieces!”

m/a 3. The top figure below, from John Craig, contains three semi-
circles and one circle. The semicircles all have horizontal diam-
eters, and their centers are shown. Their radii are R, r1, and r2 with 
r1 + r2 = R. The circle is constructed tangent to the three semicircles.

Find ρ , the radius of the circle, and show that the distance from 
its center to the base line is 2ρ.

I received several fine solutions to this problem. Peter Lunquist’s, 
based on the law of cosines, is on the Puzzle Corner website; William 
Lemnios’s follows.

Place the centers of the three semicircles on the x-axis of a Car-
tesian coördinate system whose origin is at the center of the left 
semicircle. The figure above shows the radii and the coördinates of 
the centers of the three semicircles and the tangent circle.

From this figure the following relationships can be established:
x2 + y2 = (r1 + ρ)2 	 (1)
(r1 + r2 − x)2 + y2 = (r2 + ρ)2 	 (2)

(x − r2)
2 + y2 = (r1 + r2 − ρ)2 	 (3)

Eliminate y2 from (1) and (2) and eliminate y2 from (1) and (3) to 
obtain

(r2 − r1)ρ + (r1 + r2)x = r2
1 + r1r2 	 (4)

(2r1 + r2)ρ − r2x = r1r2 	 (5)

The solution to these equations is
	 r2

1(R + r2)x = 	 (6)
	 R2 − r1r2

	
r1r2R

ρ = 	 (7)
	 R2 − r1r2

the radius of the circle.
R = r1 + r2 	 (8)

By substituting (6) and (7) into (1) and grinding through a pile of 
symbols, we can solve for y

	
2r1r2R

y =	  = 2ρ	 (9)
	 R2 − r1r2

the height of the circle’s center above the x-axis.

better late than never

M/A sd Francisco Albisu, Eva Jansson, Ray Schnitzler, and Roy Swart 
note that the quotient is close to 5π , not π/2. A few other readers 
sent in solutions, apparently not realizing that speed problems are 
answered at the end of the column in which the problem appears.

Other Responders

Responses have also been received from G. Bergman, G. Blum, B. 
Brademeyer, L. Cutrona, D. de Champeaux, C. Daily, J. Feil, R. 
Giovanniello, T. Harriman, T. Harriman, O. Helbok, H. Hodara, W. 
Jasper , D. Katz, J. Kramer, Z. Mester, T. Mita, F. Pollitz, E. Sard, E. 
Sard, T. Schonbek, S. Shapiro, T. Sim, C. Swift, T. Tu, and T. Wilson.

Proposer’s Solution to Speed Problem

36π. Since the diameter of the drill isn’t given, the answer must be 
independent of it. So consider an ‘‘infinitely thin’’ drill [we don’t 
say “limit” in a speed problem—Ed.]. All the sphere is left, and its 
volume is (4/3)π33.  

Send problems, solutions, and comments to Allan Gottlieb, New York Univer-
sity, 715 Broadway, Room 712, New York, NY 10003, or to gottlieb@nyu.edu. 
For other solutions and back issues, visit the Puzzle Corner website at 
cs.nyu.edu/~gottlieb/tr.
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