Puzzle
Review

Last month while writing my column | was
fighting a “life-and-death” battle with
mononucleosis, which may explain the
exceptionally low quality of that install-
ment. A few weeks later | went home for
Easter vacation. Of course, when my
mother found out about “the disease,”
she was ready to hospitalize me—for up
to six years, it seemed. Since this may
be a problem encountered by others, |
suggest that anyone involved look at
Readers Digest (a recent issue) for an
article which puts mononucleosis in its
place. Without this article, | would have
been in bed my entire vacation and my
mother wouldn’t have slept a wink.

Next month (July) I will print no new
problems. Instead, solutions to problems
in both April and May issues will be given.
This month’s new problems will be
answered in the first issue of Technology
Review in the fall.

Problems

In problem 17 (Technology Review

for February) you were asked to show that
a certain triangle was equilateral. Now
Eric Rosenthal, son of Meyer S. Rosen-
thal, '47, has a related question:

35 Given, as in the drawing below:

We know from problem 17 that triangle
XYZ is equilateral. Show that its sides
are of length 8R sin « sin g sin v, where
R is the perimeter of triangle ABC.

The next two problems come from

Douglas J. Hoylman, ’64. The first one,
he says, came out of an elementary cal-
culus book, but four graduate students in
mathematics required several hours to
solve it. “Well, we solved it,” he writes,
“but our method used only algebra and
trigonometry, and the problem appeared
in a section on differentiation. Can any-
one find a method of solution that uses
calculus?”’ The problem:

36 A quaderilateral is inscribed in a circle
such that one side is a diameter of the
circle and the other three sides have
lengths 1, 2 and 3, respectively. Find
the length of the diameter to three deci-
mal places.

Doug Hoylman’s second problem:

37 Arrange six line segments of equal
length in the plane to form eight equi-
lateral triangles.

Russell A. Nahigian, ’57, sent a long
list of problems which will keep us gcing
well into next year. One unusual one is:

38 Given four colored cubes described
as follows:

Back
Red
Green
White
Blue

Front Right
Cube 1 Green Blue
Cube 2 White Green
Cube 3 Blue Red
Cube 4 Red White

Left  Top Bottom
White Red Red
Red White Biue
Blue Green Green
Green Red White

The problem is to pile the blocks one
above the other so that each face of the
pile shows all four colors. (Cubes are
helpful but not necessary to solve the

Allan J. Gottlieb, '67

problem.)

John Reed, 43, sends a puzzle which
he believes has never been printed:

39 Find n such that nt 4 n3 is a 10-digit

number in which each digit is used only
once.

Speed Department

From Mr. Nahigian:

SD13 Given VI = Il, Move one stick to
make the equality true. There are two
solutions, and V = Il is not one of them!

Leon Sutton, '62, suggests:

SD14 John Dow usually arrives at the
railroad station at 3 o’clock. His wife is
always there to meet him and take him
home (she always leaves the house at
the same time and drives at a constant
30 m.p.h.) One day John’s train arrives
early, at 2:30, so he starts walking
toward home. His wife, who left at the
usual time, meets him on the way, picks
him up, and they arrive home 10 minutes
earlier than usual. When did his wife
pick him up?

Solutions

20 If x and y are positive numbers with
X >y, is x¥ greater than, equal to, or
less than yx? Let x > y = 0, show that
a) if y = e, then xv < yx

b) if x = e, then xv > yx

c)ify < 1ande = x, then xv > yx

d) if 1 <y < e, then there exist infinitely
many values of x > e such that x¥ < yx
and infinitely many values of x > e such
that x¥ > y* and exactly one value of

X > e such that x¥ = yX, And show that
a corollary of this is the well-known fact
that there is exactly one solution of

XY = y* for x and y integers, 0 < y < x.

As | had suspected (feared), Professor
Martin’s problem was not too easy. After
all, you don’t become Chairman of the
Mathematics Department by peddling
grapefruit. Only two solutions were re-
ceived. One, by William T. Moody, '31,
included a geometric interpretation of

X = Xx¥; the other, reprinted below,
came from Mr. Hoylman:

Let f(x,y) = y log x — x log y. Then
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of/dx = (y/x) — log y, and 9f/ gy =
log x — x/y.
a) If y = e, then logy = 1, and x>y
gives y/x < 1, so 9f/9x < 0. Hence for
fixed y, f(x,y) is a decreasing function
of x. Then, since f(y,y) = 0, we have
f(x,y) < 0forx >y, ie.ylogx <X
log y, and since exp is an increasing
function, x¥ < yx.
b)lf x=e,thenlogx=1,and x >y
gives x/y > 1, so by a similar argument
f (x,y) is a decreasing function of y,
so f(x,y) > O0fory < x, so x¥ > yx
c) Let y be fixed. By elementary calculus
(I quote Mr. Rosenthal’s solution to
problem 5), the maximum value of x1/x
occurs for x = e. Hence el/e > yl/v,
or e¥ > ye. On the other hand,
lim (y log x—x log y)
X—> 0
= lim x[y(log x)/x—Ilog y]

. X—> 0
=— o0, So for sufficiently large x we have
ylogx < xlogy, or x¥ < y*. So, by
continuity, there is at least one x, x > e,
such that x¥ = yx, Suppose there is more
than one such x. Then there must be at
least three (the curve starts above the
x-axis and ends below it, so must cross it
an odd number of times), or, equivalently,
at least three solutions of f(x,y) = 0,
where f is as above. This means there
must be at least two solutions of fx(x,y)
= 0. But the latter equation has the
unique solution x = y/(log y). Contradic-
tion. To find a solution of x¥ = y* in
positive integers, x > y: by a) we must
havey < e, i.e. y = 1 or 2. Clearly
there is no solution with y = 1, so we
must havey = 2. Then x =3, s0 x > ¢,
and by c) the equation has exactly one
solution in real numbers. But we know
that it has the solution x = 4. Hence this
is the only solution in integers.

21 The “Whitfield Six”: Given
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South to lead, hearts trump; North-South
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to make all the tricks against any defense.

The following comes from Peter J.

Davis, Jr., whose father graduated in
1948:

Maxwell Smart might have called the
solution the old end-game cross-dummy
double-squeeze, but if you don’t believe
that try ruffing a spade in the dummy and
leading the remaining trump. A club
discard by East makes South’s & 6 good
for the last trick, and a spade discard
(with South dropping the ¢ Q) squeezes
West into deciding whether to make the
A 5 good, to give the dummy two
diamond tricks, or to give the last trick
to the o 8. This leaves East with his best
and only remaining choice, to part with
the ¢ 8, upon which South drops the

4 Q and West the ¢ 7; any other dis-
card by West provides South with a
clearer path to success. South then
cashes the dummy’s ¢ A, and East has to
make up his mind whether to give South
a club trick or to allow his partner to de-
cide which suit to lose the trick in.

The following observation is due to Ted

E. Davis, '66:

It is noted that there are 10 clubs showing
on the table, the missing cards being the
& A, &K, and & Q. This situation could
occur only if someone reneged when
clubs were played or, if clubs were not
played, the three clubs were sluffed on a
heart lead (assuming there were no
reneges).

And Lee H. Wilson, a University of Michi-
gan journalism student, is puzzled:

What is impossible is figuring out who
the clown, or clowns, were that sloughed
away the o A, & K, and & Q. My wife
wouldn’t even do that. Why not ask

Mr. Zaklad to come up with an explana-
tion? (You just did.—Ed.)

22 Let V be a closed convex set in a
Hilbert space H. Let x e H — V. Prove
thai there exists a unique y ¢ V which is
of minimal distance from Xx.

For a while | was afraid a physics major
actually answered my challenge; in fact, |
was worried: not only was his uniqueness
proof identical to mine, but his existence
proof was “better”’! it would work for
Banach spaces as well (i.e. he did not
use the inner product). But after much
scrutiny by Michael R. Gabel, ’65, flaws

were discovered. A result which Mr.
Sutton simply asserted is in fact the heart
of the existence proof. Here is his letter:
Let R be the suprenum of the radii of
open balls about x which have a null
intersection with V. (By open balls of
radius r | mean, of course, the open set
{z: ]| x—z || < r.) Since V is closed
(and the space is complete and the
parallelogram law holds for inner product
spaces and etc.—Why don’t you physics
majors stick to naming new particles and
leave Hilbert spaces to real men, i.e.
mathematicians?—=Ed.), 3yeV s.t. ||x —

y || = R. Y is unique, for suppose

3 y1,y2¢ X — yil| = [[x — yal| = R

(y1eV and ys¢V). Consider

Y =y1+ :(ya—y1)
=(1—MNyi+Ay2(0=21=1).

Since V is convex, y’eV. (Y’ lies along the
line joining y; and ys.) It is easy to

show that

[[x— Y2 < R2if y1 =+ ya:

X = y[]2 — || x — y1][2 = 22[lys — y2||?
— 2MRe(X — y1,y2 — y1). (1
In |lyr — y2|2, substitute ys2 = y;2 +
2Re(x,y2) — 2Re(x,y1), obtained from

[Ix — y1]|> = [[x — y|[> = R2. Expand
both terms on the right-hand side of (1)
to obtain: 0 = |y — yzl|2

= 2y1% 4 2Re(x,y2) — 2Re(x,y1) —
2Re(y1,y2)

= 2Re(X — y,y2 — Y1)

Therefore (1) becomes

[[x— y'|2 — Re = (.2 — 1)]lyr — yel|2

If y1 == y», then, by choosing 0 < n <1,
the right side is negative, so ||x — y’||?
< R2, which contradicts the assumption
that R = sup of the radii of the open balls
which have null intersection with V.
Therefore y; = ys.

23 Given three co-planar circles with
centers ¢y, €g, and c3 radii equal to

ri, re, and 13, respectively. Choose three
points, one on each circle, and label
them A, B and C. The problem is to find
the maximum and minimum areas of such
a triangle ABC, in terms of ry, ry and r3
and ciCg, Ca2C3 and cscy.

Mark H. Yu, ’70, the proposer, offered a
year’s subscription to Tech Engineering
News for correct solutions, and it looks
as if he was taking no chances. Russell L.
Mallett, '57, shows the impossibility of a
general construction as follows:

There is no general method of construct-
ing the triangle of maximum or minimum
area. By considering the case of three
circles with the same radius r centered
on the vertices of a right isosceles
triangle with hypotenuse 4r, the existence
of a ruler-and-compass solution becomes.
equivalent to the existence of rational
solutions of the cubic equation z3 — z2/8
— z/64 — 289/1024 = 0. It is not difficult
to show that this equation has no rational
roots.

| do have a computer solution, however.
(How about it, Mark?) Here is a letter
from Francis T. Leahy, Jr., '33:

Mr. Yu’s problem would be certainly
difficult to solve using paper and pencil
methods. It can, however, be solved
easily with a Fortran program if this be
considered a legitimate method. Points
are chosen such that tangents to the



circle through them are parallel to the
opposite side of the triangle in question.
To start off, the centers of the circle serve
as the vertices of both triangles. In a very
few iterations the vertices of the minimum
and of the maximum triangle are obtained
toe any desired degree of accuracy, using
‘an identical procedure except for sign

in one equation. Here is a solution for a
typical case:
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24 Let N. be an R-digit number, written
neni ... NR—1, in the base R number
system such that ng is the number of 0’s
in N, n; the number of 1’s, and so on

up to R—1. For what R does N exist?

For which of these is it unique?

The only correct solution is from the pro-
poser, Kenneth W. Dritz, '66:

| offer a derivation of two solutions for

R = 4, one for R = 5 and a parametric
one for each [R> 6]. The derivation is
the proof that no other solutions exist.
Since the length of N is equal to the
number of 0’s in N, plus the number of
1’s in N, and so on up to R — 1, the sum
of the digits must be exactly R. Now let
us assume we have a solution in which
there are i non-zero digits (np = R — ).
Since no solution can have ng = 0, there

are then i — 1 non-zero digits to the
right of ng. The sum of these i — 1 digits
is R — ng = i. Therefore, one is a 2 and

the other i — 2 are 1’s. It is seen easily
at this point that no solutions exist for
R = 2or R = 3. Ror R > 3 there are
three cases:

Case 1: ny = 0. Since there are i — 2
1’s to the right of ny but none at all in N,
i—2=0andi= 2 The 2 to the

right of nyp can only be ng (if n; = 2 for
some j > 2 there would have to be 2 j’s
in N in addition to the 2, contradicting

i = 2). That takes care of all the non-
zero digits but ng. But since ng says we
need two 2’'s in N, np = 2. Since 2 =
np=R—i=R—2,R=4andone

solution is 2020.

Case 2: ny = 1. Since there are i — 2
1’s to the right of ng and just one 1in N
(which happens to be right of ny),
i—2=1andi = 3. The 2 to the right
of np can only be ny (if n; = 2 for some

j > 2 there would have to be 2 j’sin N

in addition to the 2 and the 1, contra-
dicting i = 3). Then ny = 2 for the same
reason as before. Since2 =ng=R—i=
R — 3, R = 5 and one solution is 21200.

Case 3: ny = 2. There are two subcases:
Case 3.1: Both of the 1’s in N are to the
right of ng. Theni— 2 = 2 and i = 4.
Since n; = 2, ng can’t be 0. It can’t be
another 2 since there is only one 2

to the right of ng. Hence ny = 1. Since
no must now be greater than 2, we have
2<n=R—i=R—4andR > 6.
Obviously, the remaining 1 has to be
nr—4 (which is guaranteed to be to the
right of ng). The parametric solution for

R > 6 is, then, (R — 4) 210 ... 01000.
L_..Y__J
R—70’s

Case 3.2: Only one of the 1’s in N is to
the right of ng. Thenng — 1;i — 2 = 1
and i = 3. Since ny = 2, ng can't be 0.
Nor another 2 (as before). Hence, ng

is the remaining 1. Since 1 = ng = R —
i =R — 3, R = 4 and one solution is
1210.

We have exhausted all the possibilities.
So there is no solution for R = 6. John’s
solution, 6210001000, for R = 10, falls
out of Case 3.1.

Messrs. Hoylman, Sutton, and Yu sent in
identical answers (they each missed
1210). Do you three know each other?

Better Late Than Never

5 Lawrence H. Bailey, 15, has responded
to this problem.

7 R. Robinson Rowe, '18, has extended
further the solution of this problem, call-
ing attention to his earlier solution of
part (a):

My solution was y = eDx, where

D = 0.567143290409784 . . . Testing this,
y’ — DeDPx — Dy

f(x — 1) = eDx—1) — gDxg—D — e—Dy
Ify" = f(x — 1), Dy = e~ Dy

and D = e~D,

which determines D as given above.

There is also an extended discussion
from Reino W. Hakala, Professor and
Chairman of the Department of Mathe-
matics at Oklahoma City University, who
adds a postscript: If you know of any
recent Ph.D.’s in mathematics or anyone
who will receive a Ph.D. in mathematics
before next September who would like to
teach at Oklahoma City University (the
former Miss America is a student here,
and there are other advantages as well),
| would appreciate knowing of them.

| am looking for someone of that sort to
add strength to our small department.

| prefer someone with a background in
topology and/or functional analysis but
will consider any background in pure or
applied mathematics.

8 Mr. Sutton has responded.

10 Milton S. Hathaway, '32, has a
rather interesting observation:

Don’t see how you and all those other
fellows can be wrong about that horse
and that barn. A full grazing circle on
that 100" rope would be 31,416 sq. ft.
But it seems to me that 25’ square barn
would make poor grazing, so the real
grazing area cannot be more than 31,416
— 625 = 30,791 sq. ft., so | doubt your
answer of 30,920.

How about it, Marshall Greenspan, '61?

12 Arnold B. Staubach, '19, has replied.

SD5 This has got to be the most aesthetic
answer ever received by Puzzle Review:

Allan J. Gottlieb, ’67, is a graduate stu-
dent in mathematics at Brandeis
University. Address correspondence to
him at the Department of Mathematics,
Brandeis University, Waltham, Mass.
02154.
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