PUZZLE CORNER

avid Chandler writes that seeing
Dhis brother’s solution in print has

inspired him to submit answers
to the October problems.

Bob High has kindly offered to send
us some Go-related puzzles to rotate
with the chess and computer offerings:
Mr. High is “an officer of the American
Go Association and always on the look-
out for new ways to promote the game.”

Problems

F/M 1. We begin with a newly arrived
chess problem from Warner Smith. Find,
a'legal chess position with the largest
possible number of successors, i.e., for
which the side to move has the largest
possible number of moves.

F/M 2. Jerry Grossman wants you to find
two irrational numbers r and s such that
¢ is rational and then find two other ir-
rational numbers r and s such that 7 is
irrational.

F/M 3. Norman Megill has a cute version
of our yearly problem. (Although when
you read this problem it will be 1990, 1
have kept it as 1989.) In formal number
theory, there are three primitive oper-
ations, + (plus), X (times), and S (suc-
cessor or ““1 plus”), along with a single
primitive number, 0 (zero). Any positive
integer can be represented by a combi-
nation of 0 and the three operations. For
example, 67 can be represented by 0 pre-
ceded by 67 S’s (68 symbols) or more
compactly by S(SSS0 x SS(SSSSS0 X
$5550)) (20 symbols), meaning (1 + (3
X {1+ 1+ (5 X 4))). Parentheses are
excluded when counting symbols. What
is the shortest representation for the
number 1989?

F/M 4. Gary Schmidt and Joseph Horton
have a castle surrounded by a rectan-
gular moat and have two 10-foot boards
to use to cross the moat.

CASTLE

m '= moat

ALLAN ]. GOTTLIEB, "67

Re: Moat Control

The boards cannot be nailed or glued
together. What is the widest moat they
can cross?

F/M 5. Our final regular problem is from
that famous riverboat gambler, Gordon
Rice. (A) In a gambling game, there are
eight balls, numbered 1 through 8,
which are shaken up in a jar, and then
poured into a funnel leading to a vertical
glass tube where they stack on top of
each other. Wagers are made, for ex-
ample, that the 2-ball will be higher in
the stack than the 1-ball (even money),
or that the 3-ball will be higher than the
2-ball. Another player wants to bet that
both things will not happen in a single
trial, and offers you 4-to-1 odds. Is this
a fair bet? If not, who has the advantage?
(B) Unbeknownst to the other players,
a cheater succeeds in palming the stan-
dard 1-ball and substituting another
which is twice as heavy. How should he
then bet to take advantage of his trick?

Speed Department

SD 1. Speedy Jim Landau wants you to
interpret “No one under CgH,; admit-
ted!”

SD 2. L.R. Steffens needs to punctuate
123456789 so that it will describe an
event that happened twice in Times
Square during this century and will also

‘happen twice in the next century.

Solutions

OCT 1..We begin with a bridge problem from Tom
Harriman.

WEST - EAST
AS6 AQ1092
v1082 vK96
108753 ¢KQ642
987 & 10
SOUTH

AaK43

v)s

*9

dAKQJ632

How does South play to make seven clubs against
best defense after the opening lead of the spade 8?
The following solution (his first submitted in 17
years of reading Tech Review) is from Andy Was-
serman:
A quick look at declarer’s assets show eleven tricks
off the top, with potential losers in spades and
hearts. Since we spurn losing finesses, and since

throw-ins are seldom éffective in grand slams (un-
less we can convince an opponent to revoke), we
immediately consider a squeeze. Moreover, need-
ing two tricks, we need a repeating squeeze—in this
case, a repeating triple squeeze against East.

If a triple squeeze is going to repeat against the
best defense, there must be two threats in the upper
hand (South). Otherwise, on the squeeze card, the
defender being squeezed can simply establish the
threat in the upper hand. This gives declarer one
trick, but not two, since declarer is left with two
threats in the lower hand (North). When declarer
then plays his established winner, he must discard
from the lower hand before the defender, squeezing
himself.

In addition, as with any squeeze, there must be
an entry to the established threat. So, even with
two threats in the lower hand, the best defense can
prevent a triple squeeze from repeating by estab-
lishing the lower threat if there is no entry to one
of the upper threats.

So, to make this hand via a repeating triple
squeeze against East, all we need is one threat in
the North hand accompanied by an entry in its suit
and two threats in the South hand accompanied by
an entry in one of the two suits. It then becomes
obvious to the most casual observer that the threats
must be the jack of diamonds, jack of hearts, and
four of spades. The ace of diamonds provides the
entry to the North hand, but the only éntry to the
South hand outside of trump is the king of spades.
Ergo, the king of spades must be preserved at all
costs.

Therefore, the key play comes at the first trick,
at which point South must rise with North’s ace of
spades. This is followed by the ace of hearts—Vi-
enna Coup to establish the jack as a threat—and six
clubs. On one of the long clubs, North must discard”
the queen of hearts. ’

The position at this point is:
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On the last club, North can pitch a heart, but East
is finished. If he pitches a spade, South cashes two
spade winners, throwing a heart from North, and
inflicts a red suit simple squeeze for the thirteenth
trick. If East pitches his heart, South cashes his heart
winner and squeezes East in spades and diamonds.
Finally, if East pitches a diamond, South crosses in
diamonds, and the jack of diamonds squeezes East
in the majors.

Two things are noteworthy. First, the triple
squeeze functions against East because West holds
only two spades. Giving West the deuce of spades
and removing a card from any other suit kills the
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squeeze, because Wesl’s spade eight takes care of
South’s threat and allows East to unguard the suit.
Second, an opening diamond lead defeats the con-
tract. A triple squeeze will still work against East,
but it will not repeat because it removes a key entry
from North. East will unguard spades, giving South
one trick, but the resulting red suit squeeze against
East fails for lack of entries.

Also solved by Francis Leahy, Amy Lowenstein,
Robert Zier, Alex Halberstadt, John Stiehler, Robert
Bart, Chip Palmer, David Chandler, John Chandler,
Charlie Larson, Winslow Hartford, Donald and
Nancy Noble, Eugene Biek, Richard Hess, Carey
Rappaport, Matthew Fountain, Dan Frankel, and
the proposer. "

OCT 2. Gordon Rice supposes that some time in
the (not too distant?) future, the art of pencil and
paper arithmetic has been forgolten. Also, your
computer is giving off smoke. With no way to add,
subtract, multiply, or divide except an 8-digit cal-
culator, can you evaluate the following expressions?
3180997% ~ 313496
337467 - 64896
The following solution is from my children’s hon-
orary grandfather, Phelps Meaker:
3-186997% = 3(180%1600-1000 + 2:180-1000-997 + 997%)
= 3(32,400-1000-1000 + 358,920-1000 +
994:1000+9)
= 98,279,742:1000 + 27
313496 = 313*1000-1000 + 2:313-1000-496 + 496
' = 97,969-1000-1000 + 310,496
1000+ 246:1000 + 16
= 98,279,742-1000 + 16
3180997 — 313496% = 98,279,742:1000 — 98,279,742
1000+27-16=11 Q.E.D.

3374678 = 3(374*100-100 + 2:374-100-67 + 67%)
© = 3(139,876:100-100 + 50,116:100 +
44100 + 89)
= 42,113,280-100 + 267
64896% = 648%100-100 + 2-648-100-96 + 96
= 419,504-100-100 + 124,416:100 + 92
100+16
= 42,114,908-100 + 16
3:37467* — 64896% = (42,114,908-100 ~
42,113,280-100 + 16— 267)(— 1)
= (1628100 + 16 - 267)( ~ 1)
= —162,549 Q.E.D.

Also solved by Robert Bart, David Chandler, Jock
Young, Harry Garber, John Chandler, Charlie Lar-
son, Thomas Harriman, Jim Martin, Winslow Hart-
ford, Richard Hess, Carey Rappaport, Matthew
Fountain, Bob High, Dan Frankel, and the pro-
poser.

OCT 3. John Rule has a three-digit number that,
when divided by the product of its digits, yields as
quotient the hundredth digit. Rule wants you to
find this number and show that it is unique.

The following solution is from Matthew Fountain:
The number is 735. Let A, B, and C represent the
three digits so that ABC = (100A +10B+CyA. As
10B+C < 100, we may write 100/A < BC
<(100A + 100)/A%. BC must also be a product of two
single-digit integers. When A is taken to be 9, then
11 < BC < 13. BC has only the possibility of being
12. Noting that A’BC equals the three-digit number,
we calculate (9%)(12) = 972, yielding B=7and C=2.
As 7 x 2 = 14, not 12, 972 is not a solution. We
next try smaller values for A, having exhausted all
possibilities for A=9. The resulls are in the follow-
ing table.

A=8, 12<BC<15, (64)(14)=896,

A=7, 14<BC<17, (49)(15)=735, (49)(16)=784

A=6, 16<BC<20, (36)(18)=648

A=5, 20<BC<24, (25)(21)=525

A=4, 25<BC<32, (16)(27)=432, (16)(28)=448

A=3, 33<BC<45, (9)(35)=315, (9)(36)= 1324,
(9)(42) =378

A=2, 50<BC<75, (4)(54)=216, (4)(56)=224,
(4)(63)=252, (4)(64) =256,
(4072)=288

A=1, 1060<BC<200

The only case where the product of the last two

digits of a tabulated product equals BC is A=7,

BC =15, and (49)(15)=735. We do not need to test

BC’s that are a multiple of 10 or contain prime fac-'
tors larger than 9.

Also solved by Edward Dawson, Robert Bart,
David Chandler, Harry Garber, Mary Lindenberg,
Leonard Nissim, Thomas Harriman, Winslow Hart-
ford, Donald Savage, Avi Ornstein, Richard Hess,
Carey Rappaport, Gordon Rice, Steven Feldman,
and Bob High.

OCT 4. David Evans notes that on an 8x 8 check-
erboard, if two squares of the same color are re-
moved, it is impossible to cover the remaining 62
squares with 31 1 x 2 tiles (since each tile covers one
white and one black square). Is the converse true,
i.e., if you remove 2 squares of opposite colors, can
the remaining 62 squares always be covered by 31
1x2 tiles?

The following solution is from Al Zobrist:
Let “coverable” be the property that any 2 squares
of the opposite color can be removed and the board
can be covered with 1 x 2 tiles. A 2 x 2 checker-
board is obviously coverable. Suppose that an n x
n checkerboard (n even) is coverable. Augment this
1o the next larger even-sided checkerboard by sur-
rounding it with a single layer of squares. Three
c?ses show that the larger checkerboard is covera-
ble.
1. The removed squares are both interior. Cover the
interior (it is n X n), and cover the outside (it has
4n + 4 squares arranged linearly).

.2. The removed squares are both exterior. Cover

the interior (each row is even and linear). The ex-
terior removed squares are opposite in color, hence
are separated by even numbers of squares both
ways.

3. One of each. Suppose the interior removed is
white. Remove another interior black and an adja-
cent exterior white. Cover the interior as in case 1
and the exterior as in case 2, then unremove the
additional removed squares and cover them with
one tile. )

By induction, any n X n checkerboard is cover-
able if n is even and positive.

Also solved by Robert Bart, Jim Roskind, David
Chandler, Richard Hess, Thomas Harriman, Wins-
low Hartford, Carey Rappaport, Matthew Fountain,
Gordon Rice, Ken Rosato, Bob High, and the pro-
poser.

OCT 5. Chuck Coltharp poses the following parti-
tioning question. Let S be a finite set of size 4n and
let P be a collection of partitions of S, each of which
partitions S into two disjoint sets of size 2n. Let the
i partition be the two sets A; and B;. We require

" that, for i # Jr Ai N B; is of size n. The question is

how large can P be, that is for each n what is the
largest number of partitions that can be found sat-
isfying the above properiies?

I will print two solutions to this difficult problem
since they have rather different characters. John
Chandler submitted a direct calculation for sizes
that are powers of two and Bob High related the
problem to Hadamard matrices. Chandler writes:
P can be of size 4n-1 when n is a power of two. We
can show this by induction. First, it is simple to see
that there are exactly 3 partitions of 4 into 2 + 2
and that all three belong. Then, suppose we take a
set S of size 4n and add $* toit. S + S* has size 8n.
We have 4n-1 suitable partitions of S and 4n-1
matching partitions of $*. We can construct two full
partitions from the two half-partitions by combining
the two halves of each with the corresponding or
opposite halves of the other, i.e., take (4,B) to be
a partition of the first half and (A}, B}) to be a par-
tition of the second. The two full partitions are (4,
+ A%, B; + BY) and (A; + B, B, + A}). The inter-
sections between pairs of these are all of size 2n,
e.g., (A + B (B, + BY) = B.. Similarly, we see
that (4 + B (B, + BY) = (AN B) + B N
B?), which is of size 2n. That gives us 2* (4n-1) =
8n-2 partitions of this kind, and there is one more,
namely (S, §%), and it can be seen that the intersec-
tion of S with any of the aforementioned sets has
size 2n. That brings the total to 8n-1 and completes
the proof by induction. For sets where n is not a
power of two, the answer is a little more compli-
cated: it is 2m-2, where m is the largest power of 2



that divides n. To see how this is so, we look again
at adding two sets together, but this time sets of
different sizes. If one size is a multiple of the ather,

the larger set will have a larger collection of parti-’

tions, but we won’t be able to match them all with
 corresponding partitions of the smaller set. In short,
we can only get twice as many partitions of the
combined set as there are of the smaller set.
High's solution follows:
This turns out to be quite interesting. If P is a col-
lection of k partitions of a set S with 4n members
meeting the problem conditions, 1 can prove that
the maximum possible value for k is 4n — 1 (see be-
low). However, to show that this maximum is at-
tained for every n is in fact, if I am not mistaken,
equivalent to an open problem in combinatorial
theory!
First, let's establish the upper bound k<4n-1.
This part of the problem has a pretty geometric
interpretation: Let each partition be represented by
a vector of 1's and —1's, with 2n I's and 2n -1's
in each vector. By hypothesis, any two vectors will
have 1’s in common in exactly n places, and —1’s
in common in exactly n places. Thus, for any two
s.uch vectors {g) and (), we will have

Za,b,~=0

That is, the vectors are mutually orthogonal.

Each partition, represented as a vector of 1’s and
- 1's, can be considered as a point in 4n-space. By
flipping signs, if necessary, we can arrange that for
a chosen s € S, each vector will have a “1” in the
place represented by s. We can then drop that place
from all the vectors, resulting in a set of k vectors
in (4n - 1)-space. Now, any two such vectors are
equidistant by the conditions of the problem—they
differ in exactly 2n places, so they are all exactly
2V2n units apart. And there is another point in
(4n - 1)-space which is equidistant from each of
them—the point (1, . . ., 1). These k + 1 points
therefore form the vertices of a k-simplex. This
shows immediately that there can’t be more than
(4n - 1) such partitions, since one can’t embed a
4n-simplex in (4n — 1)-space!

This says that if we can find a collection of k =
4n — 1 partitions, they will give rise toa (4n - 1)-
simplex embedded in the (4n - I)-dimensional
cube. Conversely, if we can find a simplex em-
bedded in the (4n — 1)-dimensional cube, it will
give us a solution to our problem. So the problem
boils down to the geometric question: for which
dimensions can one embed a simplex in the cube?

As far as realizing the maximum value of 4n - 1,
this turns out to be equivalent to the problem of the
existence of Hadamard matrices of every order 4n. A
Hadamard matrix is a square m-by-m matrix A with
the property thata; = =1 forallijand AA’ = ml.
One can show that if A is a Hadamard matrix, then
m = 4n. (See lan Anderson, A First Course in Com-
binatorial Mathematics, 2nd Edition, Oxford, 1988, for
example.) Now, if a Hadamard matrix exists for a
given value of m = 4n, it proves thatk = 4n - 1
in our problem (since the rows or columns of the
matrix other than (1, . . ., 1), being orthogonal, de-
fine a collection of partitions meeting the problem
conditions). But it is not known (at least, as of the
publication of Anderson’s book in 1988) whether
Hadamard matrices exist for every possible m; ac-
cording to Anderson, 428 is the first unknown case.
So it's hard for me to believe that the proposer of
this problem knows the answer for 4n = 428!

It's easy to come up with Hadamard matrices (and
hence solutions to our problem) for small values of
n. For n = 1, for example, one has:
+1 +1 +1 +1

+1 +1 -1 -1
+1 -1 +1 -1
+1 -1 =1 +1
Forn = 2,

+1 +1 +1 +1 +1 +1 +1 +1
+1 +1 +1 +1 -1 -1 -1 -1
+1 +1 -1 -1 +1 +1 -1 -1
+1 +1 =1 =1 =1 =1 +1 +1
+1 -1 +#1 -1 +#1 -1 +1 -1
+1 -1 +1 =1 =1 41 -1 +1
+1 -1 -1 +1 +1 -1 =1 +1
+1 -1 -1 +1 -1 +1 +1 -1

And for n = 3, (replacing =1 with 1 and 0 for
legibility)
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Given onc Hadamard matrix, it’s easy to “‘boot-
strap” your way to larger ones. Given any two Had-
amard matrices A and B, of orders m and n
respectively, just substitute A for 1 and - A for -1
in B, and a new Hadamard matrix of order mn will
emerge. Thus, it's easy to answer the problem com-
pletely for nt = 2!, for example, and for certain other
values. (I had constructed these examples, and
found a solution for # = 12, before going to An-
derson.)

In speculating about the existence of a Hadamard
matrix of every order 4x, it is natural to think about
the symmetries of the corresponding embedded
simplex. Starting from the vertex (1, . . ., 1), take
any other vertex v of the 4n - 1-cube differing from
this in exactly 2n places. If an embedded simplex
exists, there should be a symmetry of the 4n — 1-
cube fixing (1, . . .. 1) and carrying the vertex v
cyclically into each of the 4n — 1 vertices of that
simplex {other than (1, . . ., 1)). This will be a rigid
motion ¢ of the cube (and simplex) with the prop-
erty that the distance from v to o(v) will always be
exactly 2V2m. Since such symmetries amount to
permutations of the coordinate axes, this is equiv-
alent to finding a permutation of 4n - 1 elements
with the property that for a given subset K odn-
sisting of 21 — 1 elements, we have K Ne*K) of
size exactly n — 1 for all k. For example, the per-
mutation (1425673) does the job for 1 = 2.

Also solved by David Chandler, Carey Rappa-
port, Matthew Fountain, and the proposer.

Better Late Than Never

1987 N/D 5. Thomas Harriman sent us a rigorous
solution to this (so-called Mnage) problem. Copies
are available from the editor.

1989 F/M 5. Albert Mullin notes that the largest
Mersenne prime found to date is much closer to
24481 _ 1 than to 2% - 1 and that there are
asymptotically n/log n primes less than n.

APR 4. Thomas Harriman sent us a more analytic
solution; Albert Lazzarini has responded.

M/ 1. Robert Bart points out White's second move
in ‘the solution to part A is illegal and provides us
with the following correct version.

Black White

1. N-edch K-l
2. N-c3ch  PxN
3. B-el P-c4
4. P-h1(R) P-5
5. R-h2 P-c6
6. RxP P-<7
7.

R-a7 P-c8(Q) mate
JUL 2, John Prussing had responded in a timely
fashion but [ am sorry to say that I misplaced his
letter.

JUL 3. Dimitri Daskalopoulos, L.J. Lipton, and
James Conant have responded

JUL 5. Thomas Harriman has responded.
Proposers’ Solutions to Speed Problems
SD 1. An octane ;'aling

SD 2. 1:23:45, 6/7/89. The time on June 7, 1989 am
and pm, and on June 7, 2089.
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