Can 1984 Be
As Ggod as 1983?

. .

year, we again offer a “‘yearly

problem’” in which you are to ex-
press small integers in terms of the di-
gits of the new year (1,9,8, and 4) and
the arithmetic operators. The problem is
formally stated in the “Problems” sec-
tion, and the solution to the 1983 yearly
problem is in the “Solutions” section.

T his being the first issue of another

Problems

Y1984 Form as many as possible of the
integers from 1 to 100 using the digits
1,9,8, and 4 exactly once each and the
operators +, -, X (multiplication), / (di-
vision), and exponentiation. We desire
solutions containing the minimum
number of operators; and, among so-
lutions having a given number of
operators, those using the digits in the
order 1,9,8, and 4 are preferred. Par-
entheses may be used for grouping;
they do not count as-operators.

JAN 1 Doug Van Patter asks us a bridge
problem based on the following hand
that actually occurred in a tournament.
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South is declarer at a contract of four
spades; West leads the ¢A. Would you
choose to be declarer or defender?

JAN 2 A Technology Review reporter took
a poll among a number of readers and
found that 91.3 percent enjoyed “Puzzle
Corner,” a value accurate to three dig-
its. What is the minimum number of
readers the reporter could have polled
for this value to be so accurate?

Puzzle Corner/Allan Gottlieb

Allan J. Gottlieb, 67, is
associate research

rofessor at the Courant
nstitute of
Mathematical Sciences
of New York University;
he studied mathematics
at M.I.T. and Brandeis.
Send problems,
solutions, and
comments to him at the
Courant Institute, New
York University, 251
Mercer St., New York,
N.Y. 10012.

JAN 3 Winthrop Leeds has a three-part
problem about the design of the soccer

Jball in current use. The ball appears to

be made from 32 pieces of leather, 12
black pieces in the shape of regular pen-
tagons and 20 white pieces in the shape
of regular hexagons. Instead of forming
a polyhedron, air pressure pushes the
sides out into a circumscribing sphere.
How many vertices does the basic
polyhedron have? Do all of these ver-
tices lie on the circumscribing sphere? If
the edge of each pentagon and each
hexagon is exactly 2 inches in length,
calculate the diameter of the
circumscribing sphere.

JAN 4 We end the regular section with a
problem Dan Dewey sent to the M.L.T.
Physics Department student newsletter.
On the planet Trayshowed in a distant
galaxy, an earth scientist was asked to
measure the black body temperature of
the sun. Their day/night cycle was 36
hours, so the scientist was somewhat
frazzled; however, he was spared a little
work when he noticed that sunlight
would enter his appartus for a full 6
minutes without having to move it. As
predicted, the blackbody equivalent
temperature was found to be 5500 Kel-
vin. What kind of clothing did our sci-
entist wear? (French scholars: take a
guess. Physicists: calculate the average
surface temperature of Trayshowed!)

Speed Department

SD1 Phelps Meaker offers a sidewalk
speeder: A straight sidewalk is to be
constructed of pre-cast concrete
slabs—alternate isosceles trapezoids
and rhombuses. There are ten
trapezoids and eleven rhombuses. Two
right-angle triangles are provided to
dress up the ends. The altitude and the
two parallel sides of the trapezoids are
in the ratio 2:3:4. The rhombuses are 34
inches on a side. What are the width
and length of the walk (within 1/4 inch)?

SD2 A gem (ruby) from Art DelLa-
grange. Here’s a quickie: The Rubik’s




cube (3X3) has 26 sub-cubes,
“cubies,” as the one in the center does
not really exist. Each face has nine
“facies,” for 54 total. The six center
facies do not move (only spin); the 48
remaining facies all have unique loca-
tions. They belong two to an “edge”
cubie or three to a “corner” cubie. Do
more belong to edge or corner cubies?
Also, define the equivalent problem for
the 4X4 cube and solve it.

Solutions

Y1983 Apparently 1983 is a very good year (re-
member, I write this in early October) since only
two numbers cannot be formed as exemplified by
Rik Anderson’s solution:

11983 51—1 X [3 X (9 + 8)]
2--38/19 52—1 + [3 X (9 + 8)]
3—18/(9 — 3) 53—91 — 38

4-9+ (8 - 13) 54—-18(9/3)

5-3 + (18/9) 55-8(3 ~1) — 9
6—18 — (3 +9) 56—8 X [9 (3 - 1)
7—8 — 1% 57—19 + 38

8—91 — 83 58-89 —31

9—9 x 183 598 X 9) ~ 13
10—9 + 183 60—[9 X (8 —1)] —3
11—1° x (8 + 3) 6l—-8%x (9 —1)] -3
1293 — 81 : 62—

13—13 % (9 — 8) 63—189/3

1419 — (8 - 3) 64—83 — 19

15—18 — (93) 65—8 + (3 X 19)
16—1 —[9 — (8 X 3)] 66—198/3

17—13 X (9 + 8) 67—98 — 31

18—9 + 8 + 13
19-38 — 19

201X (9 + 8 +3)
21-39 — 18
2-BXx©O+1)] -8
23 (8 x3) —1°
2419 + (8 —3)

68—(1 +3) X (9 + 8)
69—81 — (9 + 3)
70—1 — 3 - (9 X 8)]
71—(9 x 8) — 13
7213 X (9 X 8)
73—83 — (1 + 9)
741 % (83 - 9)

' cannot ignore this threat: e.g. if 1. ...

25—1 + [8 X (9B3)] 75—93 —- 18

26—(9 x 3) — 18 76—89 — 13
27—81/(9/3) 77—8 X (9+1] -3
28—38 —(1+9) 78—81 — 93

29—1 X (38 —9) 79—

30—19+8 +3 80—91 — (8 + 3)

31—1 X (39 - 8) 81—3 X (19 + 8)

32—1+ (39 - 8) 8283 — 1°
333 X (19 — 8) 83—83 x 19
34—1+9+ (8 X 3) 8493 — (1 +8)
351 % 8+ (3 X 9)] 85—98 — 13
36—9 + (8143) 86—1 + (93 — 8)
3738 — 1° 87—1 — (3 — 89)
3838 x 19 88—89 — 13
3938 + 19 8989 x 13
4039 + 18 9089 + 13
41—@8 x 9) — 31 919 + (83 — 1)
4281 — 39 92—1 X (9 + 83)

4319 + (8 X 3) .
48+ 9% (3 + 1)
4518 + (3 X 9)

93—1 + (9 + 83)
94—98 — 3+ 1)
95—19 X (8 — 3)

46—9 + (38 — 1) 96—1 + (98 — 3)
47—1 X (9 + 38) 97—98 — 13
48—1 + (9 + 38) 98—98 x 13
49-98/3 — 1) 99—98 + 13

50—(1 +9) X (8 —3) 100—98 + (3 — 1)

Also solved by Ron Newman, A. Holt, Allen
Tracht, Kenneth Fawcett, Bill Dawson, Maria Pet-
rocchi, Jay Roth, Harvey Fletcher, George Aronson,
John Fine, Rik Anderson, Hal Steiner, Avi Orns-
tein, Harry Garber, Allan Katzenstein, Phelps
Meaker, Harry Zaremba, David Evans, Linda Fur—
row, Burt Grosselfinger, and Rudy John.

A/S 1In the situation shown at the top of the next
column, White is to play and draw.

A detailed solution from David Evans. White
cannot hope to win unless Black blunders. The
passed KRP cannot be queened, and there is not
enough time to clear the QR file before Black breaks
through in the center. 1. K-K4 stops Black’s pawn
temporarily, but meanwhile Black merely picks off
the KRP, then swings around with his king and
eventually forces his way through in the center.
White must therefore play for stalemate at QRS5,
with his QRP’s at R4 and R6, his BP permanently
immobilized, his KRP captured, and a Black pawn

Diagram for A/S1 (see column 1)

at B3. The move P-B3 is natural for Black in his
effort to clear the center, but he will avoid making it
if he recognizes White’s attempt to force a draw.
Thus White loses if he merely pushes his KRP and
heads for QR5: e.g., 1. P-R5, K-R2; 2. P-R6, KxP; 3.
K-B3, K-N4; 4. K-N3, K-B5; 5. K-R4, K-K5; 6. K-R5,
K-Q5, 7. P-R4loses to 7. . . . P-Q4. If 8. PXP, P-B5;
if 8. K-N5, PXP and in both cases Black queens
first.

Therefore White must force Black to play P-B3.
This is accomplished with:

1. K-K4

The threat is 2. K-Q5 followed by 3. K-B6. Black
K-R2; 2.
K-Q5, K-R3; 3. K-B6, K-R4; 4. KXP(B7) wins since
of 4. ... KxP; 5. KxP followed by 6. KxP and
White queens; or if 4. ... P-Q4; 5. KXQP and
Black’s QBP falls quickly. Black’s king cannot help
since it must guard White’s KRP: e.g., 1. . . . K-N2;
2. K-Q5, K-B3; 3. K-B6, K-K4 loses to 4. P-R5, for if
now 4. . . . P-Q4; 5. P-R6 and Black must retreat to
the corner, after which White mops up in the center
as before.

Thus Black must prevent White’s 2. K-Q5. The
reply 1. . . . P-Q4 ch obviously loses quickly, so 1.
... P-B3 is forced. Now White must force im-
mobilization of his BP, since he cannot allow Black
to force an exchange at White's Q5: e.g., 2. K-Q3,
K-R2; 3. K-B3, K-R3, 4. K-N3, K-R4; 5. K-R4. KxP;
6. K-R5, K-N5; 7. P-R4 and Black still wins with 7.

. P-Q4; 8. PXP, PXP and stalemate is broken.
Then 9. K-N5 (forced), P-B5!; 10. K-N4 (forced—
else 10. . . . P-B6 and queens), K-B5; 11. K-B3, K-K6
and Black queens. Thus White must force Black to
play P-Q4 and P-Q5, after which White can reach
his stalemate at QR5. This is accomplished by:

2. K-B5. . ..

If now 2. . . . K moves; 3. K-K6, K moves; 4. KxP
and White wins, for Black cannot save the BP’s and
simultaneously stop the queening threat on the QB
and KR files; or 3. . . . P-Q4; 4. PXP, P-B5 (not 4.

. PXP: 5. KXP followed by 6. KXP and White
wins); 5. PXP and White queens first, capturing at
QB1 when Black queens. So, 2.. . . P-Q4 is forced.
Now:

3. K-K5

If 3. ... PXP, 4. K-K4 and Black cannot queen—-—
eg.,4 . P-B6; 5. K-Q3, P-B7; 6. KXP (or 5. .
P-B5 ch; 6 KXP (B3)) and Black loses all his QBP’
enabling White to queen on one or the other of the
rook files. If instead 3. . . . K moves; 4. PXP fol-
lowed by 5. PXP as above and White wins. There-
fore Black must play 3. . . . P-Q5, and White has
achieved his objective. Black, of course, cannot ad-
vance his QP without his king’s support, and this
gives White the time he needs to reach stalemate: 4.
K-K4, K-R2; 5. K-Q3, K-R3, 6. K-B2, K-R4; 7. N-N3,
KxP; 8. K-R4; or 4. . .. K-N2; 5. K-Q3, K-B3; 6.
K-B2, K-K4; 7. P-R5 and Black must return to the
corner. In either case, White reaches QR4 before
Black can advance QP; e.g., continuation of the
former line .of play gives: 8. ... P-Q6; 9. K-R5,
P-Q7; 10. P-R4 stalemate. The latter line would
continue: 7. . . . K moves (not 7. . . . P-Q6 ch; 8.



KxP and White reaches QRS and pulls up the QRP
before Black can elminate the KRP and break the
logjam on the QB file); 8. P-R6 and Black must re-
treat. Of course, if Black plays P-Q6 before White
reaches QR4, White simply captures, then queens
on either the QB or KR file.

Also solved by Robert Way, Matthew Fountain,
Ronald Raines and the proposer, Bob Kimble. o

A/S 2 A total of 14 coins are arranged in four hori-
zontal rows with 2,3,4, and 5 coins, respectively:

Two opponents, “A” and "“B,” take turns picking
up any one or more coins from any one horizontal
row until one opponent wins by leaving the last
coin for the other opponent to pick up. If “A”
starts, there will be no way for “A” to win regard-
less of his first move, unless ‘B fails to make the
right moves thereafter. The problem is to identify
how few and what configurations “B” can leave for
“A” on “B"’s first move (after any starting move by
“A”) so that “B” can win, regardless of any sub-
sequent move by “A.” .

Thomas Stowe cotrectly determined that there
are four configurations “B”’ can leave for “A”:
Piles containing 1, 2, and 3 coins.

Piles containing 1, 4, and 5 coins.
Piles containing 2, 2, 3, and 3 coins.
Piles containing 2, 2, 4, and 4 coins.

Henry Curtis analyzed the entire game:

A foolproof approach for B to win the “2+3-4-5 coin
game” is to present player A with an “even con-
figuration”” on each play until near the end. To de-
termine whether an “‘even configuration” exists,
follow these two steps:

1. Express the number of coins in each row as a
binary number. for the starting position, this would
be:

Row Number of coins:
number Decimal Binary
1 2 . 10

2 3 11

3 4 100

4 5 101

2. Count the number of non-zero digits in each col-
umn of the binary listing. If the number of non-zero
digits in every column is even, then the array is
“even.” For the starting position, there are two
non-zero digits in the units column, two in the 2’s
column, and two in the 4’s column, making the
starting array “even.”

Note that a player confronted with an “even”
configuration at the beginning of his turn will have
to leave an ““odd” configuration for his opponent,
no matter what move he chooses to make. On the
other hand, a player confronted with an “odd”
configuration can leave an “even” or “odd” con-
figuration for his opponent, depending on the
move he chooses to make. To force player A to take
the last coin, B should then take all of the coins in
the row containing more than one coin, leaving A
with an odd number of rows, each containing one
coin. As an example, suppose A starts by taking
one coin from the longest row, leaving rows of2,3,
4, and 4 coins. B can make this an “even” config-
uration by taking one coin from the second row,
leaving rows of 2, 2, 4, and 4 coins. For a second
example, assume A takes all coins from the longest
row, leaving rows of 2, 3, and 4 coins. B can leave
an “even” configuration by taking 3 coins from the
third row, leaving rows of 2, 3, and 1 coins, and so
on. One can see that B can be the master of the
game—i.e., he may choose in advance to force A to
take the last coin or to prevent A from getting the
last coin. For the latter option, B simply presents an
“even” configuration to A throughout the game.
‘The method outlined here works not only for the
2-3-4-5 coin game” but also for an expanded game
of any number of rows with any number of coins in
each row. B can win all the time, provided he has
an opportunity to present an “even’” configuration



to A sometime during the course of the game.
Also solved by Robert Way, David Evans,
Matthew Fountain, John Woolston, Harry
Zaremba, Richard Hess, Winslow Hartford, Emmet
Duffy and the proposer, Donald Richardson.

A/S 3 A member A moves on rollers, without slip-
ping, from the solid-line position to that shown in
dotted lines. What is the value of X in terms of the
lengths A and B?

>
Fm——-n
A - B > : H
N NS T T
" (=t S dm i)
¥ S LA L)

Karl Brendel shows us that the answer is
X =3A + 2B

By inspection, if the rollers did not move relative to
the floor, X would be equal to the distance moved
by a point on the member, relative to the rollers,
plus the length A. That distance is equal to A + B,

S0

X [Member Relative to Rollers] = 2A + B
However, we are given rollers move without slip-
ping. Therefore, the rollers move, relative to the
floor, the same distance moved by the point on the
member, relative to the rollers: A + B

X [Rollers Relative to Floor] = A + B

The X we want is the summation:

X [Member Relative to Floor]
= X [Member Relative to Roll] + [Roll Relative to Floor]
=2A + B+ A+ B.

X = 3A + 2B

Also solved by David Evans, George Piotrowski,
Thomas Stowe, Ronald Raines, Norman
Wickstrand, John Woolston, Richard Hess, Harry
Zaremba, Howard Wagner, Mary and Martin Lin-
denberg, James Abbot, Robert Way, Michael Nes-
chleba, and Matthew Fountain.

A/S 4 In the drawing, C is a point on the semicircle
with AB as diameter. MN is tangent to the semicir-
cle at C. AM and BN are perpendicular to MN, and
CD is perpendicular to AB. Show that CD = CM =
CN and that CD? = (AM)(BN)

M

A D B

The following solution is from Henry Lieberman.

Let the intersection of AM and the semicircle be X
and draw BX. Now angle BXA is a right angle since
it is inscribed in a semicircle. Thus MNBX is a rec-
tangle. Now let O be the center of the circle-and
draw CO. Since MN is tangent to the circle at C, CO
is perpendicular to MN. Therefore, CO, MA, and
NB are parallel. Since CO bisects AB, CO also
bisects MN whereby CM = CN. Since CO is per-
pendicular to MN and MN is parallel to BX, CO is
perpendicular to BX. Moreover, CO bisects BX
since it bisects MN. So, CO is the perpendicular

bisector of BX. Hence, chords CX and CB are equal.
Therefore, arc CX = arc CB and so angle COD =
angle XAB. So, triangle COD is similar to triangle
XAB. The similarity of these two triangles implies

CDIXB = CO/AB = 1/2.

Therefore, CD = XB = MN = CM = CN, one of the
desired results.

Observe that angles CAB and NCB are both mea-
sured by arc CB, and hence they are equal.
Moreover, angle BCD = angle CAB since they are
both compliments of the same angle. Hence, angle
BCD = angle NCB and therefore triangle BCD =
triangle BCN. Then DB = NB. Similarly, AD = AM.
But, CD2? = (AD)(DB) and therefore CD? =
(AM)(BN), the second desired result.

Also solved by Steve Feldman, Avi Ornstein,
Farrel Pownser, G. Yin, Winslow Hartford, Phelps
Meaker, Karl Brendel, David Evans, George Piot-
rowski, Richard Hess, Harry Zaremba, Martin Lin-
denberg, James Abbot, Robert Way, Matthew
Fountain, Raymond Gaillard, Apulia Servi, Nor-
man Wickstrand, Emmet Duffy, Naomi Markovitz,
and the proposer, Mary Lindenberg.

A/S 5 Which integers X have the property that 9X is
the same as X with the digits in reverse order?
There is one other integer multiplier (besides 9 and
trivially 1) that reverses digits for an infinite
number of integers. What is this multiplier and
what are the multiplicands?

Robert Way found the solutions:
+11 X [integer part of (9.99 . . . X 10%)]
where a is a positive number. He also determined
that the other multiplier is 4 with mulitiplicands.
+100 X [integer part of 2.1999 . . .x10%)] + 78.
David Evans noted that the multiplicands for 4 are
twice those for 9.

Also solved by Matthew Fountain, Richard Hess,
Harry Zaremba, Winslow Hartford, Emmet Duffy,
and the proposer, Susan Henrichs.

Better Late Than Never
FM 2 John Langhaar believes the area is 33.512.

FM 3 John Langhaar notes that in 1957 Sidney Clark ‘
submitted these equations to a brainteaser column
edited by Mr. Langhaar. The solutions were

x= = (@Y + 3201

y = = (393 + 3)2 + 3.9% - 1)!2
where x and y must be taken of the same parity.

M/J 5 William Peirce found a simpler solution.

JUL 1 Mearle Smith, Alan Robok and Pi-Jan Sheu,
John Woolston, and Emmet Duffy have responded.

JUL 3 John Woolston has responded.

JUL 4 John Woolston, Emmet Duffy, James Abbot,
and Karl Brendel have responded.

JUL 5 Karl Brendel, Michael Jung, and Emmet
Duffy have responded.

JUL SD 1 James Abbot tried the solution given,
using two mirrors, and does not believe that it
works.

A/S SD 2 George Holderness and Robert Way be-
lieve that there are better ways to play the hand.

Proposers’ Solutions to Speed Problems

SD 1W = 33", L = 959.75” (80 feet).

SD 2 For the 3x3, there are 8 corners with 3 facies
and 12 edges with 2, for an equal number of 24. For
the 4x4, things are a bit more complicated. There
are 56 cubies, with 2X2 subset in the center
nonexistent. Some are duplicates. All move. There
are 96 facies; their locations are not necessarily
unique. There are now 24 facies on center cubies, 48
facies on edges, and still 24 facies on corners.



